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SPLINE DIFFERENCE SCHEME AND MINIMUM
PRINCIPLE FOR A REACTION-DIFFUSION

PROBLEM1

Katarina Surla2, Ljiljana Teofanov3, Zorica Uzelac3

Abstract. The linear singularly perturbed reaction-diffusion problem
is considered. The spline difference scheme on the Shishkin mesh is used
to solve the problem numerically. With the special position of collocation
points, the obtained scheme satisfies the discrete minimum principle. Nu-
merical experiments which confirm theoretical results are presented.
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1. Introduction

We consider the singularly perturbed reaction-diffusion boundary value prob-
lem

(1)
Ly := ε2y′′(x)− b(x)y(x) = f(x), x ∈ (0, 1),

y(0) = γ0, y(1) = γ1,

where 0 < ε ¿ 1. The functions b and f are assumed to be sufficiently smooth
and b(x) ≥ β2 > 0, x ∈ [0, 1] = I. Under these assumptions the problem
(1) has a unique solution which exhibits two exponential boundary layers of
width O (ε ln 1/ε) at two subintervals of the domain. Boundary layers are the
regions, where the solution and its derivatives change rapidly. Most of the tra-
ditional numerical methods fail to catch the rapid change of the solution, and
its failure in turn pollutes the numerical approximation on the whole domain.
Therefore special measures are required to obtain good numerical approxima-
tions. Properly layer-adapted meshes have been used often to overcome these
difficulties and to yield methods that converge uniformly no matter how small
is the perturbation parameter, see [1, 2] for surveys. We use a piecewise uni-
form Shishkin mesh which can be chosen a priori when one has some knowledge
of the structure of these layers. For the construction of the mesh, we use the
solution decompositions from [6] and related estimates for the components and
their derivatives.
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Lemma 1.1. [6] Let b, f ∈ C2(I). Then the problem (1) has unique solution
y(x) ∈ C4(I) and this can be decomposed as

y(x) = v(x) + w(x) + g(x)

where for i = 0, 1, 2, 3, 4

|v(i)(x)| ≤ C, |w(i)(x)| ≤ Cε−ie−xβ/ε, |g(i)(x)| ≤ Cε−ie−(1−x)β/ε

and C is constant independent of ε.

Throughout the paper C denotes any positive constant that may take dif-
ferent values in different formulas, but always independent of ε and the number
of mesh nodes.

Problem of this type is numerically treated by spline collocation method in
[3, 4], for example. In [3] a semilinear reaction-diffusion problem is considered.
The spline collocation method on slightly modified Shishkin mesh is applied.
The uniform convergency of order O(N−2 ln2 N) is achieved.

In [5] the spline difference scheme for the singularly perturbed problem with
two small parameters is derived. The collocation points are moved from the stan-
dard position in order to obtain inverse monotone matrix for the discrete ana-
logue. This fact enabled application of barrier function method in the proof of
the uniform convergency of order O(N−2 ln2 N) in the layer points and O(N−2)
elsewhere. We emphasize that the problem of the form (1) is not involved in
[5].

Here we used technique form [5] for the problem (1) and obtain the more
precisely error estimate then one obtained in [3] on the standard Shishkin mesh.
That is the consequence of special choice of collocation points.

2. The mesh construction and the derivation of the spline
difference scheme

We approximate the solution y of the problem (1) with the quadratic spline
u(x), x ∈ I on a piecewise uniform Shishkin mesh 4N defined by

4N : x0 = 0, x1, x2, . . . , xN = 1,

where

(2) xi =





4σi
N , 0 ≤ i ≤ N

4 ,

σ + 2
N (i− N

4 )(1− 2σ), N
4 ≤ i ≤ 3N

4 ,

1− σ + (i− 3N
4 ) 4σ

N , 3N
4 ≤ i ≤ N.

We choose

σ = min
{

1
4
,
2ε

β
ln N

}
.
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The mesh step size is defined by

hi = xi − xi−1, for i = 1, ..., N.

The mesh is equidistant on the sets

Ω0 := [0, σ] ∪ [1− σ, 1], Ωv := [σ, 1− σ].

We suppose that σ = 2ε
β ln N since in the opposite case we can use the standard

uniform mesh. Shishkin mesh 4N is fine on Ω0 and coarse on Ωv with mesh
step sizes

h = 8β−1εN−1 ln N and H = 2(1− 2σ)N−1,

respectively. We also introduce notation i0 = N/4.
We choose collocation points in a nonstandard way:

(3)
ξi = α1ixi−1 + (1− α1i)xi, on [xi−1, xi], i = 1, ..., N − 1,
ηi = α2ixi + (1− α2i)xi+1, on [xi, xi+1] i = 1, ..., N − 1,

where 0 < α1i, α2i < 1.
As an approximation function we use the quadratic spline

(4) u(x) = ui + (x− xi)u′i + 1
2 (x− xi)2u′′i , x ∈ [xi, xi+1],

(5) u(x) ∈ C1[0, 1]

Thus, we define the collocation equations as follows:

(6) ε2u′′(ξi)− b(ξi)u(ξi) = f(ξi), ξi ∈ [xi−1, xi],

(7) ε2u′′(ηi)− b(ηi)u(ηi) = f(ηi), ηi ∈ [xi, xi+1],

where u′′(ξi) = u′′i−1, u′′(ηi) = u′′i , ξi and ηi are defined by (3) and (4).
From (3), (4), (5) and (7) we obtain

(8) u′i =
(ui+1 − ui)Qi + h2

i+1uib
+
i + f+

i h2
i+1

hi+1Pi
,

u′i+1 =
2(ui+1 − ui)

hi+1
− (ui+1 − ui)Qi + h2

i+1uib
+
i + f+

i h2
i+1

hi+1Pi
,

where b+
i = b(ηi), f+

i = f(ηi) and

Qi = −2ε2 + b+
i (1− α2i)2h2

i+1,

Pi = −2ε2 − b+
i α2i(1− α2i)h2

i+1.

On the interval [xi−1, xi] using (3), (4), (5) and (6) we obtain

(9) u′i =
2(ui − ui−1)

hi
− (ui − ui−1)Ωi + h2

i ui−1b
−
i + f−i h2

i

hiDi
,
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where b−i = b(ξi), f−i = f(ξi) and

Ωi = −2ε2 + b−i (1− α1i)2h2
i .

Di = −2ε2 − b−i α1i(1− α1i)h2
i ,

From (8) and (9) we obtain the difference scheme
(10)

LNui := r−i ui−1 + rc
i ui + r+

i ui+1 = q−i f−i + q+
i f+

i , i = 1, . . . , N − 1,

u0 = γ0, uN = γ1,

where

r−i =
Si

2Di
, r+

i =
Qihi

2hi+1Pi
, rc

i = −1 +
hihi+1b

+
i

2Pi
− Qihi

2hi+1Pi
+

Ωi

2Di
,

q−i = − h2
i

2Di
, q+

i = −hihi+1

2Pi
, and Si = −2ε2 + b−i h2

i α
2
1i.

The coefficients of the scheme depend on xi−1, xi and xi+1. For a fixed i
we have two intervals [xi−1, xi] and [xi, xi+1] which are involved in the
construction of the scheme. Further on, when it is clear from the context, we
will drop the index i from α1i, α2i, a

−
i , a+

i and so on.
The parameters α1 and α2 provide two degrees of freedom which we use to

ensure that the corresponding matrix of the system (10) is an M− matrix, i. e.:

r−i ≥ 0, r+
i ≥ 0, rc

i < 0.

Since Di < 0, the first condition r− ≥ 0 is fulfilled if α1 is determined in
such a way that the following condition is satisfied:

Si ≤ 0.

Since Pi < 0, the second condition r+
i ≥ 0 is fulfilled if α2 is determined in

such a way that the following condition is satisfied:

Qi ≤ 0.

If α1 and α2 are determined to provide conditions r−i ≥ 0 and r+
i ≥ 0 then

q−i > 0, q+
i > 0 and

rc
i = −r−i − r+

i − b−i q−i − b+
i q+

i < 0,

so the corresponding matrix has L−form and strictly diagonal dominant matrix.
Thus we have the following theorem holds.

Theorem 2.1. (Discrete Minimum Principle) Let α1 and α2 be determined so
that Si ≤ 0 and Qi ≤ 0. If W is any mesh function with properties LNW ≤ 0,
W0 ≥ 0, WN ≥ 0 then W ≥ 0.

Remark 1. We put α1 = α2 = 1/2 whenever the mesh steps provide
r− ≥ 0 and r+ ≥ 0 which is the case in boundary layer regions.
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3. Convergence results

The discrete minimum principle allow us to apply the barrier function tech-
nique for the error estimation. To that aim we first determine α1i and α2i.

Lemma 3.1. Let the parameters α1 and α2 be determined as follows

α1i = α2i =
1
2
, 0 ≤ i ≤ i0 − 1, N − i0 + 1 ≤ i ≤ N,

(1− α2i0)
2 =

2ε2

b+
i0

H2
, α1i0 =

1
2
,

α2j =
1
2
, α2

1j =
2ε2

b−j H2
, for j = N − i0

for i0 + 1 ≤ i ≤ N − i0 + 1 we put α2i = 1− α1i while α1i

is determened so that Si ≤ 0 and Qi ≤ 0.

Then discrete analogue (10) satisfies discrete minimum principle.

Now we analyze LNC and truncation error. Thus,

LNC = C(r−i + rc
i + r+

i ) = −C(b−i q−i + b+
i q+

i )

and according to Lemma 3.1 we have

(11) LNC ≥





CN−2 ln2 N, 0 ≤ i ≤ i0 − 1, N − i0 + 1 ≤ i ≤ N,

CN−1 ln N, i = i0, i = N − i0,

C, i0 < i < N − i0.

The truncation error τi(y) = LN (yi − ui) will be estimated separately for
the functions v, w and g. Let

ui = Vi + Wi + Gi

where Vi,Wi and Gi are approximation for vi, wi and gi respectively. Using the
Taylor expansion up to the third derivative, we obtain

(12) τi(y) =
6∑

j=1

πj(y),

where

π1(y) =
r+
i

3!
h3

i+1y
′′′

(s1), π2(y) = −r−i
3!

h3
i y
′′′

(s̄1),

π3(y) = ε2q−i α1hiy
′′′

(s̄2), π4(y) = −ε2q+
i (1− α2)hi+1y

′′′
(s2),

π5(y) = −b−i q−i
3!

α3
1h

3
i y
′′′

(s̄3), π6(y) =
b+
i q+

i

3!
(1− α2)3h3

i+1y
′′′

(s3),

xi ≤ sj ≤ xi+1, xi−1 ≤ s̄j ≤ xi, j = 1, 2, 3.
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Since
|r−i | ≤ C, |r+

i | ≤ C,

for ε ≤ CN−1 from (12) we obtain

(13) τi(v) =
{

Cε3N−3 ln3 N, 0 ≤ i ≤ i0, N − i0 ≤ i ≤ N
CN−3, i0 + 1 ≤ i ≤ N − i0 − 1.

Thus we can use barrier function of the form CN−2 for sufficiently large C.
From (11) and (13) we obtain

(14) |vi − Vi| ≤ CN−2, i = 0, . . . , N.

For the error estimation of the functions w and g, we use Taylor expansion
up to the fourth derivative. Then we have

(15) τi(y) = T3i(y) +
6∑

j=1

π̄j(y)

where

T3i(y) =
(

α1hiq
−
i ε2 − (1− α2)hi+1q

+
i ε2 − 1

6
q−i b−i h3

i α
3
1

+
1
6
q+
i b+

i h3
i+1(1− α2)3 +

1
6
r+
i h3

i+1 −
1
6
r−i h3

i

)
y
′′′
i

π̄1(y) =
1
4!

r+
i h4

i+1y
IV (ν1), π̄2(y) =

1
4!

r−i h4
i y

IV (t1),

π̄3(y) = −1
2
q−ε2α2

1h
2
i y

IV (t2), π̄4(y) = −1
2
q+
i ε2(1− α2)2h2

i+1y
IV (ν2),

π̄5(y) =
1
4!

q−i b−i α4
1h

4
i y

IV (t3), π̄6(y) =
1
4!

q+
i b+

i (1− α2)4h4
i+1y

IV (ν3).

where xi ≤ νj ≤ xi+1 and xi−1 ≤ tj ≤ xi for j = 1, 2, 3.
Now we use (15) and analyze τi(v) and τi(g). It is easy to verify that

(16) |τi(w)| ≤ CN−4 ln4 N, 0 ≤ i ≤ i0 − 1.

Also we have

(17) |τi(g)| ≤ CN−4 ln4 N, N − i0 + 1 ≤ i ≤ N.

For i = i0 we analyze the following parts of T3i(w):

a = −(1− α2)hi+1q
+
i ε2w

′′′
i

b = (q+
i b+

i (1− α2)3h3
i+1/3!)w

′′′
i

d = (r+
i h3

i+1/3!)w
′′′
i .



Spline difference scheme and minimum principle ... 255

Since (1− α2i0)
2 =

2ε2

b+
i0

H2
, we obtain that Qi = 0, |Pi| ≥ Cεhi+1 and d = 0.

Since (1− α2) ≤ CεN−1 and e−
xi0

β

ε = N−2 we have

|a|, |b| ≤ CN−3 ln N.

The other terms in T3i(w) are easy for estimation and finally we obtain

|T3i(w)| ≤ CN−3 ln N, i = i0.

Similarly, we obtain

6∑

j=1

|π̄j(w)| ≤ CN−3 ln N, i = i0.

At the point xN−i0 we use analogous arguments. Thus, we have

(18) |τi(w)| ≤ CN−3 ln N, i = i0 and

(19) |τi(g)| ≤ CN−3 ln N, i = N − i0.

For i0 + 1 ≤ i ≤ N − i0 − 1 we have coarse mesh. Since α1i = 1− α2i and

|w′′′
i | ≤ C

1
ε3

e−xi0+1β/ε = Ce−xi0β/ε e−Hβ/ε

ε3
≤ CN−2H−3 ≤ CN,

|wIV
i | ≤ CN2,

we obtain

(20) |τi(w)| ≤ CN−2, i0 + 1 ≤ i ≤ N − i0.

For the function g we use similar arguments and conclude

(21) |τi(g)| ≤ CN−2, i0 ≤ i ≤ N − i0 − 1.

Now we use the barrier function ψi to estimate the error due to w:

ψi =
{

CN−2 ln2 N, 0 ≤ i ≤ i0 − 1
CN−2, i0 ≤ i ≤ N.

From (11), (16), (18) and (20) we obtain

LN (ψi ± (wi −Wi)) ≥ 0

and consequently

(22) |wi −Wi| =
{

CN−2 ln2 N, 0 ≤ i ≤ i0 − 1
CN−2, i0 ≤ i ≤ N.
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According to (11), (17), (19) and (21), the similar estimate is valid for the
function g:

(23) |gi −Gi| =
{

CN−2 ln2 N, N − i0 + 1 ≤ i ≤ N
CN−2, i0 ≤ i ≤ N − i0.

From (14), (22) and (23), we obtain the following theorem.

Theorem 3.1. Let b, f ∈ C2(I). Let y be the exact solution of (1) and u
its approximation obtained by (10) on the Shishkin mesh defined by (2). If
collocation points are given by Lemma 3.1 and ε ≤ CN−1, then

|y(xi)− ui| ≤
{

CN−2 ln2 N, 0 ≤ i ≤ i0 − 1, N − i0 + 1 ≤ i ≤ N
CN−2, i0 ≤ i ≤ N − i0.

4. Numerical results

We test the following problem

ε2y′′ − y = cos2(πx) + 2ε2π2 cos(2πx),

y(0) = y(1) = 0.

Its exact solution is

y(x) =
e−

x
ε + e

x−1
ε

1 + e−
1
ε

− cos2(πx).

Let uN = (u0, . . . , uN )T be the numerical solution. For each N = 2−k,
k = 5, 6, . . . , 10 and ε2 = 2−l, l = 10, 11, . . . , 20 we shall report

EN = max
0≤j≤N

|y(xj)− uj |.

Assuming convergence of order CN−p, for some p, for fixed ε we compute
EN for two consecutive values of k. Because of

EN

E2N
≈ (N−k)p

(N−2k)p
= 2−p,

we estimate the convergence order p for each fixed ε from

PN =
ln EN − ln E2N

ln 2
, for N = 2k and k = 4, 5, . . . 10.

In Table 1 we present EN and PN in the case of ε2 = 2−10, 2−11, . . . , 2−20 and
in Table 2 are given values of α1. The positions of the points α1i are determined
so that Si ≤ 0 and Qi ≤ 0 without the strong criterium for transition points.
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ε2/N 32 64 128 256 512 1024
2−10 6.224e-3 1.970e-3 4.815e-4 1.197e-4 2.988e-5 7.467e-6

1.660 2.032 2.008 2.002 2.000
2−11 6.235e-3 2.136e-3 7.092e-4 2.306e-4 5.987e-5 1.496e-5

1.545 1.591 1.620 1.946 2.001
2−12 6.238e-3 2.137e-3 7.095e-4 2.308e-4 7.287e-4 2.247e-5

1.545 1.591 1.620 1.663 1.697
2−13 6.239e-3 2.138e-3 7.096e-4 2.308e-4 7.287e-4 2.247e-5

1.545 1.591 1.620 1.663 1.697
2−14 6.239e-3 2.138e-3 7.096e-4 2.308e-4 7.288e-4 2.247e-5

1.545 1.591 1.620 1.663 1.697
. . . . . . . . . . . . . . . . . . . . .
2−20 6.239e-3 2.138e-3 7.096e-4 2.308e-4 7.288e-4 2.247e-5

1.545 1.591 1.620 1.663 1.697

Table 1: EN and PN for our test problem

ε2/N 32 64 128 256 512 1024
2−10 0.5 0.5 0.5 0.5 0.5 0.5
2−11 0.5 0.5 0.5 0.5 0.5 0.5
2−12 0.25 0.5 0.5 0.5 0.5 0.5
2−13 0.25 0.5 0.5 0.5 0.5 0.5
2−14 0.125 0.25 0.5 0.5 0.5 0.5
2−15 0.125 0.25 0.5 0.5 0.5 0.5
2−16 0.625 0.125 0.25 0.5 0.5 0.5
2−17 0.625 0.125 0.25 0.5 0.5 0.5
2−18 0.3125 0.625 0.125 0.25 0.5 0.5
2−19 0.3125 0.625 0.125 0.25 0.5 0.5
2−20 0.15625 0.3125 0.625 0.25 0.25 0.5

Table 2: α1 for our test problem
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[6] Vulanović, R., On numerical solution of a type of singularly perturbed boundary
value problem my using special discretization mesh. Univ. Novom Sadu, Zb. Rad.
Prirod. Mat. Fak. Ser. Mat. 13 (1983), 187-201

Received by the editors November 29, 2007


	Introduction
	The mesh construction and the derivation of the spline difference scheme
	Convergence results
	Numerical results

