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QUASIASYMPTOTIC IN D′
Lq(Rn)1

Dušan Rakić2

Abstract. The multiresolution expansion {Ejf}j∈N, f ∈ D′Lq (Rn),
1 ≤ q ≤ ∞, is defined via a scaling function which order of regularity is
equal to the order of f. Abelian and Tauberian type theorems for the qua-
siasymptotic behavior at infinity of distributions from D′Lq (Rn) related to
the quasiasymptotic behavior at infinity of its projections Ejf, j ∈ N, are
given.
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1. Introduction

In general, a distribution does not have a value at a point ([5]) and at infinity
([10, 16]). This fact is the motivation for the generalized asymptotic analysis
of a distribution at a point and at infinity, see [3, 10, 16]. We refer to [3, 10,
12, 14, 15, 16] for the use of asymptotic analysis of distribution in the analysis
of integral transforms, PDE and mathematical physics, in problems where the
use of classical asymptotics does not give enough informations. Especially the
quasiasymptotic behavior of tempered distributions is studied in [10, 11, 12,
16, 18]. Note that some functions have quasiasymptotic behavior different from
their classical asymptotic behavior or classical behavior does not exist at all. So
it turned out that the quasiasymptotic behavior is appropriate for the Abelian
and Tauberian type theorems for integral transforms such as Fourier, Laplace,
Stieltjes and Mellin transform.

Spaces D′
Lq (Rn), 1 ≤ q ≤ ∞ are introduced in [15]. We refer to [1, 7, 8,

17] for these spaces and their application, for example, in solving of special
nonhomogeneous convolution equations.

Notions of multiresolution analysis (MRA) and of multiresolution expansion
({Ejf}j∈Z, f ∈ L2(Rn)) come from a wavelet theory, see [2, 6, 20]. The con-
vergence of wavelet and multiresolution expansions in different type of spaces is
studied in many papers, see for example [4, 6, 12, 19, 20]. The MRA in spaces
Hm,p(Rn), m ∈ N0, 1 ≤ p < ∞ and spaces of distributions D′

Lq (Rn), 1
p + 1

q = 1

is studied in [13] (for p = ∞ it is observed in Ḣm,∞(Rn) and D′
L1(Rn)).
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In this paper we consider the quasiasymptotics at∞ in D′
Lq (Rn), 1 ≤ q ≤ ∞.

More preciously, we study relation between quasiasymptotic behavior at ∞ of
f ∈ D′

Lq (Rn), 1 ≤ q ≤ ∞ and its projections Ejf, j ∈ Z.

In Section 2 are given notions and notation. Also, Section 2 contains state-
ments related to multiresolution expansion in D′

Lq (Rn), 1 ≤ q ≤ ∞ which are
used in Section 3 for the characterization of quasiasymptotic behavior at∞ of an
f ∈ D′

Lq (Rn) throughout the quasiasymptotic behavior at ∞ of its projections
Ejf, j ∈ N (Theorem 6), and conversly for the characterization of quasiasymp-
totic behavior at∞ of projections Ejf via the quasiasymptotic behavior at∞ of
f ∈ D′

Lq (Rn) (Theorem 5). In Theorems 7 and 8 is studied relations between the
quasiasymptotic boundness of elements f ∈ D′

L1(Rn) and the quasiasymptotic
boundness of their projections Ejf, j ∈ N.

2. Notions and notation

As usual by Rn and Nn
0 , n ∈ N, we denote the set of n−typles of real

numbers and nonnegative integers, Zn = Nn
0 ∪ −Nn. Let α = (α1, . . . , αn) ∈

Nn
0 , x = (x1, . . . , xn) ∈ Rn. Then |α| = α1 + · · · + αn, xα = xα1

1 · · ·xαn
n and

f (α)(x) = ∂αf(x) = ∂α1

∂x1
· · · ∂αn

∂xn
f(x). The space of compactly supported infi-

nitely differentiable functions in Rn is denoted by C∞0 (Rn) and the space of r−
times differentiable functions in Rn is denoted by Cr(Rn). By Hm,p(Rn),m ∈
N0, 1 ≤ p ≤ ∞ are denoted Sobolev spaces. In particular Ḣm,∞(Rn),m ∈ N0,
are subspaces of Hm,∞(Rn) consisting of those functions φ ∈ Cm(Rn) such that
|φ(α)(x)| → 0 as |x| → ∞, 0 ≤ |α| ≤ m.

The dual pairing between elements of a test function space X and elements of
its dual X

′
is denoted by X′〈·, ·〉X = 〈·, ·〉. As usual, D′

(Rn) and S ′(Rn) denote
duals of C∞0 (Rn) = D(Rn) and S(Rn), respectively. DLp(Rn), 1 ≤ p ≤ ∞ is the
space of φ ∈ C∞(Rn) such that φ(α) ∈ Lp(Rn), α ∈ Nn

0 . In particular ḊL∞(Rn)
is the subspace of DL∞(Rn) whose elements with all derivatives converge to
zero as |x| → ∞. The strong dual of DLp(Rn), 1 ≤ p < ∞, is the space of
distributions D′

Lq (Rn), q = p
p−1 (if p = 1 then q = ∞). In particular, ḊL∞(Rn)

is a test space for D′
L1(Rn). The spaces D′

Lq (Rn), 1 ≤ q ≤ ∞, are subspaces of
the space of tempered distributions.

Let p ∈ [1,∞). Since DLp(Rn) = ∩∞m=0H
m,p(Rn), it follows that D′

Lq (Rn) =
∪∞m=0(H

m,p(Rn))′, 1 < q ≤ ∞. So, for every f ∈ D′
Lq (Rn), 1 < q ≤ ∞, there is

minimal m0 ∈ N such that f ∈ (Hm0,p(Rn))′. We call m0 the order of f.

If p = ∞ then ḊL∞(Rn) = ∩∞m=0Ḣ
m,∞(Rn), hence for every f ∈ D′

L1(Rn)
there is minimal m0 ∈ N (order of f) such that f ∈ (Ḣm0,∞(Rn))

′
.

An MRA of L2(Rn) consists of a sequence of closed subspaces {Vj}j∈Z of
L2(Rn) satisfying

(i) Vj ⊂ Vj+1, for all j ∈ Z;
(ii) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1, for all j ∈ Z;
(iii)

⋂
j∈Z Vj = {0};

(iv)
⋃

j∈Z Vj = L2(Rn);
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(v) There exists φ ∈ V0 such that {φ(x− k)}k∈Zn is an orthonormal basis
for V0. Then φ is called a scaling function.

An MRA is r− regular, r ∈ N0, if and only if for every m ∈ N there exists
Cm > 0 such that

|φ(α)(x)| ≤ Cm

(1 + |x|)m
, 0 ≤ |α| ≤ r, x ∈ Rn.

We assume in the sequel that MRA is r− regular, r ∈ N. Let φ be a
scaling function for some MRA. Then the function E(x, y) =

∑
k∈Zn φ(x −

k)φ(y − k) x, y ∈ Rn, is the reproducing kernel of V0, i.e. Ejf = f for f ∈ V0.
The orthogonal projection Ejf of f ∈ L2(Rn) onto Vj , j ∈ Z, is given by

(Ejf)(x) = 〈Ej(x, y), f(y)〉 =
∫

Rn

Ej(x, y)f(y) dy, x ∈ Rn,

where Ej(x, y) = 2njE(2jx, 2jy), x, y ∈ Rn, j ∈ Z denotes the kernel of the
projection operator Ej . Functions Ej(x, y), x, y ∈ Rn are the reproducing kernels
for the spaces Vj , j ∈ Z.

The sequence of projections {Ejf}j∈Z is called the multiresolution expansion
of f. In a similar way it is defined a multiresolution expansion of elements of
Sobolev spaces.

Also, we can define multiresolution expansion in spaces of distributions
D′

Lq (Rn), 1 ≤ q ≤ ∞. Let h ∈ D′
Lq (Rn), 1 < q ≤ ∞, and h has order m0

(h ∈ (Hm0,p(Rn))
′
). Let Ej(x, y), x, y ∈ Rn, j ∈ Z be the reproducing kernel for

the corresponding m0− regular MRA. The multiresolution expansion {Ejh}j∈Z
of h is given through duality between (Hm0,p(Rn))

′
and Hm0,p(Rn) as follows:

〈Ejh, f〉 = 〈h,Ejf〉, f ∈ Hm0,p(Rn).

In particular, if h ∈ D′
L1(Rn) and h has order m0 (h ∈ (Ḣm0,∞(Rn))

′
) then

〈Ejh, f〉 = 〈h,Ejf〉, f ∈ Ḣm0,∞(Rn).

In the following theorems are given statements about convergence of mul-
tiresolution expansion in Sobolev spaces and spaces D′

Lq (Rn), 1 ≤ q ≤ ∞.

Theorem 1. [13] (i) Let f ∈ Hm,p(Rn), 0 ≤ m ≤ r, 1 ≤ p < ∞. Then the
sequence {Ejf}j∈N converges to f in Hm,p(Rn).

(ii) Let f ∈ Ḣm,∞(Rn), 0 ≤ m ≤ r. Then the sequence {Ejf}j∈N converges
to f in Ḣm,∞(Rn).

Theorem 2. [13] Let h ∈ D′
Lq (Rn), 1 ≤ q ≤ ∞. Then, there exists r ∈ N,

such that every r− regular MRA give a multiresolution expansion of h which
converges to h in D′

Lq (Rn).
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Theorem 3. [13] (i) Let f ∈ Hm,p(Rn), 0 ≤ m ≤ r, 1 ≤ p < ∞. Then, as
k →∞,

〈knEj(k·, ky), f(y)〉 → f(·) in Hm,p(Rn) uniformly for j ∈ N.

(ii) Let f ∈ Ḣm,∞(Rn), 0 ≤ m ≤ r. Then, as k →∞,

〈knEj(k·, ky), f(y)〉 → f(·) in Ḣm,∞(Rn) uniformly for j ∈ N.

3. Quasiasymptotic in D′
Lq(Rn)

Recall, a measurable function ρ : (a,∞) → R+, a > 0 is regularly varying at
infinity if there exists α ∈ R, such that limk→∞

ρ(λk)
ρ(k) = λα, for all λ > 0.

Let f ∈ D′
(Rn) and let ρ : (a,∞) → (0,∞), a > 0, be a regularly varying

function. We say that f has the quasiasymptotics at ∞ (in D′
(Rn)) related to

ρ, if there exists g ∈ D′
(Rn), g 6= 0, such that f(k·)

ρ(k) → g in D′
(Rn), as k → ∞.

It is well known that the limit g is a homogeneous distribution with degree ν,
i.e. g(ax) = aνg(x), a > 0. Also, every distribution which has quasiasymptotic
at ∞ is a tempered distribution ([10]), so, in dealing with quasiasymptotic at
∞ the space D′

(Rn) can be replaced by S ′(Rn).
Since, the weak and strong convergence are not equivalent in D′

Lq (Rn), 1 ≤
q ≤ ∞, we will use only the strong convergence.

Definition 1. A distribution f ∈ D′
Lq (Rn), 1 < q ≤ ∞ has quasiasymptotic

at ∞ in D′
Lq (Rn) related to a continuous function c : (a,∞) → (0, ∞), a > 0,

if there exists m0 ∈ N and a distribution g ∈ (Hm0,p)
′
(Rn), g 6= 0, such that for

every bounded set B ⊂ Hm0,p(Rn) it holds

lim
k→∞

sup
φ∈B

(〈f(kx)
c(k)

, φ(x)
〉
− 〈g(x), φ(x)〉

)
= 0.

If q = 1, then instead of Hm0,∞(Rn) one has to observe Ḣm0,∞(Rn).

Since, it is known that g is a homogeneous distribution, we give the structural
theorem for homogeneous distributions in D′

Lq (Rn).

Theorem 4. [9] Let fα, α ∈ R, α 6= −n,−n − 1, . . . be a homogeneous
distribution on Rn of degree α, fα 6= 0. Then

(i) fα ∈ D′
Lq (Rn) if and only if α ∈ (−∞, −n

q ), 1 ≤ q < ∞.

(ii) fα ∈ D′
L∞(Rn) if and only if α ∈ (−∞, 0].

Remark. Let fα be a homogeneous distribution of degree α = −n−m, m ∈
N0. Then fα ∈ D′

Lq (Rn), 1 < q ≤ ∞. In particular, a homogeneous distribution
gα of degree α = −n−m, m ∈ N belongs to D′

L1(Rn).
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We say that a distribution f ∈ D′
L1(Rn) is quasiasymptotically bounded in

D′
L1(Rn) related to a continuous function c : (a,∞) → (0, ∞), a > 0, if for

every bounded set B ⊂ Ḣm0,∞(Rn) there exists a constant CB , such that

∣∣∣
〈f(kx)

c(k)
, φ(x)

〉∣∣∣ ≤ CB , k ∈ N, φ ∈ B.

Theorem 5. Let f ∈ D′
Lq (Rn), 1 ≤ q ≤ ∞ has the quasiasymptotics at ∞ (in

D′
Lq (Rn)) related to a regularly varying function ρ equal to g ∈ (Hm0,p(Rn))

′
.

Then projections Ejf, j ∈ Z have the quasiasymptotics at ∞ (in D′
Lq (Rn))

related to ρ equal to g ∈ (Hm0,p(Rn))
′

(g ∈ (Ḣm0,∞(Rn))
′
if p = ∞).

Proof. We will give the proof only for 1 ≤ p < ∞. Let B be an arbitrary
bounded set in Hm0,p(Rn). By Theorem 1 to the related multiresolution expan-
sion {Ejf}j∈Z ∈ (Hm0,p(Rn))

′
, for all φ ∈ B and k > 0 we have

〈 (Ejf)(kx)
ρ(k)

, φ(x)
〉

=
〈 〈f(y), Ej(kx, y)〉

ρ(k)
, φ(x)

〉

=
〈f(y)

ρ(k)
, 〈Ej(kx, y), φ(x)〉

〉
=

〈f(ky)
ρ(k)

, 〈kn Ej(kx, ky), φ(x)〉
〉

=
〈f(ky)

ρ(k)
, 〈kn Ej(kx, ky), φ(x)〉 − φ(y)

〉
+

〈f(ky)
ρ(k)

, φ(y)
〉
. (1)

Definition 1 implies

lim
k→∞

sup
φ∈B

(〈f(kx)
ρ(k)

, φ(x)
〉
− 〈g(x), φ(x)〉

)
= 0.

It remains to show that the first addend in (1) tends to zero uniformly on
B. Recall, a sequence {fn}n∈N in (Hm,p(Rn))

′
is strongly bounded if and only

if for every bounded set B ⊂ Hm,p(Rn) there exist CB > 0 such that

|〈fn, φ〉| ≤ CB sup
0≤|α|≤m,φ∈B

‖ φ(α)(x) ‖Lp(Rn), φ ∈ B, n ∈ N. (2)

The set { f(k·)
ρ(k) , k ∈ N} is bounded in (Hm0,p(Rn))

′
. Also, by Theorem 3, for

every φ ∈ B the set

{〈knEj(kx, ky), φ(x)〉 − φ(y), k ∈ N}
is uniformly bounded in Hm0,p(Rn). Hence, by (2) it follows that there exists
C > 0 not depending on φ ∈ B, such that for every φ ∈ B

∣∣∣
〈f(ky)

ρ(k)
, 〈kn Ej(kx, ky), φ(x)〉 − φ(y)

〉∣∣∣

≤ C sup
0≤|α|≤m0, k∈N

‖ (〈kn Ej(kx, ky), φ(x)〉 − φ(y))(α) ‖Lp(Rn) . (3)
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Theorem 3 implies that for every 0 ≤ |α| ≤ m0

lim
k→∞

sup
φ∈B

‖ (〈kn Ej(kx, ky), φ(x)〉 − φ(y))(α) ‖Lp(Rn)= 0.

Thus, by (3),

lim
k→∞

sup
φ∈B

∣∣∣
〈f(ky)

ρ(k)
, 〈kn Ej(kx, ky), φ(x)〉 − φ(y)

〉∣∣∣ = 0.

2

Theorem 6. Let f ∈ D′
Lq (Rn), 1 ≤ q ≤ ∞ and let the projections Ejf, j ∈ N

have the quasiasymptotics at ∞ (in D′
Lq (Rn)) related to a regularly varying

function ρ equal to distributions gj ∈ (Hm0,p(Rn))
′
, j ∈ N and let gj → g

as j → ∞, in (Hm0,p(Rn))
′

in the strong topology. Moreover, suppose that{
f(ky)
ρ(k) , k ∈ N} is bounded in (Hm0,p)

′
(Rn). Then f has the quasiasymptotics at

∞ (in D′
Lq (R)) related to ρ equal to g ∈ (Hm0,p(Rn))

′
.

Proof. Let B be a bounded set in Hm0,p(Rn) and let ε > 0. There exists j0 ∈ N,
such that for every j > j0 and φ ∈ B

|〈gj(x)− g(x), φ(x)〉| < ε

4
.

Also, for every j ∈ N there exists k0(j) ∈ N, such that for k > k0(j) and φ ∈ B

∣∣∣
〈 (Ejf)(ky)

ρ(k)
− gj(y), φ(y)

〉∣∣∣ <
ε

4
.

Let j > j0, k > k0(j) and φ ∈ B. Then

∣∣∣
〈 (Ejf)(ky)

ρ(k)
− g(y), φ(y)

〉∣∣∣ =
∣∣∣
〈 (Ejf)(ky)

ρ(k)
− g(y) + gj(y)− gj(y), φ(y)

〉∣∣∣

≤
∣∣∣
〈 (Ejf)(ky)

ρ(k)
− gj(y), φ(y)

〉∣∣∣ +
∣∣∣
〈
gj(y)− g(y), φ(y)

〉∣∣∣ <
ε

2
.

Also, for every j ∈ N,

∣∣∣
〈f(ky)

ρ(k)
− g(y), φ(y)

〉∣∣∣ =
∣∣∣
〈f(ky)

ρ(k)
− g(y) +

(Ejf)(ky)
ρ(k)

− (Ejf)(ky)
ρ(k)

, φ(y)
〉∣∣∣

≤
∣∣∣
〈 (Ejf)(ky)

ρ(k)
− g(y), φ(y)

〉∣∣∣ +
∣∣∣
〈f(ky)− (Ejf)(ky)

ρ(k)
, φ(y)

〉∣∣∣.

So, it remains to find k1 ∈ N, which does not depend on j ∈ N, such that for
k > k1 and φ ∈ B
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∣∣∣
〈f(ky)− (Ejf)(ky)

ρ(k)
, φ(y)

〉∣∣∣ <
ε

2
. (4)

For projections Ejf, j ∈ N, we have

〈 (Ejf)(kx)
ρ(k)

, φ(x)
〉

=
〈
〈f(y)
ρ(k)

, Ej(kx, y)〉, φ(x)
〉

=
〈
〈f(ky)

ρ(k)
, knEj(kx, ky)〉, φ(x)

〉

=
〈f(ky)

ρ(k)
, 〈knEj(kx, ky), φ(x)〉

〉
. (5)

The sets { f(ky)
ρ(k) , k ∈ N} and {φ(y) − 〈knEj(kx, ky), φ(x)〉, k ∈ N} are bounded

in (Hm0,p(Rn))
′

and Hm0,p(Rn), for all j ∈ N, hence by (2) and (5) we have
that exists C (not depending on φ ∈ B), such that for every k ∈ N, j ∈ N and
φ ∈ B

∣∣∣
〈f(ky)− (Ejf)(ky)

ρ(k)
, φ(y)

〉∣∣∣ =
∣∣∣
〈f(ky)

ρ(k)
, φ(y)− 〈knEj(kx, ky), φ(x)〉

〉∣∣∣

≤ C sup
0≤|α|≤m0,k∈N

‖ (φ(y)− 〈knEj(kx, ky), φ(x)〉)(α) ‖Lp(Rn) .

By Theorem 3 it follows that for every α, 0 ≤ |α| ≤ m0 there exists kα ∈ N,
such that, for every k > kα and j ∈ N

‖ (φ(y)− 〈kn Ej(kx, ky), φ(x)〉)(α) ‖Lp(Rn)<
ε

2C
, φ ∈ B.

We put k1 = max{kα : 0 ≤ |α| ≤ m0}. So, we proved (4), and furthermore

∣∣∣
〈f(ky)

ρ(k)
− g(y), φ(y)

〉∣∣∣ < ε, k > k1, φ ∈ B.

2

Theorem 7. Let f ∈ D′
L1(Rn) be quasiasymptotically bounded in D′

L1(Rn)
related to a positive and continuous function c. Then projections Ejf, j ∈ N are
quasiasymptotically bounded in D′

L1(Rn) related to c.

Proof. Let B be a bounded set in Ḣm0,∞(Rn). By the proof of Theorem 5 we
know that for every j ∈ N and φ ∈ B

〈 (Ejf)(kx)
c(k)

, φ(x)
〉

=
〈f(ky)

c(k)
, φ(y)

〉
+

〈f(ky)
c(k)

, 〈kn Ej(kx, ky), φ(x)〉 − φ(y)
〉
,

and there are C > 0 and r ∈ N0 (not depending on φ ∈ B), such that for every
j ∈ N and φ ∈ B



266 D. Rakić

∣∣∣
〈f(ky)

c(k)
, 〈knEj(kx, ky), φ(x)〉 − φ(y)

〉∣∣∣

≤ C sup
0≤|α|≤r,k∈N

‖ (〈knEj(kx, ky), φ(x)〉 − φ(y))(α) ‖L∞(Rn) .

The last term tends to zero when k → ∞, hence it is bounded. Since f is
quasiasymptotically bounded we have

∣∣∣
〈 (Ejf)(kx)

c(k)
, φ(x)

〉∣∣∣ ≤ C̃B , φ ∈ B, k ∈ N, j ∈ Z.

2

Theorem 8. Let f ∈ D′
L1(Rn) and projections Ejf, j ∈ N are quasiasymptot-

ically bounded in D′
L1(Rn) related to a positive, continuous function c, i.e. for

every bounded set B ⊂ Ḣm0,∞(Rn) and j ∈ N there exists CB,j > 0 such that

∣∣∣
〈 (Ejf)(kx)

c(k)
, φ(x)

〉∣∣∣ ≤ CB,j , k ∈ N, φ ∈ B.

Moreover, assume that the family { f(ky)
c(k) , k ∈ N} is bounded in D′

L1(Rn). Then

f is quasiasymptotically bounded in D′
L1(Rn) related to c.

Proof. Let B be a bounded set in Ḣm0,∞(Rn). By the proof of Theorem 6, for
every j ∈ N and every φ ∈ B we have

〈f(ky)
c(k)

, φ(y)
〉

=
〈 (Ejf)(ky)

c(k)
, φ(y)

〉
+

〈f(ky)− (Ejf)(ky)
c(k)

, φ(y)
〉
.

Moreover, there are C > 0 and r ∈ N0 (not depending on φ ∈ B), such that for
j ∈ N and φ ∈ B

∣∣∣
〈f(ky)− (Ejf)(ky)

c(k)
, φ(y)

〉∣∣∣

≤ C sup
0≤|α|≤r,k∈N

‖ (φ(y)− 〈knEj(kx, ky), φ(x)〉)(α) ‖L∞(R) .

The last term is bounded, because it converge to zero. Finally we obtain

∣∣∣
〈f(ky)

c(k)
, φ(y)

〉∣∣∣ ≤ CB , φ ∈ B, k ∈ N.

2
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