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SOME RESULTS ON 2-INNER PRODUCT SPACES

H. Mazaheri1, R. Kazemi1

Abstract. We onsider ”Riesz Theorem” in the 2-inner product spaces
and give some results in this field. Also, we give some characterizations
about 2-inner product spaces in b-approximation theory.
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1. Introduction

The concept of linear 2-normed spaces has been investigated by S. Gähler
(see [9]) and has been developed extensively in different subjects by many au-
thors (see [1-8]).

Let X be a linear space of dimension greater than 1. Suppose ‖., .‖ is a
real-valued function on X ×X satisfying the following conditions:
a) ‖x, y‖ = 0 if and only if x and y are linearly dependent vectors.
b) ‖x, y‖ = ‖y, x‖ for all x, y ∈ X.
c) ‖λx, y‖ = |λ|‖x, y‖ for all λ ∈ R and all x, y ∈ X.
d) ‖x + y, z‖ ≤ ‖x, z‖+ ‖y, z‖ for all x, y, z ∈ X.
Then ‖., .‖ is called a 2-norm on X and (X, ‖., .‖) is called a linear 2-normed
space. Some of the basic properties of 2-norms are that they are non-negative
and ‖x, y + αx‖ = ‖x, y‖ for all x, y ∈ X and all α ∈ R.

Every 2-normed space is a locally convex topological vector space. In fact,
for a fixed b ∈ X, pb(x) = ‖x, b‖, x ∈ X, is a seminorm and the family P =
{pb : b ∈ X} of seminorms generates a locally convex topology on X.

Let (X, ‖., .‖) be a 2-normed space and let W1 and W2 be two linear sub-
spaces of X. A map Λ : W1 × W2 → R is called a bilinear 2-functional on
W1 ×W2, whenever for all x1, x2 ∈ W1, y1, y2 ∈ W2 and λ1, λ2 ∈ R;
a) Λ(x1 + x2, y1 + y2) = Λ(x1, y1) + Λ(x1, y2) + Λ(x2, y1) + Λ(x2, y2),
b) Λ(λ1x1, λ2y1) = λ1λ2Λ(x1, y1).

A bilinear 2-functional Λ : W1 × W2 → R is said to be bounded if there
exists a non-negative real number M (called a Lipschitz constant for Λ) such
that |Λ(x, y)| ≤ M‖x, y‖ for all x ∈ W1 and all y ∈ W2. Also, the norm of a
bilinear 2-functional Λ is defined by

‖Λ‖ = inf{M ≥ 0 : M is a Lipschitz constant for Λ}.
1Department of Mathematics, Yazd University, Yazd, Iran,

e-mail : hmazaheri@yazduni.ac.ir



36 H. Mazaheri, R. Kazemi

It is known that ([4])

‖Λ‖ = sup{|Λ(x, y)| : (x, y) ∈ W1 ×W2, ‖x, y‖ ≤ 1}
= sup{|Λ(x, y)| : (x, y) ∈ W1 ×W2, ‖x, y‖ = 1}
= sup{|Λ(x, y)|/‖x, y‖ : (x, y) ∈ W1 ×W2, ‖x, y‖ > 0}.

For a 2-normed space (X, ‖., .‖) and 0 6= b ∈ X, by X∗
b is denoted the Banach

space of all bounded bilinear 2-functionals on X× < b >, where < b > is the
subspace of X generated by b.

Let (X, ‖., .‖) be a 2-normed space and x, y ∈ X, then x is said to be
orthogonal to y if and only if there exists b ∈ X such that for all scalar α,
‖x, b‖ 6= 0 and ‖x, b‖ ≤ ‖x + αy, b‖, in this case we write x⊥by. If M1 and M2

are subsets of X, we say that M1 is orthogonal to M2 if and only if there exists
b ∈ X such that g1⊥bg2 for all g1 ∈ M1, g2 ∈ M2. If M1 is orthogonal to M2,
we write M1⊥bM2. (see [10])

Let (X, ‖., .‖) be a 2-normed space, x ∈ X, A be a linear subspace of X
and b ∈ X\x − A. y0 ∈ A is b-best approximation for x ∈ X, if x − y0⊥bA.
Therefore, y0 ∈ A is a b-best approximation of x if for all y ∈ A

‖x− y0, b‖ ≤ ‖x− y, b‖,
then ‖x− y0, b‖ = infy∈A ‖x− y, b‖ = ‖x− A, b‖. The set of all b-best approx-
imations of x in A is denoted by P b

A(x). A is called b-proximinal if for every
x ∈ X\(A+ < b >) there exist y0 ∈ A such that y0 ∈ P b

A(x). Also, A is called
b-Chebyshev if for every x ∈ X\(A+ < b >), there exists a unique y0 ∈ A such
that y0 ∈ P b

A(x).
Let X be a linear space of dimension greater than 1 over the field K = R of

real numbers or the field K = C of complex numbers. Suppose that (., .|.) is a
K-valued function defined on X ×X ×X satisfying the following conditions:
a) (x, x|z) ≥ 0 and (x, x|z) = 0 if and only if x and z are linearly dependent;
b) (x, x|z) = (z, z|x);
c) (y, x|z) = (x, y|z);
d) (αx, y|z) = α(x, y|z) for any scalar α ∈ K;
e) (x + x́, y|z) = (x, y|z) + (x́, y|z).
(., .|.) is called a 2-inner product on X and (X, (., .|.)) is called a 2-inner product
space. Some basic properties of 2-inner products (., .|.) can be immediately
obtained [1-3].

Let (X, (., .|.)) be a 2-inner product space. We can define a 2-norm on X×X
by

‖x, y‖ =
√

(x, x|y).

Let (X, (., .|.)) be a 2-inner product space, b ∈ X and x, y ∈ X\ < b >. Then

x⊥by ⇔ (x, y|b) = 0.

Using the above properties, we can prove the Cauchy-Schwartz inequality

(x, y|b)2 ≤ ‖x, b‖2‖y, b‖2
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for every x, y ∈ X. Moreover, the equality holds in this inequality if and only if
x and y are linearly dependent. Also, we have the parallelogram-law

‖x + y, b‖2 + ‖x− y, b‖2 = 2‖x, b‖2 + 2‖y, b‖2

for every x, y ∈ X (For more details about 2-inner product space see [1-3]).

2. Main results

In this section we shall obtain some characterization of 2-inner product
spaces.

Theorem 2.1. Let (X, (., .|.)) be a 2-inner product space, b ∈ X and Λ ∈ X∗
b .

If the set M = {x ∈ X : (x, b) ∈ kerΛ} is b-proximinal, then there exists a
y ∈ X such that

Λ(x, b) = (x, y|b) ∀x ∈ X.

Proof. If Λ = 0, put y = 0.
If Λ 6= 0, there exists x1 ∈ X such that Λ(x1, b) 6= 0. Since M is a b-proximinal,
there exists m ∈ M such that x2 = x1−m⊥bM and ‖x1−m, b‖ 6= 0. Therefore,
(x2, y|b) = 0 for all y ∈ M . Put z = x2

‖x2,b‖ . Then, (z, y|b) = 0 and ‖z, b‖ = 1.
For all x ∈ X, we set u = Λ(x, b)z−Λ(z, b)x. Then, Λ(u, b) = Λ(x, b)Λ(z, b)−

Λ(z, b)Λ(x, b) = 0. It follows that u ∈ M , therefore, (z, u|b) = 0. Now

0 = (z, u|b) = (Λ(x, b)z − Λ(z, b)x, z|b)
= Λ(x, b)(z, z|b)− Λ(z, b)(x, z|b).

Hence, (z, z|b)Λ(x, b) = Λ(z, b)(x, z|b) and Λ(x, b) = (x, y|b), where y = zΛ(z, b).
2

Definition 2.2. Let (X, (., .|.)) be a 2-inner product space, b ∈ X.
a) A sequence {xn} in X is a b-Cauchy sequence if

∀ε > 0 ∃N > 0, such that ∀ m, n ≥ N 0 < ‖xm − xn, b‖ < ε

b) X is b-Hilbert if every b-Cauchy sequence is converges in the seminormed
(X, ‖., b‖).
c) If a subset A in X is closed in the space (X, ‖., b‖), then we say that A is
b-closed in the seminormed (X, ‖., b‖).

Theorem 2.3. Let (X, (., .|.)) be a 2-inner product space, A be a convex set
in X and b ∈ X. Then each x ∈ X\A+ < b > has at most one b-best approxi-
mation in A.
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Proof. Suppose x ∈ X\A+ < b > and y1, y2 ∈ P b
A(x). By convexity A,

1
2 (y1 + y2) ∈ A. Therefore

‖x−A, b‖ ≤ ‖x− 1
2
(y1 + y2), b‖

= ‖1
2
(x− y1) +

1
2
(x− y2), b‖

≤ 1
2
‖x− y1, b‖+

1
2
‖x− y2, b‖

=
1
2
‖x−A, b‖+

1
2
‖x−A, b‖

= ‖x−A, b‖.

Hence equality must hold throughout these inequalities. By the condition of
equality and b-strictly convex in the triangle inequality, x− y1 = k(x− y2) for
some k ≥ 0. But, ‖x−y1, b‖ = ‖x−A, b‖ = ‖x−y2, b‖ implies k = 1, and hence
y1 = y2. 2

Theorem 2.4. Every nonempty b-closed, convex A in a b-Hilbert space X
with A∩ < b >= φ, is b-Chebyshev.

Proof. Suppose x ∈ X\A+ < b >, put E = x− A and δ = infy∈E ‖y, b‖. Then
E is a b-closed and convex set in X. Suppose y′, y ∈ E, since E is convex and
y′+y

2 ∈ E, therefore using the parallelogram-law:

1
2
‖y′ − y, b‖2 ≤ ‖y′, b‖2 + ‖y, b‖2 − 2δ2. (∗)

Let {yn} be a sequence in E, where ‖yn, b‖ −→ δ. From (∗), since for all
m,n ≥ 1, ‖yn − ym, b‖ 6= 0 then {yn} is a b-Cauchy sequence. Since X is b-
Hilbert, there exist y0 ∈ X such that yn −→ y0 as n → ∞, also E is b-closed
and yn ∈ E, therefore y0 ∈ E. It follows that ‖y0, b‖ = δ. Therefore, there exists
a0 ∈ A such that ‖x−a0, b‖ = ‖x−A, b‖. That is, a0 is a b-best approximation
for x.

For uniqueness, if a1, b1 ∈ A are b-best approximations for x. Put y1 =
x− a1, y2 = x− b1, then ‖y1, b‖ = ‖y2, b‖ = δ. If we apply the inequality (∗), it
follows that y1 = y2, therefore a1 = b1. 2

Let (X, (., .|.)) be a 2-inner product space, A be a subspace of X and b ∈ X.
Put

A⊥b = {x ∈ X : (x, g|b) = 0, ∀g ∈ A}.

Theorem 2.5. Let A be a b-Chebyshev subspace of the 2-inner product space
(X, (., .|.)), b ∈ X (e.g. a closed subspace of a b-Hilbert space) and A

⋂
< b >=
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∅. Then A⊥b is a b-Chebyshev subspace, and the following statements are true:
a) X = A⊥b ⊕A
b) A = {x ∈ X : ‖x, b‖ = ‖x−A⊥b , b‖}
c) A⊥b = {x ∈ X : ‖x, b‖ = ‖x−A, b‖}
d) ‖x, b‖2 = ‖g, b‖2 + ‖g0, b‖2, for all x ∈ X\ < b >, where x = g + g0, g ∈ A
and g0 ∈ A⊥

Proof. If x ∈ X, then there exists y ∈ A such that x − y⊥bA. Put y0 = x − y
then x = y + y0 and y0 ∈ A⊥b , implies X = A + A⊥b and

‖x−A⊥b , b‖ = ‖y −A⊥b , b‖
≤ ‖y, b‖.

Now if z ∈ A⊥b and y ∈ A, we have

‖x−A⊥b , b‖2 ≥ ‖z − y, b‖2
= (z − y, z − y|b)
= ‖z, b‖2 + ‖y, b‖2 (∗∗)
≥ ‖y, b‖2.

Therefore ‖x− y0, b‖ = ‖x−A⊥b , b‖, i.e., y0 ∈ P b
A⊥b

(x).

If g0, y0 ∈ P b
A⊥b

(x), then x = y + y0 = g + g0 for some y, g ∈ A. It follows

that y0 − g0 ∈ A⊥b ∩ A = {0}, hence y0 = g0. Therefore A⊥b is b-Chebyshev,
X = A⊕A⊥b , ‖y −A⊥b , b‖ = ‖y, b‖ and from (∗∗) we have

‖x, b‖2 = ‖y, b‖2 + ‖y0, b‖2.

If x ∈ X and ‖x − A⊥b , b‖ = ‖x, b‖, then 0 ∈ P b
A⊥b

(x) and x = y + y0 for some

y ∈ A and y0 ∈ A⊥b . Hence

‖x−A⊥b , b‖ = ‖y −A⊥b , b‖
= ‖y, b‖
= ‖x− y0, b‖.

implies y0 ∈ P b
A⊥b

(x). Therefore y0 = 0 and x = y ∈ A. Then

A = {x ∈ X : ‖x, b‖ = ‖x−A⊥b , b‖}.

Finally, by paying attention to the definition of A⊥b we have

A⊥b = {x ∈ X : ‖x, b‖ = ‖x−A, b‖}.

2
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