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Introduction

Generalized random processes (GRPs) were classified as GRPs (I) and (II)
in Part I of this paper. Now we focus our attention om GRPs (I), i.e. linear
continuous mappings from a certain space of test functions to some space of
classical or generalized random variables.

The paper is organized in the following manner: In the introductory section
(Section 1) we provide some basic terminology and notation. In Section 2 we
develop the Wick product for Hilbert space valued GRPs (I), while in Section
3 we define the differentiation of GRPs (I) and provide as an example the
stochastic analogue of the Dirac delta distribution. In Section 4 we use the series
expansion machinery and the Wick product for GRPs (I) for solving a class of
linear and a class of nonlinear evolution stochastic differential equations.

1. Preliminaries

We will make use of the notation introduced in Part I of the paper. Here we
recall only some of the most necessary facts. For details refer to Part I of the
paper and the references therein.

1.1. Basic notation

Let I ⊂ R be an open interval, and let A, expA, A′, expA′ denote the
Zemanian spaces constructed by formally self-adjoint linear differential operator
of the form

(1) R = θ0D
n1θ1 · · ·Dnν θν = θ̄ν(−D)nν · · · (−D)n2 θ̄1(−D)n1 θ̄0
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where D = d/dx, θk are smooth complex functions without zero-points in I,
and nk are integers k = 1, 2, . . . , ν. Let ψn, n ∈ N be the orthonormal base of
A. Let S(Rd), S ′(Rd) be the Schwartz spaces of tempered distributions and ξn,
n ∈ N, be the family of Hermite functions.

Let the basic probability space (Ω,F , P ) be (S ′(Rd),B, µ), where S ′(Rd)
denotes the space of tempered distributions, B the sigma-algebra generated by
weak topology and µ denotes the white noise measure given by the Bochner-
Minlos theorem. Let (L)2 = L2(S ′(Rd),B, µ) and Hα, α ∈ I be the Fourier–
Hermite orthogonal basis of (L)2. Denote by (S)1, (S)−1 the spaces of the
Kondratiev stochastic test functions and stochastic distributions.

Let H be a separable Hilbert space with orthonormal basis en, n ∈ N. The
H–valued Zemanian spaces are denoted by A(H), A′(H), and the H–valued
Kondratiev spaces are denoted by S(H)1, S(H)−1.

1.2. Expansion of GRPs (I)

Here we give a brief overview of the results from Part I of the paper. Hilbert
space valued GRPs (I) are elements of the spaces A(H)∗ = L(A, S(H)−1),
expA(H)∗k = L(A, exp S(H)−1) or L(expA, S(H)−1), L(expA, expS(H)−1).
The following expansion theorem holds:

Theorem 1.1. Let k ∈ N0. The following conditions are equivalent:

(i) Φ ∈ A(H)∗k.

(ii) Φ can be represented in the form

(2) Φ =
∞∑

i=1

∞∑

j=1

fij ⊗Hαj ei, fij ∈ A−k, i, j ∈ N

and there exists k0 ∈ N0 such that for each bounded set B ⊆ Ak

(3) sup
ϕ∈B

∞∑

i=1

∞∑

j=1

|〈fij , ϕ〉|2 (2N)−k0αj

< ∞.

If Φ can be represented in the form (2) and there exists k1 ∈ N0 such that

(4)
∞∑

i=1

∞∑

j=1

‖fij‖2−k(2N)−k1αj

< ∞,

then Φ ∈ A(H)∗k.

Example 1.1. (see also [4]) Let n : N × N → N, (i, j) 7→ n(i, j) be the usual
bijection given in the following table:
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1 2 3 4 5 6 7 · · · j · · ·
1 1 3 6 10 15 21 28 · · ·
2 2 5 9 14 20 27

...

3 4 8 13 19 26
...

4 7 12 18 25
...

5 11 17 24
...

6 16 23
...

7 22
...

...
...

...
i · · · · · · · · · · · · · · · · · · · · · · · · n(i, j) · · ·
...

...

Let εj = (0, 0, . . . , 1, 0, . . .) be a sequence of zeros with the number 1 as the jth
component. Then,

βi(t, ω) =
∞∑

j=1

∫ t

0

ξj(s)dsHεn(i,j)(ω), i ∈ N

is a sequence of independent (one-dimensional d-parameter R–valued) Brownian
motions. Rewrite this as

βi(t, ω) =
∞∑

k=1

θik(t)Hεk
(ω), θik(t) =

{ ∫ t

0
ξj(s)ds, k = n(i, j)

0, k 6= n(i, j)
.

The formal sum

B(t, ω) =
∞∑

i=1

βi(t, ω)ei =
∞∑

k=1

θk(t)Hεk
(ω), θk(t) = δn(i,j),k

∫ t

0

ξj(s)ds ei

is an H–valued Brownian motion. Note, the sum converges in S(H)−0 for each
t ≥ 0 fixed.

Example 1.2. (see also [4]) The H–valued (one-dimensional, d-parameter)
singular white noise is defined by the formal sum

W(t, ω) =
∞∑

k=1

κk(t)Hεk
(ω), κk(t) = δn(i,j),kξj(t) ei.

It is also an element of S(H)−0.

Example 1.3. Let R = − d2

dx2 +x2+1 and I = R. Then A = S(R), A′ = S ′(R)
and ψk(t) = ξk(t), k ∈ N, where ξk are the Hermite functions.
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(i) In Example 1.2 the H–valued one-dimensional d-parameter singular white
noise was defined by the formal sum

W(t, ω) =
∞∑

k=1

κk(t)Hεk
(ω), κk(t) = δn(i,j),k ξj(t) ei.

With the Hermite function ξj we associate a generalized function ξ̃j ∈
S ′(R) defined by 〈ξ̃j , ϕ〉 =

∫
R ξj(t)ϕ(t)dt, ϕ ∈ S(R).

Define κ̃k = δn(i,j),k ξ̃j(t) ei. Then, the white noise W̃ as an H–valued
GRP (I) has the expansion

W̃ =
∞∑

k=1

κ̃k ⊗Hεk
∈ L(S(R), S(H)−1).

Condition (4) is also satisfied, because
∞∑

i=1

∞∑

j=1

δn(i,j),k ‖ξj‖2L2(R)(2N)−pεj =
∞∑

k=1

(2k)−p < ∞, for p > 1.

Note also that κ̃k is an element of S ′(R;H).

(ii) Let l > 5
12 and t1, t2, t3, . . . ∈ R such that t1 ≤ t2 ≤ t3 ≤ · · · → ∞. It

is known that the Dirac delta distributions δtj , j ∈ N, belong to A−l =
S−l(R). Let

∆k = δn(i,j),k δtj ei, k ∈ N
(to avoid confusion: the first delta is the Kronecker symbol, the second
one is the Dirac distribution). With

(5)
∞∑

k=1

∆k ⊗Hαk

is given a GRP (I). We will check condition (4). Since

δtj (x) =
∞∑

n=1

ξn(tj)ξn(x), j ∈ N,

and ξn = O(n−
1
12 ), n ∈ N, we have

∞∑

i=1

∞∑

j=1

δn(i,j),k‖δtj‖2−l(2N)−pαj

=
∞∑

k=1

‖δtk
‖2−l(2N)−pαk

=
∞∑

k=1

∞∑
n=1

|ξn(tk)|2(2n)−2l(2N)−pαk

≤ C

∞∑

k=1

(2N)−pαk
∞∑

n=1

n−
1
6 (2n)−2l < ∞,

for some constant C > 0 and p > 1. Hence, the process given by (5) meets
the definition of a GRP (I).
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1.3. The Wick product

It is a well-known problem that in general one can not define a pointwise
multiplication of generalized functions; thus, it is not clear how to deal with
nonlinearities. In the framework of white noise analysis this difficulty is solved
by introducing the Wick product. First we recall the definition and some basic
properties of the Wick product in the Kondratiev spaces (see [3]).

Definition 1.1. Let F, G ∈ (S)−1 be given by their chaos expansion F (ω) =∑
α∈I fαHα(ω), G(ω) =

∑
β∈I gβHβ(ω), fα, gβ ∈ R. The Wick product of F

and G is the unique element in (S)−1 defined by:

F♦G(ω) =
∑

γ∈I


 ∑

α+β=γ

fαgβ


 Hγ(ω).

The Wick product is a commutative, associative operation, distributive with
respect to addition. By the same formula we defined in [5] the Wick product
for F,G ∈ exp(S)−1. It is known that the spaces (S)1, (S)−1, exp(S)1 and
exp(S)−1 are closed under Wick multiplication.

In the Hilbert space valued case, the Wick product is defined analogously
(see [4]), and is denoted by the same symbol.

Definition 1.2. Let F, G ∈ S(H)−1 be given by their chaos expansion F (ω) =∑∞
i=1

∑
α∈I fi,αHα(ω)ei, G(ω) =

∑∞
i=1

∑
β∈I gi,βHβ(ω)ei, fi,α, gi,β ∈ R. The

Wick product of F and G is the unique element in S(H)−1 defined by:

F♦G(ω) =
∞∑

i=1

∑

γ∈I


 ∑

α+β=γ

fi,αgi,β


Hγ(ω)ei

=
∞∑

i=1

(Fi♦Gi(ω))ei,

where Fi(ω) =
∑

α∈I fi,αHα(ω), and Gi(ω) =
∑

β∈I gi,βHβ(ω).

This definition is legal, since S(H)1 and S(H)−1 are closed under Wick
multiplication. In the same manner we can define F♦G for F, G ∈ expS(H)−1

and it is an easy exercise to show (combining the methods in [4] and [5]) that
F♦G ∈ expS(H)−1. Also, if F, G ∈ expS(H)1 then F♦G ∈ expS(H)1.

Now we recall the definition of a deterministic multiplication of Wick type
in A′, which was introduced in [7] and [5]. From now on, when we use Wick
products, we will always assume that A is nuclear, i.e. there exists some p ≥ 0,
such that M :=

∑∞
n=1 λ̃n

−2p
< ∞.

Definition 1.3. Let f, g ∈ A′ be generalized function given by the expansions
f =

∑∞
k=1 akψk, g =

∑∞
k=1 bkψk. Define f ¦ g to be the generalized function
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from A′, given by

(6) f ¦ g =
∞∑

n=1




∑
i,j∈N

i+j=n+1

aibj


 ψn.

Proposition 1.1. If f =
∑∞

i=1 aiψi ∈ A−k and g =
∑∞

i=1 biψi ∈ A−l, then
f ¦ g ∈ A−(k+l+p). Moreover,

(7) |〈f ¦ g, ϕ〉|2 ≤ M‖f‖2−k‖g‖2−l‖ϕ‖k+l+p,

for each test function ϕ ∈ A.

Similarly, one can also define the multiplication of test-functions, under an
additional assumption:

Lemma 1.1. Let there exist a constant C > 0, such that

λ̃i+j ≤ Cλ̃iλ̃j , i, j ∈ N.

If f =
∑∞

i=1 aiψi ∈ Ak and g =
∑∞

i=1 biψi ∈ Ak, then f ¦ g ∈ A(k−p).

For example, we have ψi ¦ ψj = ψi+j−1 for arbitrary i, j ∈ N.
The notion of the Wick product to GRPs (I) was also extended in [5]. Here

we summarize the basic results.

Definition 1.4. Let Φ ∈ A∗k, Ψ ∈ A∗l be two GRPs (I) given by expansions
Φ =

∑∞
i=1 fi⊗Hαi , fi ∈ A−k, i ∈ N, and Ψ =

∑∞
j=1 gj⊗Hαj , gj ∈ A−l, j ∈ N.

The Wick product of Φ and Ψ is defined to be

(8) Φ¨Ψ =
∞∑

n=1




∑
i,j∈N

αi+αj=αn+1

fi ¦ gj


⊗Hαn .

Theorem 1.2. The Wick product Φ¨Ψ from the previous definition is a GRP
(I), precisely Φ¨Ψ ∈ A∗k+l+p.

The Wick product for GRPs (I) taking values in exp(S)−1 can be defined in
an analogous way.

Theorem 1.3. The Wick product Φ¨Ψ defined by the formula (8) of Φ ∈
expA∗k and Ψ ∈ expA∗l is a GRP (I), precisely Φ¨Ψ ∈ expA∗k+l+p.

The Wick product ¦ in A′ can be embedded into the Wick product ¨ in
A∗, since each deterministic function can be (trivially) regarded as a stochastic
process. Also, the Wick product ¨ acting on A∗ is an extension of the Wick
product ♦ acting on (S)−1.
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2. The Wick product of H–valued GRPs (I)

The main difference is now that we are not able to define the Wick product
¨ for the whole class of H–valued GRPs (I). This is due to the fact that S(H)−1

is not a nuclear space. Therefore, the Wick product will be defined for the class
of H–valued GRPs (I) satisfying condition (4).

Definition 2.1. Let Φ ∈ A(H)∗k, Ψ ∈ A(H)∗l be two H–valued GRPs (I) given
by expansions Φ =

∑∞
i=1

∑∞
j=1 fi,j ⊗ Hαj ei, fi,j ∈ A−k, i, j ∈ N, and Ψ =∑∞

i=1

∑∞
j=1 gi,j ⊗Hαj , gi,j ∈ A−l, i, j ∈ N, and let r1 ≥ 0, r2 ≥ 0 be such that∑∞

i=1

∑∞
j=1 ‖fi,j‖2−k(2N)−r1αj

< ∞ and
∑∞

i=1

∑∞
j=1 ‖gi,j‖2−l(2N)−r2αj

< ∞.
The Wick product of Φ and Ψ is defined to be

(9) Φ¨Ψ =
∞∑

i=1

∞∑
n=1




∑
s,r∈N

αs+αr=αn+1

fi,s ¦ gi,r


⊗Hαn ei.

We may write (9) also as

Φ¨Ψ =
∞∑

i=1

(Fi¨Gi)ei,

where Fi =
∑∞

j=1 fi,j ⊗ Hαj ∈ A∗k, Gi =
∑∞

j=1 gi,j ⊗ Hαj ∈ A∗l and Fi¨Gi is
defined as in Definition 1.4.

Theorem 2.1. The Wick product Φ¨Ψ from the previous definition is an H–
valued GRP (I), precisely Φ¨Ψ ∈ A(H)∗k+l+p.

Proof. Due to Lemma 1.1 it follows that fi,s ¦ gi,r ∈ A−k−l−p for all i, s, r ∈
N, and thus,

∑
αs+αr=αn+1 fi,s ¦ gi,r ∈ A−k−l−p, n ∈ N. Since [Φ¨Ψ, ϕ] =∑∞

i=1

∑∞
n=1

∑
αs+αr=αn+1〈fi,s ¦ gi,r, ϕ〉Hαnei, it remains to prove

sup
ϕ∈B

∞∑

i=1

∞∑
n=1

∣∣∣∣∣∣
∑

αs+αr=αn+1

〈fi,s ¦ gi,r, ϕ〉
∣∣∣∣∣∣

2

(2N)−r3αn

< ∞,
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for any bounded set B ⊆ A and some r3 ≥ 0. Put r3 = r1 + r2 + q, where q > 1.
Then, according to (7)

sup
ϕ∈B

∞∑

i=1

∞∑
n=1

∣∣∣∣∣∣
∑

αs+αr=αn+1

〈fi,s ¦ gi,r, ϕ〉
∣∣∣∣∣∣

2

(2N)−r3αn

≤ sup
ϕ∈B

∞∑

i=1

∞∑
n=1

∣∣∣∣∣∣
∑

αs+αr=αn+1

‖fi,s‖−k‖gi,r‖−l‖ϕ‖k+l+p

√
M

∣∣∣∣∣∣

2

(2N)−r3αn

≤ M

∞∑
n=1

(2N)−qαn
∞∑

i=1

∣∣∣∣∣∣
∑

αs+αr=αn+1

‖fi,s‖−k(2N)−
r1αs

2 ‖gi,r‖−l(2N)−
r2αr

2 sup
ϕ∈B

‖ϕ‖k+l+p

∣∣∣∣∣∣

2

≤ M

∞∑
n=1

(2N)−qαn
∞∑

i=1

( ∞∑
s=1

‖fi,s‖2−k(2N)−r1αs
∞∑

r=1

‖gi,r‖2−l(2N)−r2αr

sup
ϕ∈B

‖ϕ‖2k+l+p

)

= M

∞∑
n=1

(2N)−qαn
∞∑

i=1

∞∑
s=1

‖fi,s‖2−k(2N)−r1αs
∞∑

i=1

∞∑
r=1

‖gi,r‖2−l(2N)−r2αr

sup
ϕ∈B

‖ϕ‖2k+l+p

< ∞,

where we used the property (2N)αs+αr

= (2N)αs

(2N)αr

. 2

Note that the Wick product ♦ acting on S(H)−1 can be embedded into ¨
acting on A(H)∗.

Also, the following theorem holds, similarly as in the finite dimensional case.

Theorem 2.2. The Wick product Φ¨Ψ defined by the formula (9) of Φ ∈
expA(H)∗k and Ψ ∈ expA(H)∗l is an H–valued GRP (I), precisely Φ¨Ψ ∈
expA(H)∗k+l+p, provided there exist r1 ≥ 0, r2 ≥ 0, such that
∑∞

i=1

∑∞
j=1 ‖fi,j‖2−ke−r1(2N)αj

< ∞,
∑∞

i=1

∑∞
j=1 ‖gi,j‖2−le

−r2(2N)αj

< ∞.

3. Differentiation of GRPs (I)

Definition 3.1. Let F ∈ A(H)∗. The distributional derivative of F , denoted
by ∂

∂tF is defined by
[

∂
∂tF, ϕ

]
= − [

F, ∂
∂tϕ

]
, for all ϕ ∈ A.

Lemma 3.1. Let F =
∑∞

i=1

∑∞
j=1 fij ⊗Hαj ei ∈ A(H)∗. Then,

(10)
∂

∂t
F =

∞∑

i=1

∞∑

j=1

∂

∂t
fij ⊗Hαj ei,

where ∂
∂tfij is the distributional derivative of fij in A′.
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Proof. The assertion follows from the fact that


∞∑

i=1

∞∑

j=1

∂

∂t
fij ⊗Hαj ei, ϕ


 =

∞∑

i=1

∞∑

j=1

〈 ∂

∂t
fij , ϕ〉Hαj ei

= −
∞∑

i=1

∞∑

j=1

〈fij ,
∂

∂t
ϕ〉Hαj ei = −

[
F,

∂

∂t
ϕ

]

for all ϕ ∈ A. Obviously, the condition (3) is satisfied. 2

Example 3.1. Denote by δy ∈ S ′(R; H) be the H–valued Dirac delta distri-
bution at y ∈ R. Let tj ∈ R, j ∈ N, such that t1 ≤ t2 ≤ t3 ≤ · · · → ∞.
Then,

∞∑

j=1

δtj ⊗Hαj

defines an H–valued GRP (I). Indeed, since {ξnei : n, i ∈ N} is an orthogo-
nal basis of S ′(R;H), we can write δy =

∑∞
i=1

∑∞
n=1 din(y)ξnei, ‖δy‖2−k;H =∑∞

i=1

∑∞
n=1 |din(y)|2(2n)−k < ∞, and, moreover, ‖δy‖2−k;H does not depend on

y. Thus,∑∞
j=1 ‖δtj‖2−k;H(2N)−pαj

= Const
∑∞

j=1(2N)−pαj

< ∞, for p > 1.

It is a well-known fact in the (deterministic) generalized functions theory that
if a function f : R→ R is differentiable on R \ {x0} and has a jump in x0 ∈ R,
then Df = f ′(x) + Cδx0 , where Df is the distributional derivative in S ′(R),
f ′(x) is the classical derivative, δx0 ∈ S ′(R) is the Dirac delta distribution, and
C = f(x+

0 )−f(x−0 ). In this light, the GRP defined in Example 3.1 is a stochastic
analogue of the Dirac delta distribution.

Example 3.2. Let F =
∑∞

j=1 fjHαj , fj : R → R be a stochastic process in

sense of [3], i.e. for each t ∈ R fixed
∑∞

j=1 |fj(t)|2(2N)−pαj

< ∞ for some
p > 0. Denote by δy ∈ S ′(R) the Dirac delta distribution at y ∈ R. Assume that
for each j ∈ N, the function fj is differentiable on R \ {tj}, has one jump in
tj ∈ R, and t1 ≤ t2 ≤ t3 ≤ · · · → ∞. Assume that

∑∞
j=1 |f ′j(t)|2(2N)−pαj

< ∞
for each fixed t ∈ R \ {t1, t2, . . .}. Let cj = f(t+j ) − f(t−j ), j ∈ N, be the jump
heights. Assume that there exists C > 0 such that |cj | ≤ C, j ∈ N (i.e. the
jump heights are bounded). Then,

∂

∂t
F =

∞∑

j=1

∂

∂t
fj ⊗Hαj =

∞∑

j=1

(
f ′j + cjδtj

)⊗Hαj .

Since
∑∞

j=1 c2
j‖δtj‖−k(2j)−p ≤ C2

∑∞
j=1 ‖δtj‖−k(2j)−p < ∞, the process

above is well-defined. Note
∑∞

j=1 f ′j(t)Hαj is an element of (S)−1 for each fixed
t ∈ R, and

∑∞
j=1 δtj ⊗Hαj is the GRP (I) defined in Example 3.1.
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4. Applications to some classes of SDEs

4.1. A class of linear SDEs

Let R be of the form (1) and P (t) = pntn + pn−1t
n−1 + · · ·+ p1t + p0, t ∈ I,

be a polynomial with real coefficients. We give two examples of stochastic
differential equations using GRPs (I), and a differential operator P (R) defined
as P (R) = pnRn + pn−1Rn−1 + · · ·+ p1R+ p0I. Note, if ψk is an eigenfunction
of R, then

P (R)ψk = (pkRn + pn−1Rn−1 + · · ·+ p1R+ p0I)ψk

= pn(λ̃k)nψk + pn−1(λ̃k)n−1ψk + · · ·+ p1λ̃kψk + p0ψk = P (λ̃k)ψk.

Consider an SDE of the form

(11) P (R)u = g

where g ∈ A(H)∗r is a GRP (I).
Let u and g be given by the series expansions

u(t, ω) =
∞∑

i=1

∞∑

j=1

uij(t)⊗Hαj (ω)ei,

g(t, ω) =
∞∑

i=1

∞∑

j=1

gij(t)⊗Hαj (ω)ei, t ∈ I, ω ∈ S ′(R),

respectively, where uij , gij ∈ A′, i, j ∈ N.
Let uij =

∑∞
k=1 ak

ijψk, gij =
∑∞

k=1 bk
ijψk, i, j ∈ N. Then we have

P (R)u =
∞∑

i=1

∞∑

j=1

P (R)uij ⊗Hαj ei

=
∞∑

i=1

∞∑

j=1

(
P (R)

∞∑

k=1

ak
ijψk

)
⊗Hαj ei =

∞∑

i=1

∞∑

j=1

∞∑

k=1

ak
ijP (λ̃k)ψk ⊗Hαj ei.

(12)

In order to solve (11) we may use the method of undetermined coefficients. From
(11) and (12) we have

∞∑

k=1

ak
ijP (λ̃k)ψk = gij , i, j ∈ N.

Finally, we obtain the system

ak
ijP (λ̃k) = bk

ij , i, j, k ∈ N.
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First case: If P (λ̃k) 6= 0 for all k ∈ N, then ak
ij = bk

ij

P (λ̃k)
, i, j, k ∈ N, and the

solution of the equation is given by

u =
∞∑

i=1

∞∑

j=1

( ∞∑

k=1

bk
ij

P (λ̃k)
ψk

)
⊗Hαj ei.

In this case the solution exists and it is unique. Note that there exists a constant
C > 0 such that P (λ̃k) ≥ C, for all k ∈ N. Thus,

∞∑

i=1

∞∑

j=1

∥∥∥∥∥
∞∑

k=1

bk
ij

P (λ̃k)
ψk

∥∥∥∥∥

2

−r

(2N)−pαj ≤ 1
C2

∞∑

i=1

∞∑

j=1

∥∥∥∥∥
∞∑

k=1

bk
ijψk

∥∥∥∥∥

2

−r

(2N)−pαj

< ∞,

for some p > 1, because g ∈ A(H)∗r . Thus, u ∈ A(H)∗r .
Second case: Let P (λ̃k) = 0 for k = k1, k2, . . . km. Then a solution exists if

and only if bk1
ij = bk2

ij = · · · = bkm
ij = 0, i, j ∈ N. The solution in this case is not

unique, and the coefficients of the solution u are given by

uij =
∞∑

k=1
P (λ̃k) 6=0

bk
ij

P (λ̃k)
ψk +

m∑
s=1

cs
ijψks , i, j ∈ N,

where cs
ij , s = 1, 2, . . . m, i, j ∈ N, are arbitrary real numbers.

4.2. A class of nonlinear SDEs

Now we will consider a class of nonlinear SDEs with Wick products involving
H–valued GRPs (I).

Let P (R) be the differential operator defined as in (11). Assume that
P (λ̃k) − 1 6= 0 and P (λ̃k) 6= 0 for all k ∈ N. Consider a nonlinear SDE of
the form

(13) P (R)X = X¨W̃ + g,

where W̃ is the singular white noise in A(H)∗0 given by the expansion

W̃ (t, ω) =
∞∑

i=1

∞∑
n=1

wi,n(t)⊗Hεn(ω)ei, t ∈ I, ω ∈ Ω,

and

wi,n =
{

ψj(t), n = m(i, j)
0, else

and m(i, j) is defined as in Example 1.1.
Let g ∈ A(H)∗r be of the form

g(t, ω) =
∞∑

i=1

∞∑
n=1

gi,n(t)⊗Hεn(ω)ei, t ∈ I, ω ∈ Ω,
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such that gi,n ∈ A−r, i, n ∈ N; and assume that there exist q ≥ 0, such that

(14)
∞∑

i=1

∞∑
n=1

‖gi,n‖2−r(2N)−qεn =
∞∑

i=1

∞∑
n=1

‖gi,n‖2−r(2n)−q < ∞.

Expanding each gi,n in A−r we get

gi,n(t) =
∞∑

k=1

gi,n,kψk(t), gi,n,k ∈ R, t ∈ I, i, n ∈ N,

which yields

(15)
∞∑

k=1

|gi,n,k|2λ̃k

−2r
< ∞.

We will look for the solution X of the equation in the form

X(t, ω) =
∞∑

i=1

∞∑
n=1

ai,n(t)⊗Hεn(ω)ei, t ∈ I, ω ∈ Ω,

where ai,n ∈ A′, i, n ∈ N, are the coefficients to be determined. Let ai,n(t),
t ∈ I, be given by the expansion

ai,n(t) =
∞∑

k=1

ai,n,kψk(t), ai,n,k ∈ R, t ∈ I, n ∈ N.

Then,

(16)

P (R)X(t, ω) =
∞∑

i=1

∞∑
n=1

( ∞∑

k=1

ai,n,kP (λ̃k)ψk(t)

)
⊗Hεn(ω)ei, t ∈ I, ω ∈ Ω,

and due to the definition of Wick product:

X(t, ω)¨W̃ (t, ω) + g(t, ω) =

∞∑

i=1

∞∑
n=1

( ∑
r+s=n+1

ai,s(t) ¦ wi,r(t) + gn(t)

)
⊗Hεn(ω)ei, t ∈ I, ω ∈ Ω.

(17)

Since

ai,s(t) ¦ wi,r(t) =
∞∑

k=1

ai,s,kψk(t) ¦ wi,r(t) =
∞∑

k=1

ai,s,kψk(t) ¦ ψj(t)

=
∞∑

k=1

ai,s,kψk+j−1(t),
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for j ∈ N such that r = m(i, j), relation (17) becomes

X(t, ω)¨W̃ (t, ω) + g(t, ω) =

∞∑

i=1

∞∑
n=1

( ∑
r+s=n+1

∞∑

k=1

ai,s,kψk+j−1(t) + gn(t)

)
⊗Hεn(ω)ei, t ∈ I, ω ∈ Ω.

(18)

From (16) and (18) we obtain

(19)
∑
s,r∈N

s+r=n+1,r=m(i,j)

∞∑

k=1

ai,s,kψk+j−1(t)+
∞∑

k=1

gi,n,kψk(t) =
∞∑

k=1

ai,n,kP (λ̃k)ψk(t), i, n ∈ N.

From the system of equations (19) one can recursively determine the coeffi-
cients ai,n,k, i, n, k ∈ N.

For i = 1, n = 1 we have only one possibility how to get r + s = 2 (s =
1, r = 1) and for r = 1 the corresponding j is j = 1. Thus, (19) gives

∞∑

k=1

a1,1,kψk(t) +
∞∑

k=1

g1,1,kψk(t) =
∞∑

k=1

a1,1,kP (λ̃k)ψk(t), t ∈ I,

which implies

(20) a1,1,k =
g1,1,k

P (λ̃k)− 1
, k = 1, 2, . . .

For i = 1, n = 2 we have two possibilities how to get r + s = 3 (s = 1, r = 2
and s = 2, r = 1). For r = 1 we have j = 1, and for r = 2 we also get j = 1.
Thus, from (19) we obtain

∞∑

k=1

a1,1,kψk(t) +
∞∑

k=1

g1,2,kψk(t) =
∞∑

k=1

a1,2,kP (λ̃k)ψk(t), t ∈ I,

and since a1,1,k are known from the previous step, now we get

a1,2,k =
a1,1,k + g1,2,k

P (λ̃k)
, k = 1, 2, . . .

For i = 1, n = 3, and, consequently, r + s = 4, we get following triples:
s = 1, r = 3, j = 2; s = 3, r = 1, j = 1 and s = 2, r = 2, j = 1. Thus,

∞∑

k=1

a1,1,kψk+1 +
∞∑

k=1

a1,3,kψk +
∞∑

k=1

a1,2,kψk +
∞∑

k=1

g1,3,kψk =
∞∑

k=1

a1,3,kP (λ̃k)ψk.
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After reordering the indeces in the first sum we get

a1,3,1 =
a1,2,1 + g1,3,1

P (λ̃1)− 1
,

a1,3,k =
a1,1,k−1 + a1,2,k + g1,3,k

P (λ̃k)− 1
, k = 2, 3, . . .

We follow this schedule for n = 4, 5, . . .. Then we fix i = 2 and obtain the
coefficients for n = 1, 2, 3, . . . given by following recursion formulae:

a2,1,k =
g2,1,k

P (λ̃k)− 1
, k = 1, 2, . . .

a2,2,k =
a2,1,k + g2,2,k

P (λ̃k)
, k = 1, 2, . . .

a2,3,1 =
a2,2,1 + g2,3,1

P (λ̃1)− 1
,

a2,3,k =
a2,1,k−1 + a2,2,k + g2,3,k

P (λ̃k)− 1
, k = 2, 3, . . .

Then we fix i = 3, and so on....
Since for each r ∈ N its corresponding j ∈ N from r = m(i, j) is always

j < r, we get a general formula

(21) ai,n,k =
gi,n,k + L

P (λ̃k)− 1
, i ∈ N, n ∈ N; k = n, n + 1, . . .

where L is a linear combination of ai,n1,k1 for n1 < n, k1 < k.
Since P (λ̃k) − 1 6= 0, k ∈ N, there exists a constant K > 0 such that

|P (λ̃k)− 1| ≥ K, k ∈ N. Relation (15) yields that there exists C(i, n) > 0, such
that

|gi,n,k| ≤ C(i, n)λ̃k

r
, k ∈ N.

Similarly, according to (14), there exists D > 0, such that

‖gi,n‖2−r =
∞∑

k=1

|gi,n,k|2λ̃k

−2r ≤ D(2n)q, i, n ∈ N.

Hence, for each i, n ∈ N we have C(i, n) ≤ D(2n)q and consequently

(22) |gi,n,k| ≤ D(2n)qλ̃k

r
, i, n, k ∈ N.

We prove now the estimate

(23) |ai,n,k| ≤ D(2n)qλ̃k

r
Qn(

1
K

), i, n ∈ N, k ≥ n,
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where Qn is a polynomial of order n. The proof can be done by induction. For
i = n = 1 we get from (20) and (22) that |a1,1,k| ≤ 1

K D2qλ̃k

r
, k ∈ N. Assume

now (23) holds. Then, from (21) and (22) we get

|ai+1,n+1,k| ≤ 1
K

(|L|+ |gi+1,n+1,k|) ≤ 1
K

(
|L|+ D(2(n + 1))qλ̃k+1

r)
.

Since L is a linear combination of n coefficients ai,n1,k1 , using the induction
hypothesis we get |L| ≤ D(2n)qλ̃k

r
Qn( 1

K ). Thus, since λ̃k

r ≤ λ̃r
k+1, and (2n)q ≤

(2(n + 1))q, we obtain

|ai+1,n+1,k| ≤ D(2(n+1))qλ̃k+1

r 1
K

(
1 + Qn(

1
K

)
)

= D(2(n+1))qλ̃k+1

r
Rn+1(

1
K

),

where Rn+1 is some polynomial of order n + 1. This proves (23).

Let p be such that
∑∞

k=1 λ̃k

−2p
< ∞ (such p exists, since A is nuclear).

Then, due to (23)

∞∑

k=1

|ai,n,k|2λ̃k

−2r−2p ≤ D2(2n)2qQ2
n(

1
K

)
∞∑

k=1

λ̃k

−2p
< ∞,

and thus,
‖ai,n‖2−(r+p) < ∞, i, n ∈ N,

which yields that all coefficients ai,n, i, n ∈ N, belong to A−(r+p).
Also, it holds that,

∞∑

i=1

∞∑
n=1

‖ai,n‖2−(r+p)e
−s(2N)εn ≤ D2M

∞∑

i=1

∞∑
n=1

(2n)2qQ2
n(

1
K

)e−2sn.(24)

The series on the right-hand side of (24) can be made convergent if we choose
s large enough. Thus, there exists a unique solution X of equation (13) in the
space expA(H)∗r+p.
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[5] Pilipović, S., Seleši, D., Expansion Theorems for Generalized Random Processes,
Wick Products and Applications to Stochastic Differential Equations, Infinite Di-
mensional Analysis, Quantum Probability and Related Topics. (2007), to appear.



108 Dora Seleši
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