SOME RESULTS ON 2-INNER PRODUCT SPACES

H. Mazaherll R. Kazemi ${ }^{1}$

Abstract

We onsider "Riesz Theorem" in the 2-inner product spaces and give some results in this field. Also, we give some characterizations about 2-inner product spaces in b-approximation theory.

AMS Mathematics Subject Classification (2000): 41A65, 41A15
Key words and phrases: b-Orthogonality, 2-Normed spaces, 2-Inner product, b-Proximinal subspaces, b-Best approximation

1. Introduction

The concept of linear 2-normed spaces has been investigated by S. Gähler (see [9]) and has been developed extensively in different subjects by many authors (see [1-8]).

Let X be a linear space of dimension greater than 1 . Suppose $\|.,$.$\| is a$ real-valued function on $X \times X$ satisfying the following conditions:
a) $\|x, y\|=0$ if and only if x and y are linearly dependent vectors.
b) $\|x, y\|=\|y, x\|$ for all $x, y \in X$.
c) $\|\lambda x, y\|=|\lambda|\|x, y\|$ for all $\lambda \in \mathbb{R}$ and all $x, y \in X$.
d) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$ for all $x, y, z \in X$.

Then $\|,,$.$\| is called a 2$-norm on X and $(X,\|,,\|$.$) is called a linear 2-normed$ space. Some of the basic properties of 2-norms are that they are non-negative and $\|x, y+\alpha x\|=\|x, y\|$ for all $x, y \in X$ and all $\alpha \in \mathbb{R}$.

Every 2-normed space is a locally convex topological vector space. In fact, for a fixed $b \in X, p_{b}(x)=\|x, b\|, x \in X$, is a seminorm and the family $P=$ $\left\{p_{b}: b \in X\right\}$ of seminorms generates a locally convex topology on X.

Let $(X,\|.,\|$.$) be a 2$-normed space and let W_{1} and W_{2} be two linear subspaces of X. A map $\Lambda: W_{1} \times W_{2} \rightarrow \mathbb{R}$ is called a bilinear 2 -functional on $W_{1} \times W_{2}$, whenever for all $x_{1}, x_{2} \in W_{1}, y_{1}, y_{2} \in W_{2}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}$;
a) $\Lambda\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=\Lambda\left(x_{1}, y_{1}\right)+\Lambda\left(x_{1}, y_{2}\right)+\Lambda\left(x_{2}, y_{1}\right)+\Lambda\left(x_{2}, y_{2}\right)$,
b) $\Lambda\left(\lambda_{1} x_{1}, \lambda_{2} y_{1}\right)=\lambda_{1} \lambda_{2} \Lambda\left(x_{1}, y_{1}\right)$.

A bilinear 2-functional $\Lambda: W_{1} \times W_{2} \rightarrow \mathbb{R}$ is said to be bounded if there exists a non-negative real number M (called a Lipschitz constant for Λ) such that $|\Lambda(x, y)| \leq M\|x, y\|$ for all $x \in W_{1}$ and all $y \in W_{2}$. Also, the norm of a bilinear 2-functional Λ is defined by

$$
\|\Lambda\|=\inf \{M \geq 0: M \text { is a Lipschitz constant for } \Lambda\} .
$$

[^0]It is known that ([4])

$$
\begin{aligned}
\|\Lambda\| & =\sup \left\{|\Lambda(x, y)|: \quad(x, y) \in W_{1} \times W_{2},\|x, y\| \leq 1\right\} \\
& =\sup \left\{|\Lambda(x, y)|: \quad(x, y) \in W_{1} \times W_{2},\|x, y\|=1\right\} \\
& =\sup \left\{|\Lambda(x, y)| /\|x, y\|: \quad(x, y) \in W_{1} \times W_{2},\|x, y\|>0\right\}
\end{aligned}
$$

For a 2-normed space $(X,\|.,\|$.$) and 0 \neq b \in X$, by X_{b}^{*} is denoted the Banach space of all bounded bilinear 2-functionals on $X \times\langle b\rangle$, where $\langle b\rangle$ is the subspace of X generated by b.

Let $(X,\|.,\|$.$) be a 2$-normed space and $x, y \in X$, then x is said to be orthogonal to y if and only if there exists $b \in X$ such that for all scalar α, $\|x, b\| \neq 0$ and $\|x, b\| \leq\|x+\alpha y, b\|$, in this case we write $x \perp^{b} y$. If M_{1} and M_{2} are subsets of X, we say that M_{1} is orthogonal to M_{2} if and only if there exists $b \in X$ such that $g_{1} \perp^{b} g_{2}$ for all $g_{1} \in M_{1}, g_{2} \in M_{2}$. If M_{1} is orthogonal to M_{2}, we write $M_{1} \perp^{b} M_{2}$. (see [10])

Let $(X,\|.,\|$.$) be a 2$-normed space, $x \in X, A$ be a linear subspace of X and $b \in X \backslash x-A . y_{0} \in A$ is b-best approximation for $x \in X$, if $x-y_{0} \perp^{b} A$. Therefore, $y_{0} \in A$ is a b-best approximation of x if for all $y \in A$

$$
\left\|x-y_{0}, b\right\| \leq\|x-y, b\|
$$

then $\left\|x-y_{0}, b\right\|=\inf _{y \in A}\|x-y, b\|=\|x-A, b\|$. The set of all b-best approximations of x in A is denoted by $P_{A}^{b}(x) . A$ is called b-proximinal if for every $x \in X \backslash(A+)$ there exist $y_{0} \in A$ such that $y_{0} \in P_{A}^{b}(x)$. Also, A is called b-Chebyshev if for every $x \in X \backslash(A+)$, there exists a unique $y_{0} \in A$ such that $y_{0} \in P_{A}^{b}(x)$.

Let X be a linear space of dimension greater than 1 over the field $\mathbb{K}=\mathbb{R}$ of real numbers or the field $\mathbb{K}=\mathbb{C}$ of complex numbers. Suppose that (.,.|.) is a \mathbb{K}-valued function defined on $X \times X \times X$ satisfying the following conditions:
a) $(x, x \mid z) \geq 0$ and $(x, x \mid z)=0$ if and only if x and z are linearly dependent;
b) $(x, x \mid z)=(z, z \mid x)$;
c) $(y, x \mid z)=\overline{(x, y \mid z)}$;
d) $(\alpha x, y \mid z)=\alpha(x, y \mid z)$ for any scalar $\alpha \in \mathbb{K}$;
e) $(x+\dot{x}, y \mid z)=(x, y \mid z)+(\dot{x}, y \mid z)$.
$(., \mid$.$) is called a 2$-inner product on X and $(X,(., \mid)$.$) is called a 2$-inner product space. Some basic properties of 2 -inner products (., .|.) can be immediately obtained [1-3].

Let $(X,(., \mid)$.$) be a 2-inner product space. We can define a 2-norm on X \times X$ by

$$
\|x, y\|=\sqrt{(x, x \mid y)}
$$

Let $(X,(., . \mid)$.$) be a 2$-inner product space, $b \in X$ and $x, y \in X \backslash$. Then

$$
x \perp^{b} y \Leftrightarrow(x, y \mid b)=0
$$

Using the above properties, we can prove the Cauchy-Schwartz inequality

$$
(x, y \mid b)^{2} \leq\|x, b\|^{2}\|y, b\|^{2}
$$

for every $x, y \in X$. Moreover, the equality holds in this inequality if and only if x and y are linearly dependent. Also, we have the parallelogram-law

$$
\|x+y, b\|^{2}+\|x-y, b\|^{2}=2\|x, b\|^{2}+2\|y, b\|^{2}
$$

for every $x, y \in X$ (For more details about 2-inner product space see [1-3]).

2. Main results

In this section we shall obtain some characterization of 2-inner product spaces.

Theorem 2.1. Let $(X,(., \mid)$.$) be a 2-inner product space, b \in X$ and $\Lambda \in X_{b}^{*}$. If the set $M=\{x \in X:(x, b) \in \operatorname{ker} \Lambda\}$ is b-proximinal, then there exists a $y \in X$ such that

$$
\Lambda(x, b)=(x, y \mid b) \quad \forall x \in X
$$

Proof. If $\Lambda=0$, put $y=0$.
If $\Lambda \neq 0$, there exists $x_{1} \in X$ such that $\Lambda\left(x_{1}, b\right) \neq 0$. Since M is a b-proximinal, there exists $m \in M$ such that $x_{2}=x_{1}-m \perp^{b} M$ and $\left\|x_{1}-m, b\right\| \neq 0$. Therefore, $\left(x_{2}, y \mid b\right)=0$ for all $y \in M$. Put $z=\frac{x_{2}}{\left\|x_{2}, b\right\|}$. Then, $(z, y \mid b)=0$ and $\|z, b\|=1$.

For all $x \in X$, we set $u=\Lambda(x, b) z-\Lambda(z, b) x$. Then, $\Lambda(u, b)=\Lambda(x, b) \Lambda(z, b)-$ $\Lambda(z, b) \Lambda(x, b)=0$. It follows that $u \in M$, therefore, $(z, u \mid b)=0$. Now

$$
\begin{aligned}
0 & =(z, u \mid b)=(\Lambda(x, b) z-\Lambda(z, b) x, z \mid b) \\
& =\Lambda(x, b)(z, z \mid b)-\Lambda(z, b)(x, z \mid b)
\end{aligned}
$$

Hence, $(z, z \mid b) \Lambda(x, b)=\Lambda(z, b)(x, z \mid b)$ and $\Lambda(x, b)=(x, y \mid b)$, where $y=z \Lambda(z, b)$.

Definition 2.2. Let ($X,(., \mid)$.$) be a 2-inner product space, b \in X$.
a) A sequence $\left\{x_{n}\right\}$ in X is a b-Cauchy sequence if

$$
\forall \epsilon>0 \exists N>0, \text { such that } \forall m, n \geq N 0<\left\|x_{m}-x_{n}, b\right\|<\epsilon
$$

b) X is b-Hilbert if every b-Cauchy sequence is converges in the seminormed $(X,\|., b\|)$.
c) If a subset A in X is closed in the space $(X,\|., b\|)$, then we say that A is b-closed in the seminormed $(X,\|., b\|)$.

Theorem 2.3. Let $(X,(., \mid)$.$) be a 2-inner product space, A$ be a convex set in X and $b \in X$. Then each $x \in X \backslash A+$ has at most one b-best approximation in A.

Proof. Suppose $x \in X \backslash A+$ and $y_{1}, y_{2} \in P_{A}^{b}(x)$. By convexity A, $\frac{1}{2}\left(y_{1}+y_{2}\right) \in A$. Therefore

$$
\begin{aligned}
\|x-A, b\| & \leq\left\|x-\frac{1}{2}\left(y_{1}+y_{2}\right), b\right\| \\
& =\left\|\frac{1}{2}\left(x-y_{1}\right)+\frac{1}{2}\left(x-y_{2}\right), b\right\| \\
& \leq \frac{1}{2}\left\|x-y_{1}, b\right\|+\frac{1}{2}\left\|x-y_{2}, b\right\| \\
& =\frac{1}{2}\|x-A, b\|+\frac{1}{2}\|x-A, b\| \\
& =\|x-A, b\| .
\end{aligned}
$$

Hence equality must hold throughout these inequalities. By the condition of equality and b-strictly convex in the triangle inequality, $x-y_{1}=k\left(x-y_{2}\right)$ for some $k \geq 0$. But, $\left\|x-y_{1}, b\right\|=\|x-A, b\|=\left\|x-y_{2}, b\right\|$ implies $k=1$, and hence $y_{1}=y_{2}$.

Theorem 2.4. Every nonempty b-closed, convex A in a b-Hilbert space X with $A \cap<b\rangle=\phi$, is b-Chebyshev.

Proof. Suppose $x \in X \backslash A+\langle b\rangle$, put $E=x-A$ and $\delta=\inf _{y \in E}\|y, b\|$. Then E is a b-closed and convex set in X. Suppose $y \prime, y \in E$, since E is convex and $\frac{y^{\prime}+y}{2} \in E$, therefore using the parallelogram-law:

$$
\begin{equation*}
\frac{1}{2}\|y \prime-y, b\|^{2} \leq\|y \prime, b\|^{2}+\|y, b\|^{2}-2 \delta^{2} \tag{*}
\end{equation*}
$$

Let $\left\{y_{n}\right\}$ be a sequence in E, where $\left\|y_{n}, b\right\| \longrightarrow \delta$. From $(*)$, since for all $m, n \geq 1,\left\|y_{n}-y_{m}, b\right\| \neq 0$ then $\left\{y_{n}\right\}$ is a b-Cauchy sequence. Since X is bHilbert, there exist $y_{0} \in X$ such that $y_{n} \longrightarrow y_{0}$ as $n \rightarrow \infty$, also E is b-closed and $y_{n} \in E$, therefore $y_{0} \in E$. It follows that $\left\|y_{0}, b\right\|=\delta$. Therefore, there exists $a_{0} \in A$ such that $\left\|x-a_{0}, b\right\|=\|x-A, b\|$. That is, a_{0} is a b-best approximation for x.

For uniqueness, if $a_{1}, b_{1} \in A$ are b-best approximations for x. Put $y_{1}=$ $x-a_{1}, y_{2}=x-b_{1}$, then $\left\|y_{1}, b\right\|=\left\|y_{2}, b\right\|=\delta$. If we apply the inequality $(*)$, it follows that $y_{1}=y_{2}$, therefore $a_{1}=b_{1}$.

Let $(X,(., \mid)$.$) be a 2$-inner product space, A be a subspace of X and $b \in X$. Put

$$
A_{b}^{\perp}=\{x \in X: \quad(x, g \mid b)=0, \forall g \in A\} .
$$

Theorem 2.5. Let A be a b-Chebyshev subspace of the 2-inner product space $(X,(., \mid)),. b \in X$ (e.g. a closed subspace of $a b$-Hilbert space) and $A \bigcap=$

Ø. Then A_{b}^{\perp} is a b-Chebyshev subspace, and the following statements are true:
a) $X=A_{b}^{\perp} \oplus A$
b) $A=\left\{x \in X:\|x, b\|=\left\|x-A_{b}^{\perp}, b\right\|\right\}$
c) $A_{b}^{\perp}=\{x \in X:\|x, b\|=\|x-A, b\|\}$
d) $\|x, b\|^{2}=\|g, b\|^{2}+\left\|g_{0}, b\right\|^{2}$, for all $x \in X \backslash\langle b\rangle$, where $x=g+g_{0}, g \in A$ and $g_{0} \in A^{\perp}$

Proof. If $x \in X$, then there exists $y \in A$ such that $x-y \perp^{b} A$. Put $y_{0}=x-y$ then $x=y+y_{0}$ and $y_{0} \in A_{b}^{\perp}$, implies $X=A+A_{b}^{\perp}$ and

$$
\begin{aligned}
\left\|x-A_{b}^{\perp}, b\right\| & =\left\|y-A_{b}^{\perp}, b\right\| \\
& \leq\|y, b\| .
\end{aligned}
$$

Now if $z \in A_{b}^{\perp}$ and $y \in A$, we have

$$
\begin{aligned}
\left\|x-A_{b}^{\perp}, b\right\|^{2} & \geq\|z-y, b\|^{2} \\
& =(z-y, z-y \mid b) \\
& =\|z, b\|^{2}+\|y, b\|^{2} \quad(* *) \\
& \geq\|y, b\|^{2} .
\end{aligned}
$$

Therefore $\left\|x-y_{0}, b\right\|=\| x-A_{b}^{\perp}$, $b \|$, i.e., $y_{0} \in P_{A_{b}^{\perp}}^{b}(x)$.
If $g_{0}, y_{0} \in P_{A_{b}^{\perp}}^{b}(x)$, then $x=y+y_{0}=g+g_{0}$ for some $y, g \in A$. It follows that $y_{0}-g_{0} \in A_{b}^{\perp} \cap A=\{0\}$, hence $y_{0}=g_{0}$. Therefore A_{b}^{\perp} is b-Chebyshev, $X=A \oplus A_{b}^{\perp},\left\|y-A_{b}^{\perp}, b\right\|=\|y, b\|$ and from (**) we have

$$
\|x, b\|^{2}=\|y, b\|^{2}+\left\|y_{0}, b\right\|^{2}
$$

If $x \in X$ and $\left\|x-A_{b}^{\perp}, b\right\|=\|x, b\|$, then $0 \in P_{A_{b}^{\perp}}^{b}(x)$ and $x=y+y_{0}$ for some $y \in A$ and $y_{0} \in A_{b}^{\perp}$. Hence

$$
\begin{aligned}
\left\|x-A_{b}^{\perp}, b\right\| & =\left\|y-A_{b}^{\perp}, b\right\| \\
& =\|y, b\| \\
& =\left\|x-y_{0}, b\right\| .
\end{aligned}
$$

implies $y_{0} \in P_{A_{b}^{\perp}}^{b}(x)$. Therefore $y_{0}=0$ and $x=y \in A$. Then

$$
A=\left\{x \in X:\|x, b\|=\left\|x-A_{b}^{\perp}, b\right\|\right\} .
$$

Finally, by paying attention to the definition of A_{b}^{\perp} we have

$$
A_{b}^{\perp}=\{x \in X:\|x, b\|=\|x-A, b\|\}
$$

References

[1] Dragomir, S. S., Cho, Y. J., Kim, S. S., Sofo, A., Some Boas-Bellman type inequalities in 2-inner product spaces. J. Inequal. in Pure and Appl. Math. 6(2)55 (2005), 1-13.
[2] Cho, Y. J., Lin, P. C. S., Kim, S. S. Misiak, A., Theory of 2-inner product spaces. New York: Nova Science Publishes, Inc. 2001.
[3] Cho, Y. J., Matic, M., Pecaric, J. E., On Gram's determinant in 2-inner product spaces. J. Korean Math. Soc. 38 (6)(2001), 1125-1156.
[4] Lewandowska, Z., Linear operators on generalized 2-normed spaces. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42(90) No. 4 (1999), 353-368.
[5] Lewandowska, Z., Generalized 2-normed spaces. Supskie Space Matemayczno Fizyczne 1 (2001), 33-40.
[6] Lewandowska, Z., On 2-normed sets. Glas. Mat. Ser. III 38(58) No. 1 (2003), 99-110.
[7] Lewandowska, Z., Banach-Steinhaus theorems for bounded linear operators with values in a generalized 2-normed space. Glas. Mat. Ser. III 38(58) No. 2, (2003), 329-340.
[8] Lewandowska, Z., Bounded 2-linear operators on 2-normed sets. Glas. Mat. Ser. III 39(59) (2004), 301-312.
[9] Gähler, S., Linear 2-normierte Räume. Math. Nachr. 28 (1964), 1-43.
[10] Mazaheri, H., Golestani, S., Some results on b-orthogonality in 2-normed linear spaces. Journal of Mathematical Analysis (2007) (to appear)

Received by the editors June 6, 2006

[^0]: ${ }^{1}$ Department of Mathematics, Yazd University, Yazd, Iran,
 e-mail : hmazaheri@yazduni.ac.ir

