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ASYMPTOTIC NUMERICAL METHOD FOR
SINGULARLY PERTURBED THIRD ORDER

ORDINARY DIFFERENTIAL EQUATIONS WITH A
DISCONTINUOUS SOURCE TERM

T. Valanarasu1, N. Ramanujam2

Abstract. A class of singularly perturbed two point Boundary Value
Problems (BVPs) of reaction-diffusion type for third order Ordinary Dif-
ferential Equations (ODEs) with a small positive parameter (ε) multiply-
ing the highest derivative and a discontinuous source term is considered.
The BVP is reduced to a weakly coupled system consisting of one first
order ordinary differential equation with a suitable initial condition and
one second order singularly perturbed ODE subject to boundary condi-
tions. In order to solve this system, a computational method is suggested.
First, in this method, we find the zero order asymptotic expansion approx-
imation of the solution of the weakly coupled system. Then, the system
is decoupled by replacing the first component of the solution by its zero
order asymptotic expansion approximation of the solution in the second
equation. After that the second equation is solved by a finite difference
method on Shishkin mesh (a fitted mesh method). Examples are provided
to illustrate the method.
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1. Introduction

Singularly perturbed differential equations arise in many branches of sci-
ence and engineering. The solutions of such equations have boundary and inte-
rior layers. That is, there are thin layer(s) where the solution changes rapidly,
while away from the layer(s) the solution behaves regularly and changes slowly.
So the numerical treatment of singularly perturbed differential equations gives
major computational difficulties, and in recent years, a large number of special
purpose methods have been developed to provide accurate numerical solutions
[1, 2, 6, 9] which cover mostly second order equations. But only a very few au-
thors have developed numerical methods for singularly perturbed higher order
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differential equations [11]. Moreover, most of them have concentrated only on
the problems with smooth data. Of course, some authors [3, 4, 5, 7, 10] have
recently considered Singular Perturbation Problems (SPPs) for second order
ODEs with discontinuous source term and discontinuous convection coefficient.
Due to the discontinuity at one or more points in the interior domain, this gives
rise to an interior layer(s) in the exact solution of the problem, in addition to the
boundary layer at the outflow boundary point. Therefore, these types of SPPs
have to be dealt with separately and carefully. In this paper, an asymptotic
numerical method for singularly perturbed reaction-diffusion type third order
ODE with a discontinuous source term is developed. The classification of singu-
larly perturbed higher order problems (reaction-diffusion/convection-diffusion)
depend on how the order of the original equation is affected if one sets ε = 0. If
the order is reduced by one, we say that the problem is of convection-diffusion
type, and of reaction-diffusion type if the order is reduced by two.

Motivated by the works of [4, 11], a class of singularly perturbed BVPs for
third order ODEs of reaction-diffusion type with discontinuous right-hand side
term is considered on the unit interval Ω = (0, 1). A single discontinuity in
the right-hand side is assumed to occur at a point d ∈ Ω. It is convenient to
introduce the notation Ω− = (0, d) and Ω+ = (d, 1) and to denote the jump at
d in any function with [w](d) = w(d+) − w(d−). The corresponding class of
BVPs is

−εy′′′(x) + b(x)y′(x) + c(x)y(x) = f(x), x ∈ (Ω− ∪ Ω+),(1.1)
y(0) = p, y′(0) = q, y′(1) = r,(1.2)

where ε is a small positive parameter, b(x), c(x) are sufficiently smooth functions
on Ω̄ such that

b(x) ≥ β > 0,(1.3)
0 ≥ c(x) ≥ −γ, γ > 0,(1.4)

β − θγ ≥ η > 0, for some θ > 2 arbitrarily close to 2, for some η.(1.5)

It is assumed that f is sufficiently smooth on Ω− ∪ Ω+; the left and right limit
of f and their derivatives are assumed to exists at x = d. The discontinuity in
the source term, in general, gives rise to interior layer in the first derivative of
the solution. Because f is discontinuous at d, the solution y of (1.1)-(1.2) does
not necessarily have a continuous third derivative at the point d, that is, y does
not belong to the class of functions C3(Ω). Hence the class of functions, where
y belongs to it, is taken as C1(Ω̄) ∩ C2(Ω) ∩ C3(Ω− ∪ Ω+).

In the following, C is a generic constant independent of the nodes, mesh sizes
and the perturbation parameter ε. We use the norm ||w||D = supx∈D |w(x)|.

2. Preliminaries

In this section, a maximum principle is presented for the following prob-
lem, and then, using this principle, a stability result for the same problem is
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derived. Further, an asymptotic expansion approximation is constructed for the
solution and a theorem is presented to establish its accuracy. The singularly
perturbed BVP (1.1)-(1.2) can be transformed into an equivalent problem of
the form

{
P1ȳ(x) ≡ y′1(x)− y2(x) = 0, x ∈ Ω ∪ {1},
P2ȳ(x) ≡ −εy′′2 (x) + b(x)y2(x) + c(x)y1(x) = f(x), x ∈ (Ω− ∪ Ω+),

(2.1)





y1(0) = p,

y2(0) = q,

y2(1) = r,

(2.2)

where ȳ = (y1, y2)T , y1 ∈ C1(Ω̄) and y2 ∈ C0(Ω̄) ∩C1(Ω) ∩C2(Ω− ∪Ω+) [4].

Remark 2.1. Hereafter, only the above problem (2.1)-(2.2) is considered sub-
ject to conditions (1.3)-(1.5). The condition (1.3) says that the problem (2.1)-
(2.2) is a non-turning point problem. The condition (1.4) is imposed to ensure
that the system (2.1)-(2.2) is quasi-monotone (Definition (2.1) of [8] and [9]).
The condition (1.5) helps to establish the maximum principle for the system
(2.1)-(2.2), and, using this principle, we can establish a uniform stability result.

Theorem 2.2. The problem (1.1)-(1.2) has a solution y ∈ C1(Ω̄) ∩ C2(Ω) ∩
C3(Ω− ∪ Ω+).

Proof. Following the procedure adopted in [4], it can be proved that the problem
(1.1)-(1.2) has a solution belonging to the class stated in the statement of the
theorem. 2

2.1. Maximum Principle and Stability Result

Theorem 2.3. (Maximum Principle) Suppose that ū = (u1, u2)T , u1 ∈
C1(Ω̄) and u2 ∈ C0(Ω̄) ∩ C2(Ω− ∪ Ω+) satisfies

u1(0) ≥ 0, u2(0) ≥ 0, u2(1) ≥ 0,

P1ū(x) ≥ 0, ∀ x ∈ Ω ∪ {1},
P2ū(x) ≥ 0, ∀ x ∈ (Ω− ∪ Ω+),

and
[u′2](d) ≤ 0. Then ū(x) ≥ 0̄, ∀x ∈ Ω̄.

Proof. Define s̄(x) = (s1(x), s2(x)) as

s1(x) = (1 + δ)x + δ, x ∈ Ω̄ and 0 < δ ¿ 1,

s2(x) =

{
(1/2)− (x/8) + (d/8), x ∈ Ω− ∪ {0, d},
(1/2)− (x/4) + (d/4), x ∈ Ω+ ∪ {1},
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where s1 ∈ C1(Ω̄) and s2 ∈ C0(Ω̄) ∩ C2(Ω− ∪ Ω+). Then s̄(x) > 0̄,

P1s̄ = s′1 − s2 =

{
(1/2) + δ + (x/8)− (d/8) > 0, x ∈ Ω− ∪ {d},
(1/2) + δ + (x/4)− (d/4) > 0, x ∈ Ω+ ∪ {1},

P2s̄ = −εs′′2 + b(x)s2 + c(x)s1

=

{
b(x)[(1/2)− (x/8) + (d/8)] + c(x)[(1 + δ)x + δ],
b(x)[(1/2)− (x/4) + (d/4)] + c(x)[(1 + δ)x + δ],

≥
{

(1/8)(β − θγ) ≥ (η/8) > 0, x ∈ Ω−,

(1/4)(β − θγ) ≥ (η/4) > 0, x ∈ Ω+.

Assume the theorem is not true. We define

ζ = max
{

max
x∈Ω̄

(
−u1

s1

)
, max

x∈Ω̄

(
−u2

s2

)}

Then ζ > 0 and there exists a point x0 such that
(
−u1

s1

)
(x0) = ζ or

(
−u2

s2

)
(x0) = ζ, or both.

Further, x0 ∈ (Ω− ∪ Ω+) or x0 = d. Also, (ui + ζsi)(x) ≥ 0, i = 1, 2, x ∈ Ω̄.

Case 1:
(
−u1

s1

)
(x0) = ζ and x0 ∈ Ω ∪ {1}. That is

(u1 + ζs1)(x0) = 0 ⇒ (u1 + ζs1) attains its minimum at x0.

Therefore

0 < P1(ū + ζs̄)(x0) = (u1 + ζs1)′(x0)− (u2 + ζs2)(x0) ≤ 0.

It is a contradiction.

Case 2a:
(
−u2

s2

)
(x0) = ζ and x0 ∈ (Ω− ∪ Ω+). That is

(u2 + ζs2)(x0) = 0 ⇒ (u2 + ζs2) attains its minimum at x0.

Therefore

0 < P2(ū + ζs̄)(x0)
= −ε(u2 + ζs2)′′(x0)+b(x0)(u2 + ζs2)(x0)+c(x0)(u1+ζs1)(x0)
≤ 0.

It is a contradiction.

Case 2b:
(
−u2

s2

)
(x0) = ζ and x0 = d. That is

(u2 + ζs2)(x0) = 0 ⇒ (u2 + ζs2) attains its minimum at x0.



Asymptotic Numerical Method for ... 45

Therefore

0 ≤ [(u2 + ζs2)′](d) = [u′2](d) + ζ[s′2](d)
≤ 0 + ζ((−1/4) + (1/8)) < 0.

It is a contradiction. Hence the proof of the theorem. 2

Theorem 2.4. (Stability Result) If y1 ∈ C1(Ω̄) ∩ C2(Ω) ∩ C3(Ω− ∪ Ω+),
y2 ∈ C0(Ω̄) ∩ C1(Ω) ∩ C2(Ω− ∪ Ω+) then

|yi(x)| ≤ C max{|y1(0)|, |y2(0)|, |y2(1)|, ||P1ȳ||Ω∪{1}, ||P2ȳ||(Ω−∪Ω+)},

for i = 1, 2 and x ∈ Ω̄.

Proof. Set M = C max{|y1(0)|, |y2(0)|, |y2(1)|, ||P1ȳ||Ω∪{1}, ||P2ȳ||(Ω−∪Ω+)}.
Define two barrier functions

w̄±(x) = (w±1 (x), w±2 (x)) as

w±1 (x) = M [(1 + 2δ)x + δ]± y1(x), 0 < δ ¿ 1

w±2 (x) = M ± y2(x).

We have

P1w̄
±(x) = w±

′
1 (x)− w±2 (x)

= M2δ ± P1ȳ ≥ 0,

and

P2w̄
±(x) = −εw±

′′
2 (x) + b(x)w±2 (x) + c(x)w±1 (x)

= b(x)M + c(x)M [(1 + 2δ)x + δ]± P2ȳ ≥ 0,

by a proper choice of C. Furthermore, we have

w±1 (0) = Mδ ± y1(0) ≥ 0, w±2 (0) = M ± y2(0) ≥ 0,

w±2 (1) = M ± y2(1) ≥ 0, and [w±
′

2 ](d) = [y′2](d) = 0,

by a proper choice of C. Applying Theorem 2.3 to the barrier functions w̄±(x),
we get the desired result. 2

Corollary 2.5. If (y1, y2) is the solution of the BVP (2.1)-(2.2) with the con-
ditions (1.3)-(1.5), then we have

|yi(x)| ≤ C max{|p|, |q|, |r|, ||f ||(Ω−∪Ω+)}, i = 1, 2, x ∈ Ω̄.
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2.2. Asymptotic Expansion Approximation

Using one of the perturbation methods [6] we can construct an asymptotic
expansion for the solution of the BVP (2.1)-(2.2) as follows. Motivated by the
perturbation theory for SPPs, let (u01, u02) be the solution of the following
problem: 




u′01(x)− u02(x) = 0,

b(x)u02(x) + c(x)u01(x) = f(x)
u01(0) = p, u01(d−) = u01(d+).

That is, u01 is given by

b(x)u′01(x) + c(x)u01(x) = f(x), x ∈ (Ω− ∪ Ω+),(2.3)
u01(0) = p, u01(d−) = u01(d+).(2.4)

Obviously u01 ∈ C0(Ω̄) ∩ C1(Ω− ∪ Ω+). Let u02 be defined by

(2.5) u02(x) =
f(x)− c(x)u01(x)

b(x)
, x ∈ Ω− ∪ Ω+.

Further, Let v̄L0 = (vL01, vL02) and v̄R0 = (vR01, vR02) be the left layer correc-
tions given by

vL01 = −
√

ε

b(0)
vL02, vL02 = k1e

−x
√

b(0)/ε, x ∈ {0} ∪ Ω−,

vR01 = −
√

ε

b(d)
vR02, vR02 = k2e

−(x−d)
√

b(d)/ε, x ∈ Ω+ ∪ {1},

and let w̄L0 = (wL01, wL02) and w̄R0 = (wR01, wR02) be the right layer correc-
tions given by

wL01 =
√

ε

b(d)
wL02, wL02 = k3e

−(d−x)
√

b(d)/ε, x ∈ {0} ∪ Ω−,

wR01 =
√

ε

b(1)
wR02, wR02 = k4e

−(1−x)
√

b(1)/ε, x ∈ Ω+ ∪ {1},

where constants k1, k2, k3 and k4 will be fixed soon.
Define

y∗1,as(x) =

{
u01(x) + vL01(x) + wL01(x), x ∈ {0} ∪ Ω−,

u01(x) + vR01(x) + wR01(x), x ∈ Ω+ ∪ {1}.

and

y∗2,as(x) =

{
u02(x) + vL02(x) + wL02(x), x ∈ {0} ∪ Ω−,

u02(x) + vR02(x) + wR02(x), x ∈ Ω+ ∪ {1}.
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We now choose the constants k1, k2, k3 and k4 such that y∗2,as ∈ C0(Ω̄)∩C1(Ω),
that is,

y∗2,as(0) = y2(0), y∗2,as(1) = y2(1),

y∗2,as(d+) = y∗2,as(d−), y∗
′

2,as(d+) = y∗
′

2,as(d−).

The constants are given by

k1 = [y2(0)− u02(0)]− k3e
−d
√

b(d)/ε,

k2 =
k21 + k22

k23
,

k3 =
k31{

√
b(d) +

√
b(1)e−(1−d)

√
(b(d)+b(1))/ε}

k34 + k35

+
(k32 + k33){1− e−(1−d)

√
(b(d)+b(1))/ε}

k34 + k35
,

k4 = [y2(1)− u02(1)]− k2e
−(1−d)

√
b(d)/ε,

k21 = [y2(0)− u02(0)]e−d
√

b(0)/ε + k3

(
1− e−d

√
(b(0)+b(d))/ε

)
,

k22 = [u02(d+)− u02(d−)]− [y2(1)− u02(1)]e−(1−d)
√

b(1)/ε,

k23 =
(

1− e−(1−d)
√

(b(d)+b(1))/ε

)
,

k31 = {[y2(1)− u02(1)]e−(1−d)
√

b(1)/ε − [y2(0)− u02(0)]e−d
√

b(0)/ε}
+ [u02(d+)− u02(d−)],

k32 =
√

b(1)[y2(1)− u02(1)]e−(1−d)
√

b(1)/ε +
√

b(0)[y2(0)− u02(0)]e−d
√

b(0)/ε,

k33 =
√

ε[u′02(d+)− u′02(d−)]

k34 =
(√

b(d) +
√

b(1)e−(1−d)
√

(b(d)+b(1))/ε

)(
1− e−d

√
(b(0)+b(d))/ε

)
,

and

k35 =
(√

b(d) +
√

b(0)e−d
√

(b(0)+b(d))/ε

)(
1− e−(1−d)

√
(b(d)+b(1))/ε

)
.

We now define

y1,as(x) =





y∗1,as(x), x ∈ {0} ∪ Ω−,

y∗1,as(d−) = y∗1,as(d+), at x = d

y∗1,as(x), x ∈ Ω+ ∪ {1},
and

y2,as(x) =





y∗2,as(x), x ∈ {0} ∪ Ω−,

y∗2,as(d−) = y∗2,as(d+), at x = d

y∗2,as(x), x ∈ Ω+ ∪ {1}.
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Theorem 2.6. The zero order asymptotic expansion approximation ȳas =
(y1,as, y2,as)T of the solution ȳ(x) of (2.1)-(2.2) satisfies the inequality

|yi(x)− yi,as(x)| ≤ C
√

ε, x ∈ Ω̄, i = 1, 2,

Proof. It is easy to prove that

|(y1 − y1,as)(0)| ≤ C
√

ε,

|(y2 − y2,as)(0)| = 0, |(y2 − y2,as)(1)| = 0, [(y2 − y2,as)′](d) = 0,

and
|P1(ȳ − ȳas)| = 0, |P2(ȳ − ȳas)| ≤ C

√
ε,∀x ∈ Ω− ∪ Ω+.

Then by heorem 2.4 we have the required result. 2

3. Some analytical and numerical results for singularly
perturbed BVP for second order ODEs with a discon-
tinuous source term

We state some results for the following singularly perturbed BVP which are
needed in the rest of the paper. Consider the singularly perturbed BVP

−εy∗
′′

2 (x) + b(x)y∗2(x) = f(x)− c(x)u01(x), x ∈ (Ω− ∪ Ω+),(3.1)
y∗2(0) = q, y∗2(1) = r,(3.2)

where u01(x) is defined in the last section.

Remark 3.1. The BVP (3.1)-(3.2) has a unique solution y∗2 ∈ C0(Ω̄)∩C1(Ω)∩
C2(Ω− ∪ Ω+) [4].

3.1. Analytical Results

Theorem 3.2. If (y1, y2)and y∗2 are solutions of the BVPs (2.1-2.2) and (3.1)-
(3.2), respectively, then

|(y2 − y∗2)(x)| ≤ C
√

ε, x ∈ Ω̄.

Proof. Since (y1, y2) is the solution (2.1)-(2.2), then y2 satisfies the BVP

−εy′′2 (x) + b(x)y2(x) = f(x)− c(x)y1(x), x ∈ (Ω− ∪ Ω+),

y2(0) = q, y2(1) = r.

Further, the function w = y2 − y∗2 satisfies the BVP

−εw′′(x) + b(x)w(x) = −c(x)[y1(x)− u01(x)], x ∈ (Ω− ∪ Ω+),

w(0) = 0, w(1) = 0, [w′](d) = 0.
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From Theorem 2.6 and the definition of vL01 and wL01, we have

|(y1 − u01)(x)| ≤ |(y1 − y1,as)(x)|+ |(y1,as − u01)(x)|,
≤ C

√
ε.

From this inequality and the stability result given in [4] we have

|w(x)| ≤ C
√

ε,

that is,
|(y2 − y∗2)(x)| ≤ C

√
ε.

2

3.2. Numerical Results

Now, we describe a fitted mesh method for the problem (3.1)-(3.2). On
Ω−∪Ω+, a piecewise uniform mesh of N mesh intervals is constructed as follows.
The interval Ω̄− is subdivided into the three subintervals.

[0, τ1], [τ1, d− τ1] and [d− τ1, d]

for some τ1 that satisfies 0 < τ1 ≤ d
4 . On [0, τ1] and [d− τ1, d] there is a uniform

mesh with N
8 mesh intervals is placed, while on [τ1, d − τ1] there is a uniform

mesh with N
4 mesh intervals. The subintervals [d, d+τ2], [d+τ2, 1−τ2], [1−τ2, 1]

of Ω̄+ are treated analogously for some τ2 satisfying 0 < τ2 ≤ 1−d
4 . The interior

points of the mesh are denoted by

ΩN
ε = {xi : 1 ≤ i ≤ N

2
− 1} ∪ {xi :

N

2
+ 1 ≤ i ≤ N − 1}.

Clearly, xN/2 = d and Ω̄N
ε = {xi}N

0 . Note that this mesh is a uniform mesh
when τ1 = d

4 and τ2 = 1−d
4 . It is fitted to the singular perturbation problem

(3.1)-(3.2) by choosing τ1 and τ2 to be the following functions of N and ε

τ1 = min
{

d

4
, 2

√
ε/β ln N

}
and τ2 = min

{
1− d

4
, 2

√
ε/β ln N

}
.

On the piecewise-uniform mesh Ω̄N
ε a standard centered finite difference operator

is used. Then the fitted mesh method for (3.1)-(3.2) is

−εδ2Y ∗
2 (xi) + b(xi)Y ∗

2 (xi) = f(xi)− c(xi)u01(xi), ∀xi ∈ ΩN
ε \ {d},(3.3)

Y ∗
2 (x0) = q, Y ∗

2 (xN ) = r, D−Y ∗
2 (xN/2) = D+Y ∗

2 (xN/2)(3.4)

where

δ2Zi =
(

Zi+1 − Zi

xi+1 − xi
− Zi − Zi−1

xi − xi−1

)
2

xi+1 − xi−1
, D+Zi =

Zi+1 − Zi

xi+1 − xi

and
D−Zi =

Zi − Zi−1

xi − xi−1
.
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Theorem 3.3. The error in using the scheme (3.3)-(3.4) to solve the problem
(3.1)-(3.2) at the inner grid points {xi, i = 1, 2, ..., N − 1} satisfies

||(y∗2 − Y ∗
2 )||Ω̄N

ε
≤ CN−1 ln N.

Proof. See [4]. 2

3.3. Description of the Computational Method

Consider the BVP (2.1)-(2.2). Let u01(x) be the solution of the IVP de-
scribed in the last section. The first step in the method is to replace y1 by u01

in the second equation of the system (2.1). Hence the system (2.1) gets decou-
pled. In the second step, we find a numerical solution for y2 by applying the
scheme (3.3)-(3.4) to the BVP (3.1)-(3.2). By this one obtains an approximation
to the solution of the BVP (2.1)-(2.2), that is, it gives in turn an approximation
for the solution and its first derivative of the BVP (1.1)-(1.2).

4. Error Estimate

Theorem 4.1. Let (y1, y2) be the solution of (1.1)-(1.2). Further, let Y ∗
2 (xi)

be its numerical solution obtained by the scheme (3.3)-(3.4). Then

||y2 − Y ∗
2 ||Ω̄N

ε
≤ C[N−1 ln N +

√
ε].

Proof. The result of the present theorem follows from the inequality

|(y2 − Y ∗
2 )(xi)| ≤ |(y2 − y∗2)(xi)|+ |(y∗2(xi)− Y ∗

2 )(xi)|

and Theorems 3.2 and 3.3. 2

Remark 4.2. If a closed form solution is not availiable for u01, one can look
for numerical solution for this. Accordingly, the form of the error estimate will
change.

5. Adjoint System [9, 8]

Consider the BVP (2.1)-(2.2). Suppose that the condition (1.4) is not
met, that is, the system (2.1)-(2.2) is not quasi-monotone. Then we adjoint the
following system to the BVP (2.1)-(2.2):

(5.1)





ŷ1
′(x)− ŷ1 = 0,

−εŷ2
′′(x) + b(x)ŷ2(x)− c+(x)ŷ3(x) + c−(x)ŷ1(x) = −f(x),

ŷ3
′(x)− ŷ4 = 0,

−εŷ4
′′(x) + b(x)ŷ4(x)− c+(x)ŷ1(x) + c−(x)ŷ3(x) = f(x),
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(5.2)

{
ŷ1(0) = −p, ŷ2(0) = −q, ŷ2(1) = −r,

ŷ3(0) = p, ŷ4(0) = q, ŷ4(1) = r,

where x ∈ (Ω− ∪ Ω+), and

c+(x) =

{
c(x) if c(x) ≥ 0,

0 otherwise,

and c−(x) = c(x) − c+(x) and ¯̂y = (ŷ1, ŷ2, ŷ3, ŷ4). It is easy to verify that if
ȳ = (y1, y2) is a solution of (2.1)-(2.2) then ¯̂y = (−y1,−y2, y1, y2) is a solution
of (5.1)-(5.2). It is obvious to note that all the results derived earlier for the
BVP (2.1)-(2.2) are still valid, even if the condition (1.4) is not met.

Remark 5.1. In the adjoint system, the number of equations is doubled and
hence occupies more memory spaces. Still we need this, in order to have the
maximum principle and the stability result. To avoid the possibility of c+ and c−

loosing smoothness and only belonging to C(Ω), we assume that c(x) is positive
throughout the interval.

6. Numerical Examples

In this section we present numerical examples to illustrate the method
presented in Section 3.3.

Example 6.1. Consider the singularly perturbed BVP with the discontinuous
source term:

−εy′′′(x) + 4y′(x)− y(x) = f(x), x ∈ (Ω− ∪ Ω+),
y(0) = 1, y′(0) = 0, y′(1) = 0,

where

f(x) =

{
0.7 0 ≤ x ≤ 0.5,

−0.6 0.5 < x ≤ 1.

For this problem

u01(x) =

{
−0.7 + 1.7ex/4, x ∈ {0} ∪ Ω−,

0.6 + 1.7ex/4 − 1.3e−(0.5−x)/4, x ∈ Ω+ ∪ {0.5, 1}.

Example 6.2. Consider the singularly perturbed BVP with the discontinuous
source term:

−εy′′′(x) + (1 + x)y′(x) = f(x), x ∈ (Ω− ∪ Ω+),
y(0) = 1, y′(0) = 1, y′(1) = 0,
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where

f(x) =

{
x 0 ≤ x ≤ 0.5,

(1 + x)2 0.5 < x ≤ 1.

For this problem

u01(x) =

{
x− log(1 + x) + 1, x ∈ {0} ∪ Ω−,

x + x2

2 + 0.875− log(1 + 0.5), x ∈ Ω+ ∪ {0.5, 1}.

The nodal errors and orders of convergence are estimated using the double mesh
principle. Define the double mesh difference to be

DN
ε = max

xi∈Ω̄N
ε

|(yN − ȳ2N )(xi)|, and DN = max
ε

DN
ε

where ȳ2N is the piecewise linear interpolant of the mesh function Y 2N onto
[0, 1]. From these quantities the orders of convergence are computed from

pN = log2(
DN

D2N
).

The corresponding approximate maximum pointwise error is taken to be

EN
ε = max

xi∈Ω̄N
ε

|(yN − ȳ4096)(xi)|, and EN = max
ε

EN
ε .

The computed maximum pointwise errors EN
ε , EN and the computed orders of

convergence pN for the above BVPs are given in Tables 1 and 2.
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ε Number of mesh points N
32 64 128 256 512 1024

20 5.06849-03 2.48122e-03 1.21279e-03 5.84870e-04 2.72481e-04 1.16679e-04
2−2 5.73510e-03 2.74061e-03 1.32349e-03 6.34411e-04 2.94669e-04 1.25989e-04
2−4 2.30746e-03 1.05560e-03 4.98761e-04 2.36479e-04 1.09240e-04 4.64790e-05
2−6 1.60257e-03 4.07401e-04 1.67867e-04 7.96740e-05 3.68226e-05 1.57036e-05
2−8 5.98678e-03 1.59222e-03 4.04474e-05 1.01254e-05 3.47772e-05 1.47904e-05
2−10 1.35154e-02 5.98529e-03 1.59095e-03 4.03262e-04 1.00056e-04 2.38508e-05
2−12 1.35005e-02 6.41069e-03 2.26165e-03 7.52706e-04 2.29287e-04 6.29280e-05
2−14 1.34984e-02 6.42455e-03 2.25568e-03 7.66612e-04 2.39763e-04 6.94339e-05
2−16 1.34974e-02 6.42452e-03 2.25568e-03 7.66607e-04 2.39766e-04 6.94332e-05
2−18 1.34968e-02 6.42450e-03 2.25568e-03 7.66604e-04 2.39762e-04 6.94321e-05
2−20 1.34965e-02 6.42449e-03 2.25568e-03 7.66603e-04 2.39761e-04 6.94328e-05
2−22 1.34964e-02 6.42450e-03 2.25567e-03 7.66615e-04 2.39764e-04 6.94323e-05
2−24 1.34963e-02 6.42450e-03 2.25567e-03 7.66613e-04 2.39763e-04 6.94316e-05
2−26 1.34963e-02 6.42450e-03 2.25568e-03 7.66613e-04 2.39760e-04 6.94330e-05
2−28 1.34963e-02 6.42448e-03 2.25567e-03 7.66610e-04 2.39767e-04 6.94331e-05
2−30 1.34963e-02 6.42449e-03 2.25568e-03 7.66616e-04 2.39768e-04 6.94319e-05
2−32 1.34963e-02 6.42449e-03 2.25568e-03 7.66610e-04 2.39764e-04 6.94324e-05
2−34 1.34963e-02 6.42450e-03 2.25567e-03 7.66612e-04 2.39764e-04 6.94319e-05
2−36 1.34963e-02 6.42450e-03 2.25568e-03 7.66611e-04 2.39765e-04 6.94336e-05
2−38 1.34963e-02 6.42450e-03 2.25568e-03 7.66614e-04 2.39763e-04 6.94320e-05
2−40 1.34963e-02 6.42449e-03 2.25568e-03 7.66614e-04 2.39763e-04 6.94320e-05

EN 1.35154e-02 6.42455e-03 2.26165e-03 7.66616e-04 3.22532e-04 1.38027e-04

DN 4.39456e-03 4.39433e-03 1.36849e-03 6.70967e-04 2.85582e-04 1.16008e-04

pN 0.00073 1.68305 1.02828 1.23233 1.29967 —

Table 1: Maximum pointwise errors EN
ε for the first derivative y′ of Example

6.1.

7. Summary and Conclusions

We presented a computational method to solve third order singularly per-
turbed BVPs for ODEs with discontinuous source term, subject to a particular
type of boundary conditions. The boundary conditions not only help us to
reduce the given third order differential equation into an IVP and one second
order BVP, subject to a suitable boundary conditions, but also to establish the
maximum principle, a uniform stability result and other necessary estimates.
As mentioned in the introduction, the second order singularly perturbed dif-
ferential equations have been extensively studied. Further, no such results are
reported for higher equations and in particular for higher order equations with
discontinuous source term. The idea of an adjoint system presented in Section 5
is a new approach for solving a weakly coupled system of differential equations.
The nonlinear BVPs of the following form can be solved by linearizing them by
Newton’s method of quasilinearization, as was done in [1]:

εy′′′(x) = F (x, y′), x ∈ (Ω− ∪ Ω+), y(0) = p, y′(0) = q, y′(1) = r,
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ε Number of mesh points N
32 64 128 256 512 1024

20 3.51696-03 1.70900e-03 8.32200e-04 4.00567e-04 1.86439e-04 7.97973e-05
2−2 5.84677e-03 2.76377e-03 1.32691e-03 6.34130e-04 2.94086e-04 1.25643e-04
2−4 1.15754e-03 2.81455e-04 6.68483e-05 1.52140e-05 6.90098e-06 3.49375e-06
2−6 5.02092e-03 2.52739e-03 1.24939e-03 6.05551e-04 2.82781e-04 1.21228e-04
2−8 1.42377e-02 3.88827e-03 1.37845e-03 6.62628e-04 3.08110e-04 1.31797e-04
2−10 5.02944e-02 1.40444e-02 3.83111e-03 9.63111e-04 3.16451e-04 1.35090e-04
2−12 8.20611e-02 4.99647e-02 1.39407e-02 3.79367e-03 9.45190e-04 2.25830e-04
2−14 8.16435e-02 5.23794e-02 2.06983e-02 7.06221e-03 2.22200e-03 5.47942e-04
2−16 8.14671e-02 5.23799e-02 2.06593e-02 6.97759e-03 2.24251e-03 6.51767e-04
2−18 8.13801e-02 5.23385e-02 2.06425e-02 6.97153e-03 2.24058e-03 6.51206e-04
2−20 8.13367e-02 5.23179e-02 2.06341e-02 6.96849e-03 2.23962e-03 6.50928e-04
2−22 8.13150e-02 5.23075e-02 2.06299e-02 6.96695e-03 2.23914e-03 6.50785e-04
2−24 8.13042e-02 5.23024e-02 2.06278e-02 6.96620e-03 2.23892e-03 6.50715e-04
2−26 8.12988e-02 5.22998e-02 2.06267e-02 6.96583e-03 2.23879e-03 6.50679e-04
2−28 8.12961e-02 5.22985e-02 2.06262e-02 6.96564e-03 2.23873e-03 6.50664e-04
2−30 8.12947e-02 5.22978e-02 2.06260e-02 6.96553e-03 2.23869e-03 6.50655e-04
2−32 8.12941e-02 5.22975e-02 2.06258e-02 6.96549e-03 2.23869e-03 6.50651e-04
2−34 8.12937e-02 5.22974e-02 2.06258e-02 6.96547e-03 2.23868e-03 6.50647e-04

EN 8.20611e-02 5.23799e-02 2.06983e-02 7.06221e-03 2.24251e-03 6.51767e-04

DN 3.63398e-02 3.61172e-02 1.03419e-02 4.46174e-03 2.027527e-03 9.11242e-04

pN 0.00886 1.80418 1.21282 1.13788 1.15381 —

Table 2: Maximum pointwise errors EN
ε for the first derivative y′ of Example

6.2.
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Figure 1: Graphs of the numerical solution for the first derivative of Example
6.1 for various values of ε with N = 128.
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Figure 2: Graphs of the numerical solution for the first derivative of Example
6.2 for various values of ε with N = 128.

where

Fy′(x, y, y′) ≥ β > 0, x ∈ (Ω− ∪ Ω+), y ∈ R,

0 ≥ Fy′(x, y, y′) ≥ −γ, γ > 0, β − θγ > η > 0,

θ > 2 is arbitrary close to 2.
The main advantage of the present method is that the system (2.1)-(2.2) gets
decoupled and hence one can solve first for y2, that is y′, independently of
y1 (this saves memory space). Further, this method exploits the techniques
available in the literature for solving SPPs for second order ODEs. It may be
noted that an approximation for y1 (that is y) is taken as u01.

The present work can be extended to the case when b(x) has also a single
discontinuity at x = d with [b](d) 6= 0 and b(x) ≥ β > 0, x ∈ (Ω− ∪ Ω+). In
this case there is not much change in this paper except for the calculation of
y1,as, y2,as. To calculate this, one has to carry out the same procedure as done
in Section 2.2, but for the unknowns vR02, wL02 and constants k1 to k4 which
are given below.

vR02 = k2e
−(x−d)

√
b(d+)/ε, wL02 = k3e

−(d−x)
√

b(d−)/ε,
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and

k1 = [y2(0)− u02(0)]− k3e
−d
√

b(d−)/ε,

k3 =
k31{

√
b(d+) +

√
b(1)e−(1−d)

√
(b(d+)+b(1))/ε}

k34 + k35
+

+
(k32 + k33){1− e−(1−d)

√
(b(d+)+b(1))/ε}

k34 + k35
,

k4 = [y2(1)− u02(1)]− k2e
−(1−d)

√
b(d+)/ε,

k21 = [y2(0)− u02(0)]e−d
√

b(0)/ε + k3

(
1− e−d

√
(b(0)+b(d−))/ε

)
,

k22 = [u02(d+)− u02(d−)]− [y2(1)− u02(1)]e−(1−d)
√

b(1)/ε,

k23 =
(

1− e−(1−d)
√

(b(d+)+b(1))/ε

)
,

k31 = {[y2(1)− u02(1)]e−(1−d)
√

b(1)/ε − [y2(0)− u02(0)]e−d
√

b(0)/ε}+
+ [u02(d+)− u02(d−)],

k32 =
√

b(1)[y2(1)− u02(1)]e−(1−d)
√

b(1)/ε +
√

b(0)[y2(0)− u02(0)]e−d
√

b(0)/ε,

k33 =
√

ε[u′02(d+)− u′02(d−)]

k34 =
(√

b(d+) +
√

b(1)e−(1−d)
√

(b(d+)+b(1))/ε

)(
1− e−d

√
(b(0)+b(d−))/ε

)
,

and

k35 =
(√

b(d−) +
√

b(0)e−d
√

(b(0)+b(d−))/ε

)(
1− e−(1−d)

√
(b(d+)+b(1))/ε

)
.
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