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1. Preliminaries
Throughout the article L is a �rst order language. The basic logical symbols

will be ¬ (negation), ∧ (conjunction) and ∃ (existential quanti�er); the others
being de�ned by the basic ones in the standard way. The choice of the logical
symbols is irrelevant, but we kept the choice made in the case of (n-) �nite
forcing (see [2]). For a theory T of the language L, µ(T ) will be the class of
all its models (as usual, by a theory we assume a consistent deductively closed
set of sentences � thus, T ` ϕ means ϕ ∈ T ). By Σn-formula we mean any
formula equivalent to a formula in prenex normal form whose prenex consists
of n blocks of quanti�ers, the �rst one being the block of existential quanti�ers
(Πn-formulas are de�ned analogously). The models (of the language L) will
be denote by A, B, . . ., while their domains will be A,B, . . .. For a model A,
Diagn(A) is the set of all Σn- , Πn-sentences of the language L(A) (the simple
expansion of the language L obtained by adding a new set of constants which is
in one-to-one correspondence with domain A) which hold inA. In particular, for
n = 0, Diag0(A) is not the diagram ofA in the sense in which it is used in model
theory, but this di�erence is of no importance for the text (the same situation
we have when dealing with the generalization of �nite forcing). As usual, we
will not distinguish an element a from A and the constant corresponding to
it. If A is a submodel of B and (B, a)a∈A |= Diagn(A), we say that A is
an n-elementary submodel of B (i.e. B is an n-elementary extension of A), in
notation A ≺n B. In general, A is n-embedded in B if, for some embedding f of
A into B, f(A) is an n-elementary submodel of B. A Σn+1-chain of models is a
chain of models A0 < A1 < . . . < Aα < . . ., α < γ, where for each α < β (< γ),
Aα is an n-elementary submodel of Aβ ; we use A < B to denote that A is a
submodel of B, therefore < is "equal" to ≺0.
Remark. We are following mainly [7], in fact, in almost all of the given propo-
sitions we use the same proof patterns as in the case of in�nite forcing. Thus
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a routine and tedious job is in question, and in that sense this paper does not
bring anything essentially new. Its aim is primarily to introduce the de�nitions
and present the basic facts considering n-in�nite forcing which are to be used
in the further research of the topic. Through a set of circumstances the paper
appears with a great delay and after publishing some articles which (continued
the examination of n-in�nite forcing) announced it in the references there in;
see [3], [4], [5].

2. n-in�nite forcing relation
In the sequel we will assume that the considered class K of models of the

language L is closed under unions of Σn+1-chains. In keeping with the standard
terminology, we will say that the class K is n-inductive.

De�nition 2.1. For a model A from K and a sentence ϕ of the language L(A)
the relation: A n-in�nitely forces ϕ (with respect to the class K), in notation
A ‖=n ϕ, is de�ned inductively:

(1) if ϕ is an atomic sentence, then A ‖=n ϕ i� A |= ϕ;
(2) if ϕ ≡ φ ∧ ψ, then A ‖=n φ ∧ ψ i� A ‖=n φ and A ‖=n ψ;
(3) if ϕ ≡ ¬φ, then A ‖=n ϕ i� no n-elementary extension of A in K n-

in�nitely forces ψ;
(4) if ϕ ≡ ∃vψ(v), then A ‖=n ϕ i�, for some a ∈ A, A ‖=n ψ(a).

Lemma 2.2. For a model A of the class K and sentences ϕ and ψ of the
language L(A) it holds:

(1) the model A cannot n-in�nitely force both ϕ and ¬ϕ;
(2) if B from K is an n-elementary extension of A and A ‖=n ϕ, then also

B ‖=n ϕ;
(3) if A ‖=n ϕ or A ‖=n ψ, then A ‖=n ¬(¬ϕ∧¬ψ), that is A ‖=n ϕ∨ψ;

(4) if A ‖=n ¬∃v¬ϕ(v), then, for any a ∈ A, A ‖=n ¬¬ϕ(a).

Proof. (1) Directly, by the very de�nition of n-in�nite forcing relation.
(2) Simple inductive argument by the complexity of the sentence ϕ.
(3) and (4) are immediate consequences of (1) nad (2) (and de�nition of

n-in�nite forcing). 2

Note. In Robinson's [8] and subsequent papers on in�nite forcing as the basic
logical symbol it was taken also disjunction (∨) and it was de�ned: A ‖= ϕ∨ψ
i� A ‖= ϕ or A ‖= ψ. As a consequence of the fact that in our case disjunction
is de�ned by conjunction and negation, in item (3) we do not have the inverse
implication. So, for instance, if K is the class of linearly ordered sets in the
language with equality and a binary relation ≤, and A = 〈ω ∪ {ω} (= ω+),≤〉,
then A ‖= ¬(¬∃v (v < 0) ∧ ¬∃v (v > ω)), while neither A ‖= ∃v(v < 0) nor



A word on n-in�nite forcing 223

A ‖= ∃v(v > ω) (where, of course, v < u stands for v ≤ u ∧ v 6= u). It holds as
well: A ‖= ¬¬∃v (v < 0).

De�nition 2.3. A model A from K is n-in�nitely generic i� for any sentence
ϕ of the language L(A) either A ‖=n ϕ or A ‖=n ¬ϕ.

Lemma 2.4. Any model of the class K is an n-elementary submodel of some
n-in�nitely generic model.

Proof. Let {ϕα | α < λ = max{|A|, |L|,ℵ0} be an enumeration of the sentences
of the language L(A). We construct inductively the sequence of models in the
following way: A0 = A. On the assumption that the models Aγ , for all γ < β,
have been "chosen", we distinguish the cases: β = α + 1 and β is a limit
ordinal. In the �rst case, if Aα ‖=n ϕα or Aα ‖=n ¬ϕα, we put Aβ = Aα; in
the oposite case there exists some n-elementary extension B of Aα in K such
that B ‖ =n ϕα, and we put: Aβ = B. When β is a limit ordinal, we take
Aβ =

⋃
α<β Aα. In any case, Aα is in K, for this class is closed under unions

of Σn+1-chains. Obviously, for any sentence ϕ of the language L(A), the model
A1 =

⋃
α<λ Aα n-in�nitely forces either ϕ or ¬ϕ. If we construct in the same

way the model A2 starting now with the model A1 and continuing this process
we will �nally obtain the model Aω =

⋃
n≥1 An, which is certainly n-in�nitely

generic. 2

Lemma 2.5. (a) A model A of the class K is n-in�nitely generic i� for any
sentence ϕ of the language L(A) it holds:

A ‖=n ϕ i� A |= ϕ;

(b) A model A is n-in�nitely generic i� for any sentence ¬ϕ of the language
L(A) it holds:

A ‖=n ¬ϕ i� A |= ¬ϕ.

Proof. (a) is proved by induction of the complexity of the formula ϕ; one
implication in (b) follows directly from (a), as for the other, the given condition
enables us to pass with the induction in checking that (a) holds. 2

Corollary 2.6. (a) If A and B are n-in�nitely generic models of the class K
and if A is an n-elementary submodel of B, then A is an elementary submodel
of B;

(b) every n-in�nitely generic model of the class K is an n-existentially closed
model in K.

Proof. (a) For a sentence ϕ of L(A) we have: A |= ϕ ⇐⇒ A ‖ =n ϕ =⇒
B ‖=n ϕ ⇐⇒ B |= ϕ.
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(b) Let A be an n-in�nitely generic model of the class K, A ≺n B ∈ K and
let ϕ be a Σn+1-sentence of the language L(A) which is satis�ed in B. If C is
an n-in�nitely generic model of K, which is also an n-elementary extension of
B, then C |= ϕ and, because of A ≺ C, it holds as well A |= ϕ. 2

Corollary 2.7. The class Ln
K of all n-in�nitely generic models of the class K

is closed under the unions of Σn+1-chains.

Theorem 2.8. The class Ln
K is a unique subclass C of the class K satisfying

the following:
(1) C is n-mutually-consistent or, in other words, n-model-consistent with

K (which means in fact that any model of K is an n-elementary submodel of
some model from C);

(2) C is n-model-complete;
and

(3) C contains any other subclass of K which satis�es the conditions (1) and
(2).

Proof. It has already been proved that Ln
K satis�es the conditions (1) and (2).

Let D be the subclass of K which also satis�es these conditions and let A ∈ D.
We show that for a sentence ¬ϕ of the language L(A) it holds: A ‖=n ¬ϕ i�
A |= ¬ϕ, that is that A is n-in�nitely generic. Suppose A ‖=n ¬ϕ and let B
be an n-in�nitely generic model which is an n-elementary extension of A. Then
B ‖=n ¬ϕ, thus B |= ¬ϕ too. We construct a countable chain of models in the
following way. Let A1 be a model from D which is an n-elementary extension of
B, B1 an n-in�nitely generic model which is an n-elementary extension of A1,
and so on. Then C =

⋃
k≥1 Ak =

⋃
k≥1 Bk is n-in�nitely generic and A ≺ C,

B ≺ C (since the chains A ≺n A1 ≺ . . . ≺ Ak ≺n . . . and B ≺n B1 ≺n . . . ≺n

Bk ≺n . . . are elementary chains). But then C |= ¬ϕ, whence also A |= ¬ϕ.
On the other hand, if A does not n-in�nitely force ¬ϕ, then some n-elementary
extension B of A n-in�nitely forces ϕ. We can immediately assume that B is
n-in�nitely generic, and, as in the previous case, obtain a model C, which is
an elementary extension of both A and B. Then, because of B |= ϕ, it follows
C |= ϕ and therefore A |= ϕ, that is A 6|= ¬ϕ. 2

Corollary 2.9. (a) The class Ln
K is a unique subclass C of K satisfying the

�rst two conditions from the previuos theorem and
(3)′ if a model A from K is an elementary submodel of any model from C,

which is its n-elementary extension, then A ∈ C;
(b) On the condition that K is a generalized elementary class (that is K =

µ(Th(K))) the condition (3)′ can be replaced by
(3)′′ if a model A from K is an elementary submodel of some model B from

C which is its n-elementary extension, then A ∈ C.
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Proof. (a) We prove �rstly that Ln
K satis�es the third condition. So let A

be an elementary submodel of any n-in�nitely generic model which is its n-
elementary extension. Suppose A ‖=n ¬ϕ, where ¬ϕ is de�ned in A, and let B
be an n-in�nitely generic model, which is an n-elementary extension ofA. Then,
A ≺ B |= ¬ϕ, hence A |= ¬ϕ. If A does not n-in�nitely force ¬ϕ, we can �nd
an n-in�nitely generic model which n-in�nitely forces ϕ and is an n-elementary
extension of A. It follows: A ≺ B |= ϕ, thus A |= ϕ, i.e. A 6|= ¬ϕ.

On the other hand, let D be a subclass of K satisfying the conditions of the
corollary. By the theorem, D ⊆ Ln

K. But the inverse inclusion holds as well. For
let A be n-in�nitely generic and let B from D be its elementary extension. we
just constructed a chain A ≺n B ≺n A1 ≺n B1 ≺n . . . ≺n Ak ≺n Bk ≺n . . .,
where Ai ∈ Ln

K, Bi ∈ D, i ≥ 1. Now, C =
⋃

k≥1 Ak =
⋃

k≥1 Bk is an
elementary extension of both A and B, thus A is an elementary submodel of
B, and by (3)′ A is in D (as for model B no restriction was made).

(b) By (a), we are to show that if a class D satis�es the conditions (1), (2)
and (3)" and the model A is an elementary submodel of some model B from
D, which is its n-elementary extension, then A is an elementary submodel of
any model from D whose an n-elementary submodel it is. So let A ≺n C ∈ D.
It is easy to see that there exists a model D (in K) into which B and C are
n-embeddable. Because of the n-model-consistency we can assume that D is
from D and because of the n-model completness of the class D both B and C
are elementary submodels of D. It follows that A is an elementary submodel of
C. 2

Corollary 2.10. (a) Let A be a model of the class K and ϕ some Σn- or
Πn-sentence de�ned in A. Then it holds (compare with 1.3 in [2]):

A |= ϕ i� A ‖=n ¬¬ϕ.

(b) If ϕ ≡ ∃ṽψ(ṽ) is a Σn+1-sentence de�ned in A ∈ K, then from A |= ϕ it
follows A ‖=n ¬¬ϕ; on the other hand, if A ‖=n ¬¬ϕ, then some n-extension
of A in K satis�es ϕ.

Proof. (a) Suppose A |= ϕ but that A does not n-in�nitely force ¬¬ϕ. Then for
some n-extension B of A in K, B ‖=n ¬ϕ. But, if C is an n-in�nitely generic
model, which is an n-extension of B, it follows C ‖=n ¬ϕ, while also C |= ϕ,
contradictory to 2.5. It is clear now that A ‖=n ¬¬ϕ implies A |= ϕ.

(b) Suppose A |= ψ(ã). By (a), A ‖ =n ¬¬ψ(ã), whence obviously also
A ‖=n ¬¬∃ṽψ(ṽ). If A ‖=n ¬¬ϕ, then any n-in�nitely generic n-extension of
A sati�es ϕ. By the note given after 2.2, the model A itself does not have to
satisfy the sentence ϕ. 2

Corollary 2.11. Let A be a model of the class K and let ϕ(v1, . . . , vk−1) and
ψ(v1, . . . , vk−1) be formulas of the language L such that ` ϕ(v1, . . . , vk−1) =⇒
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ψ(v1, . . . , vk−1). Then, for any element a1, . . . , ak−1 from A it holds: if A ‖=n

ϕ(a1, . . . , ak−1) then A ‖=n ¬¬ψ(a1, . . . , ak−1).

Proof. If we assume that A ‖=n ϕ(ã) but not A ‖=n ¬¬ψ(ã), we can �nd an
n-in�nitely generic model B which is an n-extension of A and which n-in�nitely
forces ϕ(ã) and ¬ψ(ã). But then B |= ϕ(ã) ∧ ¬ψ(ã), a contradiction. 2

Lemma 2.12. Let K be a generalized elementary class, A and B its members
and a1, . . . , ak−1, b1, . . . , bk−1 the elements of A and B, respectively. Then the
following conditions are equivalent:

(1) there is an n-elementary extension, C, ofA in K and the Σn+1-existential
type of b1, . . . , bk−1 in B (i.e. the set of Σn+1-formulas ϕ(v1, . . . , vk−1) for
which it holds B |= ϕ[b1, . . . , bk−1]) is contained in the Σn+1-existential type of
a1, . . . , ak−1 in C;

(2) there is a model D in K into which the models A and B are n-embeddable
so that the images of the elements ai and bi, i = 1, . . . , k − 1, coincide.

Proof. Suppose (1) is satis�ed. If ADiagn(B) is the set of sentences ob-
tained from Diagn(B) by replacing the constants b1, . . . , bk−1 by, respectively,
a1, . . . , ak−1, by a simple compactness argument it follows that Th(K)∪Diagn(A)
∪ADiagn(B) is consistent, and any model of this theory satis�es the second con-
dition. 2

De�nition 2.13. The modi�ed rank of the formula ϕ of the language L, in
notation m.r.(ϕ), is de�ned by:

m.r.(ϕ) =





1 if ϕ is either atomic or ¬ψ
m.r.(ψ) + m.r.(θ) if ϕ ≡ ψ ∧ θ
m.r.(ψ) + 1 if ϕ ≡ ∃vψ(v)

The existential degree of a formula ϕ of the language L, in notation e.d.(ϕ), is
de�ned by:

e.d.(ϕ) =





0 if ϕ is atomic or ¬ψ
e.d.(ψ) + e.d.(θ) if ϕ ≡ ψ ∧ θ
e.d.(ψ) + 1 if ϕ ≡ ∃vψ(v)

Corollary 2.14. Let A and B be models of the generalized elementary class
K and let the elements a1, . . . , ak−1 and b1, . . . , bk−1 of, respectively, A and B,
have the same Σn+1-existential type in A, that is B. If ϕ(v1, . . . , vk−1) is a
formula of the language L of modi�ed rank 1, then

A ‖=n ϕ(a1, . . . , ak−1) iff B ‖=n ϕ(b1, . . . , bk−1).

In particular, if θ is either Σn- or Πn-formula, then

A ‖=n ¬¬θ(a1, . . . , ak−1) iff B ‖=n ¬¬θ(b1, . . . , bk−1).
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Proof. Let Γ(v1, . . . , vk−1) be the Σn+1-existential type of the elements
a1, . . . , ak−1 and b1, . . . , bk−1 in, respectively, A and B. The second part of
the corollary is a direct consequence of 2.10 � A ‖ =n ¬¬θ(a1, . . . , ak−1) i�
θ(v1, . . . , vk−1) ∈ Γ(v1, . . . , vk−1) i� B ‖=n ¬¬θ(b1, . . . , bk−1).

As for the �rst part, let us suppose that for a formula ϕ ≡ ¬ψ, A ‖ =n

¬ψ(a1, . . . , ak−1), but that B does not n-in�nitely force ¬ψ(b1, . . . , bk−1). Then,
for some n-extension C of B in K, C ‖=n ψ(b1, . . . , bk−1), and, certainly, Σn+1-
existential type of b1, . . . , bk−1 in C contains Γ(v1, . . . , vk−1). By 2.12, A and C
are n-embeddable into some model D from K in such a way that the elements
ai and bi, i = 1, . . . , k− 1, have the same images � di. But then, D n-in�nitely
forces both ¬ψ(d1, . . . , dk−1) and ψ(d1, . . . , dk−1), a contradiction. 2

Lemma 2.15. Let K be a generalized elementary class and ϕ(v1, . . . , vk−1) a
formula of the language L of modi�ed rank 1. Then there is a set Rϕ of Σn+1-
existential types such that for any model A from K and any element a1, . . . , ak−1

from A it holds: A ‖ =n ϕ(a1, . . . , ak−1) i� the Σn+1-existental type of the
elements a1, . . . , ak−1 in A is contained in Rϕ.

Proof. Just put: Rϕ = {Φ(v1, . . . , vk−1) | there exists a model B in K and
its elements b1, . . . , bk−1 such that B n-in�nitely forces ϕ(b1, . . . , bk−1) and
Φ(v1, . . . , vk−1) is the Σn+1-existential type of b1, . . . , bk−1 in B}. 2

Theorem 2.16. (Robinson's reduction theorem). Let K be a generalized el-
ementary class and ϕ(v1, . . . , vk−1) a formula of the language L of existential
degree m. Then there is a set Rϕ of Σn+1-existential types Φ(v1, . . . , vk−1,
vk, . . . , vk−1+m) such that for any model A from K and its elements a1, . . . , ak−1

it holds:
A ‖=n ϕ(a1, . . . , ak−1) i�, for some elements b1, . . . , bm from A, the Σn+1-

existential type of elements a1, . . . , ak−1, b1, . . . , bm in A is in Rϕ.

Proof. By induction on the modi�ed rank of the formula ϕ. The case m.r.(ϕ) = 1
has been already considered (previous lemma).

Let m.r.(ϕ) = r > 1 and ϕ(v1, . . . , vk−1) ≡ ψ(v1, . . . , vk−1)∧θ(v1, . . . , vk−1),
and let s and t be existential degrees of ψ and θ respectively. By the inductive as-
sumption, there are sets of Σn+1-existential typesRψ = {Ψα(v1, . . . , vk−1, vk, . . .,
vk−1+s) | α < κ} and Rθ = {Θβ(v1, . . . , vk−1, vk, . . . , vk−1+t) | β < λ},
which satisfy the conditions of the theorem for formulas ψ and θ. Then Rϕ =
{Ψα(v1, . . . , vk−1, vk, . . . , vk−1+s) ∪ Θβ(v1, . . . , vk−1, vk+s, . . . , vk+s+t−1) | α <
κ, β < λ} is the "wanted" type for ϕ.

If ϕ ≡ ∃vkψ(v1, . . . , vk−1, vk), r = e.d.(ψ) and Rψ = {Ψα(v1, . . . , vk−1,
vk, vk+1, . . . , vk+r) | α < κ} the corresponding type for ψ, then we simply take:
Rϕ = Rψ. The checking that this type satis�es the condition of the theorem
for ϕ is routine, as in the previous case, and hence it is omitted. 2
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Corollary 2.17. (a) Let K be a generalized elementary class, A an n-in�nitely
generic model and ϕ(v1, . . . , vk−1) a formula of the language L. Then, for
the elements a1, . . . , ak−1 from A, A n-in�nitely forces ϕ(a1, . . . , ak−1) i� the
Σn+1-existential type of a1, . . . , ak−1 in A is in R¬¬ϕ (where R¬¬ϕ is the type
coresponding to the formula ¬¬ϕ from the previous theorem).

(b) Let K be a generalized elementary class, A an n-in�nitely generic model
and a1, . . . , ak−1 some elements from A. Then the complete type of a1, . . . , ak−1

in A is uniquely determined by the Σn+1-existential type of these elements in
A.

3. Some relevant classes of models
n-existentially complete models have already been introduced (in our previ-

ous papers). The de�nition of n-existentially universal model follows, of course,
the de�nition of an existentially universal model � now existential types are re-
placed by Σn+1-existential types. Finally, we say that a model A is n-pregeneric
in a class K i� whenever A is n-elementary sumodel of n-in�nitely generic mod-
els B and C and ϕ is a sentence of the language L(A), then B |= ϕ i� C |= ϕ.
Let us denote by En

K, An
K and Pn

K, respectively the classes of all n-existentally
complete, n-existentially universal and n-pregeneric models of the class K. All
these clases are (as well as Ln

K � 2.4, 2.7) n-inductive and n-model-consistent
with K; we recall that K is n-inductive. On the analogy of the "standard case"
we have

Lemma 3.1. (a) Ln
K ⊆ Pn

K ∩ En
K;

En
K ⊇ An

K ⊇ An
K ∩ Ln

K 6= ∅.
(b) On the additional condition that K is a generalized elementary class it

holds:
Pn
K ⊇ En

K ⊇ Ln
K ⊇ An

K
and

Ln
K is the class of elementary substructures of the members of the class An

K.

Proof. (b) Let A be an n-existentially complete model which is n-elementary
submodel of n-in�nitely generic modelsB andC. Since the class K is generalized
elementary there is a model D in it such that B ≺n D and C ≺ D. Now for a
sentence ϕ of the language L(A) the assumption that, for instance, B |= ϕ and
C |= ¬ϕ would imply D ‖=n ϕ ∧ ¬ϕ, a contradiction.

In proving Ln
K ⊇ An

K we use 2.9 (b) and the facts that both classes are
n-inductive and that, for A,B ∈ An

K, from A ≺n B follows A ≺ B. 2

If L is a language with equality and K has �nite models, then all these
models are n-in�nitely generic (in K) for any n ≥ 1 (obviously, if A is a �nite
model and A ≺1 B, then A = B. This fact can be used in showing that in
some cases the class Ln

K is not generalized elementary. We o�er one example.
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Lemma 3.2. Let G be the class of groups (de�ned in the standard language
{·,−1, e}). The class L1

G is not generalized elementary.

Proof. If P is the set of all prime numbers, Cp, p ∈ P , the cyclic group of order
p and F a nonprincipal ultra�lter over P , then the ultraproduct

∏
p∈P Cp/F

is not 1-existentially complete in G; for the given group is isomorphic to the
additive group of reals � Re and while we have Re ≺1 Re×Z (where Z is the
additive group of the integers), it does not hold Re ≺2 Re × Z (for instance
the sentence ∃x∀y(x 6= y + y) does not hold in Re). 2
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