R-COMPLEX FINSLER SPACES WITH (α, β)-METRIC

Nicoleta Aldea ${ }^{11}$, Monica Purcaru ${ }^{1}$

Abstract

In this paper we introduce the class of \mathbb{R}-complex Finsler spaces with (α, β)-metrics and study some important exemples: \mathbb{R}-complex Randers spaces, \mathbb{R}-complex Kropina spaces. The metric tensor field of a \mathbb{R}-complex Finsler space with (α, β)-metric is determined ($\S 2)$. A special approach is dedicated to the \mathbb{R}-complex Randers spaces ($\S 3$).

AMS Mathematics Subject Classification (2000): 53B40, 53C60
Key words and phrases: \mathbb{R}-complex Finsler space, (α, β)-metric

1. \mathbb{R}-complex Finsler spaces

In a previous paper [14, we expanded the known definition of a complex Finsler space ($1,2,13,17)$, reducing the scalars to $\lambda \in \mathbb{R}$. The outcome was a new class of Finsler space called by us the \mathbb{R}-complex Finsler spaces, (14). Our interest in this class of Finsler spaces issues from the fact that the Finsler geometry means, first of all, a distance, and this refers to the curves depending on the real parameter.

In the present papers, following the ideas from real Finsler spaces with (α, β) metrics ($6,18,10,11,12]$), we introduce a similar notion on \mathbb{R}-complex Finsler spaces.

In this section we keep the general setting from [13, 14, and subsequently we recall only some necessary notions.

Let M be a complex manifold with $\operatorname{dim}_{\mathbb{C}} M=n,\left(z^{k}\right)$ be local complex coordinates in a chart (U, φ) and $T^{\prime} M$ its holomorphic tangent bundle. It has a natural structure of complex manifold, $\operatorname{dim}_{\mathbb{C}} T^{\prime} M=2 n$ and the induced coordinates in a local chart on $u \in T^{\prime} M$ are denoted by $u=\left(z^{k}, \eta^{k}\right)$. The changes of local coordinates in u are given by the rules

$$
\begin{equation*}
z^{\prime k}=z^{\prime k}(z) ; \eta^{\prime k}=\frac{\partial z^{\prime k}}{\partial z^{j}} \eta^{j} . \tag{1.1}
\end{equation*}
$$

The natural frame $\left\{\frac{\partial}{\partial z^{k}}, \frac{\partial}{\partial \eta^{k}}\right\}$ of $T_{u}^{\prime}\left(T^{\prime} M\right)$ with the changes of Jacobi matrix of (1.1) changes into $\frac{\partial}{\partial z^{k}}=\frac{\partial z^{\prime j}}{\partial z^{k}} \frac{\partial}{\partial z^{\prime j}}+\frac{\partial^{2} z^{\prime j}}{\partial z^{k} \partial z^{h}} \eta^{h} \frac{\partial}{\partial \eta^{\prime j}} ; \frac{\partial}{\partial \eta^{k}}=\frac{\partial z^{\prime j}}{\partial z^{k}} \frac{\partial}{\partial \eta^{\prime j}}$.

A complex nonlinear connection, (briefly, c.n.c.), is a supplementary distribution $H\left(T^{\prime} M\right)$ to the vertical distribution $V\left(T^{\prime} M\right)$ in $T^{\prime}\left(T^{\prime} M\right)$. The vertical distribution is spanned by $\left\{\frac{\partial}{\partial \eta^{k}}\right\}$ and an adapted frame in $H\left(T^{\prime} M\right)$ is

[^0]$\frac{\delta}{\delta z^{k}}=\frac{\partial}{\partial z^{k}}-N_{k}^{j} \frac{\partial}{\partial n^{j}}$, where N_{k}^{j} are the coefficients of the (c.n.c.) and they have a certain rule of change in (1.1). The dual adapted basis of $\left\{\delta_{k}, \dot{\partial}_{k}\right\}$ are $\left\{d z^{k}, \delta \eta^{k}=d \eta^{k}+N_{j}^{k} d z^{j}\right\}$ and $\left\{d \bar{z}^{k}, \delta \bar{\eta}^{k}\right\}$ theirs conjugates.

We recall that the homogeneity of the metric function of a complex Finsler space ($[1,2,13,17])$ is with respect to all complex scalars and the metric tensor of the space is one Hermititian. In [14] we changed a bit the definition of a complex Finsler metric.
$A \mathbb{R}$-complex Finsler metric on M is a continuous function $F: T^{\prime} M \longrightarrow \mathbb{R}_{+}$ satisfying:
i) $L:=F^{2}$ is smooth on $\widetilde{T^{\prime} M}$ (except the 0 sections);
ii) $F(z, \eta) \geq 0$, the equality holds if and only if $\eta=0$;
iii) $F(z, \lambda \eta, \bar{z}, \lambda \bar{\eta})=|\lambda| F(z, \eta, \bar{z}, \bar{\eta}), \forall \lambda \in \mathbb{R}$;

It follows that L is $(2,0)$ homogeneous with respect to the real scalars λ, and in [14] we proved that the following identities are fulfilled:

$$
\begin{align*}
\frac{\partial L}{\partial \eta^{i}} \eta^{i}+\frac{\partial L}{\partial \bar{\eta}^{i}} \bar{\eta}^{i} & =2 L ; \quad g_{i j} \eta^{i}+g_{\bar{j} i} \bar{\eta}^{i}=\frac{\partial L}{\partial \eta^{j}} \tag{1.2}\\
\frac{\partial g_{i k}}{\partial \eta^{j}} \eta^{j}+\frac{\partial g_{i k}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j} & =0 ; \quad \frac{\partial g_{i \bar{k}}}{\partial \eta^{j}} \eta^{j}+\frac{\partial g_{i \bar{k}}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j}=0 \\
2 L & =g_{i j} \eta^{i} \eta^{j}+g_{\bar{\imath} \bar{j}} \bar{\eta}^{i} \bar{\eta}^{j}+2 g_{i \bar{j}} \eta^{i} \bar{\eta}^{j}
\end{align*}
$$

where

$$
\begin{equation*}
g_{i j}:=\frac{\partial^{2} L}{\partial \eta^{i} \partial \eta^{j}} ; \quad g_{i \bar{j}}:=\frac{\partial^{2} L}{\partial \eta^{i} \partial \bar{\eta}^{j}} ; \quad g_{\bar{\imath} \bar{j}}:=\frac{\partial^{2} L}{\partial \bar{\eta}^{i} \partial \bar{\eta}^{j}} \tag{1.3}
\end{equation*}
$$

are the metric tensors of the space.

2. \mathbb{R}-complex Finsler spaces with (α, β)-metric

Following the ideas from the real case, [6, 18, 10, 11, 12], we shall introduce \mathbb{R}-complex Finsler spaces with (α, β)-metrics. Let us consider $z \in M$, and $\eta \in T_{z}^{\prime} M, \eta=\eta^{i} \frac{\partial}{\partial z^{i}}$, a section in a holomorphic tangent space.

Definition 2.1. A \mathbb{R}-complex Finsler space (M, F) is called (α, β)-metric if the fundamental function F is \mathbb{R}-homogeneous by means of the functions $\alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \eta, \bar{z}, \bar{\eta})$,

$$
\begin{equation*}
F(z, \eta, \bar{z}, \bar{\eta})=F(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta})) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\alpha^{2} & :=\frac{1}{2}\left(a_{i j} \eta^{i} \eta^{j}+a_{\bar{\imath} \bar{j}} \bar{\eta}^{i} \bar{\eta}^{j}+2 a_{i \bar{j}} \eta^{i} \bar{\eta}^{j}\right)=\operatorname{Re}\left\{a_{i j} \eta^{i} \eta^{j}+a_{i \bar{j}} \eta^{i} \bar{\eta}^{j}\right\} \\
(2.2) \beta & :=\frac{1}{2}\left(b_{i} \eta^{i}+b_{\bar{\imath}} \bar{\eta}^{i}\right)=\operatorname{Re}\left\{b_{i} \eta^{i}\right\}
\end{aligned}
$$

with $a_{i j}=a_{i j}(z), a_{i \bar{j}}=a_{i \bar{j}}(z)$, both invertible or one of them being zero, and $b:=b_{i} d z^{i}, b_{i}=b_{i}(z)$ a differential 1-form on M.

If $a_{i j}=0$ and $\left(a_{i \bar{j}}\right)$ invertible, then the space is said to be of Hermitian type. If $a_{i \bar{j}}=0$ and $\left(a_{i j}\right)$ invertible, then the space is called non-Hermitian. Moreover, $a_{i j}=\partial^{2} \alpha^{2} / \partial \eta^{i} \partial \eta^{j}$ and $a_{i \bar{j}}=\partial^{2} \alpha^{2} / \partial \eta^{i} \partial \bar{\eta}^{j}$.

Indeed, α and β are homogeneous with respect to η and $\bar{\eta}$, i.e. $\alpha(z, \lambda \eta$, $\bar{z}, \lambda \bar{\eta})=\lambda \alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \lambda \eta, \bar{z}, \lambda \bar{\eta})=\lambda \beta(z, \eta, \bar{z}, \bar{\eta})$ for any $\lambda \in \mathbb{R}_{+}$, thus $L(z, \lambda \eta, \bar{z}, \lambda \bar{\eta})=\lambda^{2} L(z, \eta, \bar{z}, \lambda \bar{\eta})$ for any $\lambda \in \mathbb{R}$, and so the homogeneity property implies

$$
\begin{align*}
\frac{\partial \alpha}{\partial \eta^{i}} \eta^{i}+\frac{\partial \alpha}{\partial \bar{\eta}^{j}} \bar{\eta}^{j} & =\alpha ; \frac{\partial \beta}{\partial \eta^{i}} \eta^{i}+\frac{\partial \beta}{\partial \bar{\eta}^{j}} \bar{\eta}^{j}=\beta \tag{2.3}\\
\alpha L_{\alpha}+\beta L_{\beta} & =2 L ; \alpha L_{\alpha \alpha}+\beta L_{\alpha \beta}=L_{\alpha} ; \\
\alpha L_{\alpha \beta}+\beta L_{\beta \beta} & =L_{\beta} ; \alpha^{2} L_{\alpha \alpha}+2 \alpha \beta L_{\alpha \beta}+\beta^{2} L_{\beta \beta}=2 L
\end{align*}
$$

where $L_{\alpha}:=\frac{\partial L}{\partial \alpha}, L_{\beta}:=\frac{\partial L}{\partial|\beta|}, L_{\alpha \alpha}:=\frac{\partial^{2} L}{\partial \alpha^{2}}$, etc.
In the following, we propose to determine the metric tensors of a \mathbb{R}-complex Finsler space with (α, β) metric, i.e. $g_{i j}:=\partial^{2} L(z, \eta, \bar{z}, \lambda \bar{\eta}) / \partial \eta^{i} \partial \eta^{j} ; g_{i \bar{j}}:=$ $\partial^{2} L(z, \eta, \bar{z}, \lambda \bar{\eta}) / \partial \eta^{i} \partial \bar{\eta}^{j}$, each of these being of interest in the following. We consider

$$
\begin{align*}
\frac{\partial \alpha}{\partial \eta^{i}} & =\frac{1}{2 \alpha}\left(a_{i j} \eta^{j}+a_{i j} \bar{\eta}^{j}\right)=\frac{1}{2 \alpha} l_{i} ; \quad \frac{\partial \beta}{\partial \eta^{i}}=\frac{1}{2} b_{i} ; \tag{2.4}\\
\frac{\partial \rho_{0}}{\partial \eta^{j}} & =\rho_{-2} l_{j}+\rho_{-1} b_{j} ; \quad \frac{\partial \rho_{1}}{\partial \eta^{i}}=\rho_{-1} l_{j}+\mu_{0} b_{i} ;
\end{align*}
$$

where

$$
\begin{align*}
l_{i} & : \quad=a_{i j} \eta^{j}+a_{i \bar{j}} \bar{\eta}^{j} ; l_{i} \eta^{i}+l_{\bar{j}} \bar{\eta}^{j}=2 \alpha^{2} ; b^{k}:=a^{j k} b_{j}+a^{\bar{j} k} b_{\bar{j}} ; \tag{2.5}\\
b_{l} & :=b^{k} a_{k l}+b^{\bar{k}} a_{l \bar{k}} ; \varepsilon:=b_{j} \eta^{j} ; \omega:=b_{j} b^{j} ; \varepsilon+\bar{\varepsilon}=2 \beta ; \\
\eta_{i} & :=\frac{\partial L}{\partial \eta^{i}}=\rho_{0} l_{i}+\rho_{1} b_{i} ; \quad \rho_{0}:=\frac{1}{2} \alpha^{-1} L_{\alpha} ; \quad \rho_{1}:=\frac{1}{2} L_{\beta} ; \\
\rho_{-2} & :=\frac{\alpha L_{\alpha \alpha}-L_{\alpha}}{4 \alpha^{3}} ; \quad \rho_{-1}:=\frac{L_{\alpha \beta}}{4 \alpha} ; \quad \mu_{0}:=\frac{L_{\beta \beta}}{4}
\end{align*}
$$

and their conjugates, with $\left(a^{j k}\right)$ and $\left(a^{\bar{j} k}\right)$ are the inverse of $\left(a_{i j}\right)$ and $\left(a_{i \bar{j}}\right)$, respectively.

The functions $\rho_{0}, \rho_{1}, \rho_{-2}, \rho_{-1}, \mu_{0}$ are called invariants of the \mathbb{R}-complex Finsler space with (α, β)-metric (as in [18). Subscripts $-2,-1,0,1$ give us the degree of homogeneity of these invariants. Note that $\eta_{i}=\rho_{0} l_{i}+\rho_{1} b_{i}$ is uniquely represented in this form. Indeed, if $f(z, \eta) l_{i}+g(z, \eta) b_{i}=0$, contracting it by η^{i}, we obtain $f(z, \eta) \alpha^{2}+g(z, \eta) \beta=0$. Deriving the last relation with respect to β, it results $g(z, \eta)=0$, and from here $f(z, \eta) \alpha^{2}=0$. So, $\alpha \neq 0$ leads to $f(z, \eta)=0$.

Theorem 2.1. The tensor fields of \mathbb{R}-complex Finsler space with (α, β)-metric are given by

$$
\begin{align*}
g_{i j} & =\rho_{0} a_{i j}+\rho_{-2} l_{i} l_{j}+\mu_{0} b_{i} b_{j}+\rho_{-1}\left(b_{j} l_{i}+b_{i} l_{j}\right), \tag{2.6}\\
g_{i \bar{j}} & =\rho_{0} a_{i \bar{j}}+\rho_{-2} l_{i} l_{\bar{j}}+\mu_{0} b_{i} b_{\bar{j}}+\rho_{-1}\left(b_{\bar{j}} l_{i}+b_{i} l_{\bar{j}}\right)
\end{align*}
$$

or in the equivalent form
(2.7) $g_{i j}=\rho_{0} a_{i j}+\left(\rho_{-2}-\frac{\rho_{0} \rho_{-1}}{\rho_{1}}\right) l_{i} l_{j}+\left(\mu_{0}-\frac{\rho_{-1} \rho_{1}}{\rho_{0}}\right) b_{i} b_{j}+\frac{\rho_{-1}}{\rho_{0} \rho_{1}} \eta_{i} \eta_{j}$,

$$
g_{i \bar{j}}=\rho_{0} a_{i \bar{j}}+\left(\rho_{-2}-\frac{\rho_{0} \rho_{-1}}{\rho_{1}}\right) l_{i} l_{\bar{j}}+\left(\mu_{0}-\frac{\rho_{-1} \rho_{1}}{\rho_{0}}\right) b_{i} b_{\bar{j}}+\frac{\rho_{-1}}{\rho_{0} \rho_{1}} \eta_{i} \eta_{\bar{j}} .
$$

Proof. Taking into account (2.3), we have

$$
g_{i j}=\frac{\partial^{2} L}{\partial \eta^{i} \partial \eta^{j}}=\frac{\partial}{\partial \eta^{j}}\left(\frac{\partial L}{\partial \eta^{i}}\right)=\frac{\partial}{\partial \eta^{j}}\left(\rho_{0} l_{i}+\rho_{1} b_{i}\right)=\frac{\partial \rho_{0}}{\partial \eta^{j}} l_{i}+\rho_{0} \frac{\partial l_{i}}{\partial \eta^{j}}+\frac{\partial \rho_{1}}{\partial \eta^{j}} b_{i}
$$

and

$$
g_{i \bar{j}}=\frac{\partial^{2} L}{\partial \eta^{i} \partial \bar{\eta}^{j}}=\frac{\partial}{\partial \bar{\eta}^{j}}\left(\frac{\partial L}{\partial \eta^{i}}\right)=\frac{\partial}{\partial \bar{\eta}^{j}}\left(\rho_{0} l_{i}+\rho_{1} b_{i}\right)=\frac{\partial \rho_{0}}{\partial \bar{\eta}^{j}} l_{i}+\rho_{0} \frac{\partial l_{i}}{\partial \bar{\eta}^{j}}+\frac{\partial \rho_{1}}{\partial \bar{\eta}^{j}} b_{i} .
$$

From here, immediately results (2.6).
To prove (2.7), we compute $\eta_{i} \eta_{j}$, and obtain $l_{i} b_{j}+l_{j} b_{i}=\frac{1}{\rho_{0} \rho_{1}}\left(\eta_{i} \eta_{j}-\rho_{0}^{2} l_{i} l_{j}-\right.$ $\left.\rho_{1}^{2} b_{i} b_{j}\right)$.

As in real case, we may consider the following examples of \mathbb{R}-complex Finsler spaces with (α, β)-metric:

1. \mathbb{R}-complex Randers spaces: $L(\alpha, \beta)=(\alpha+\beta)^{2}$ with

$$
\begin{equation*}
L_{\alpha}=L_{\beta}=2(\alpha+\beta)=2 F, L_{\alpha \alpha}=L_{\beta \beta}=L_{\alpha \beta}=2 \tag{2.8}
\end{equation*}
$$

2. \mathbb{R}-complex Kropina spaces: $L(\alpha, \beta)=\left(\frac{\alpha^{2}}{\beta}\right)^{2},(\beta \neq 0)$ with

$$
\begin{align*}
L_{\alpha} & =\frac{4 \alpha^{3}}{\beta^{2}} ; L_{\beta}=-\frac{2 \alpha^{4}}{\beta^{3}} ; \alpha L_{\alpha}+\beta L_{\beta}=2 L \tag{2.9}\\
L_{\alpha \alpha} & =\frac{12 \alpha^{2}}{\beta^{2}} ; L_{\alpha \beta}=-\frac{8 \alpha^{3}}{\beta^{3}} ; L_{\beta \beta}=\frac{6 \alpha^{4}}{\beta^{4}}
\end{align*}
$$

3. \mathbb{R}-complex Randers spaces

As noticed in [14, an \mathbb{R}-complex Finsler space produces two tensor fields $g_{i j}$ and $g_{i \bar{j}}$. For a properly Hermitian geometry $g_{i \bar{j}}$ to be invertible is mandatory requirement, but from some physicist point of view, for which Hermitian condition is an impediment; it seems more attractive that $g_{i j}$ be an invertible metric tensor. These problems lead us in [14] to speak about \mathbb{R}-complex Hermitian Finsler spaces (i.e. $\operatorname{det}\left(g_{i \bar{j}}\right) \neq 0$) and \mathbb{R}-complex non-Hermitian Finsler spaces (i.e. $\left.\operatorname{det}\left(g_{i j}\right) \neq 0\right)$. The present section applies our results to \mathbb{R}-complex Randers spaces, better illustrating the interest for this work.

A first question is when a \mathbb{R}-complex Randers metric is positively defined on $\widetilde{T^{\prime} M}$, i.e. $\alpha>-\beta$, equivalently with

$$
\begin{equation*}
\left[\operatorname{Re}\left\{a_{i j} \eta^{i} \eta^{j}+a_{i \bar{j}} \eta^{i} \bar{\eta}^{j}\right\}\right]^{\frac{1}{2}}>\operatorname{Re}\left\{b_{i} \eta^{i}\right\}, \text { for all } \eta \neq 0 \tag{3.1}
\end{equation*}
$$

The answer comes namely. If we suppose that (3.1) is true, then by substituting $\eta^{i}=-b^{i}$ into (3.1) we obtain $\frac{\omega+\bar{\omega}}{2}=:\|b\| \in(0,1)$. Conversely, $\|b\| \in(0,1)$ imply that $\|b\|(1-\|b\|)<0$. Setting $b^{i}=-\lambda \eta^{i}, \lambda \in \mathbb{R}$, it results (3.1). So, we have proved the following proposition.

Proposition 3.1. A \mathbb{R}-complex Randers metric is positively defined on $\widetilde{T^{\prime} M}$ if and only if $\|b\| \in(0,1)$.

The invariants of a \mathbb{R}-complex Randers space are:

$$
\begin{align*}
\rho_{0} & :=\alpha^{-1} F ; \quad \rho_{1}:=F \tag{3.2}\\
\rho_{-2} & :=-\frac{\beta}{2 \alpha^{3}} ; \quad \rho_{-1}:=\frac{1}{2 \alpha} ; \quad \mu_{0}:=\frac{1}{2}
\end{align*}
$$

and substituting them into (2.6) and (2.7), we obtain
Proposition 3.2. The metric tensor fields of a \mathbb{R}-complex Randers space are given by

$$
\begin{align*}
& g_{i j}=\frac{\alpha}{F} a_{i j}-\frac{\beta}{2 \alpha^{3}} l_{i} l_{j}+\frac{1}{2} b_{i} b_{j}+\frac{1}{2 \alpha}\left(b_{j} l_{i}+b_{i} l_{j}\right) \tag{3.3}\\
& g_{i \bar{j}}=\frac{\alpha}{F} a_{i \bar{j}}-\frac{\beta}{2 \alpha^{3}} l_{i} l_{\bar{j}}+\frac{1}{2} b_{i} b_{\bar{j}}+\frac{1}{2 \alpha}\left(b_{\bar{j}} l_{i}+b_{i} l_{\bar{j}}\right)
\end{align*}
$$

or equivalently

$$
\begin{align*}
g_{i j} & =\frac{F}{\alpha} a_{i j}-\frac{F}{2 \alpha^{3}} l_{i} l_{j}+\frac{1}{2 L} \eta_{i} \eta_{j} \tag{3.4}\\
g_{i \bar{j}} & =\frac{F}{\alpha} a_{i \bar{j}}-\frac{F}{2 \alpha^{3}} l_{i} l_{\bar{j}}+\frac{1}{2 L} \eta_{i} \eta_{\bar{j}} .
\end{align*}
$$

The next objective is to obtain the determinant and the inverse of the tensor fields $g_{i j}$ and $g_{i \bar{j}}$. For this we apply Proposition 11.2.1, p. 287 from [6] and Proposition 2.2 from [4 for an arbitrary non-singular Hermitian matrix $\left(Q_{i \bar{j}}\right)$:

Proposition 3.3. [4] Suppose:

- $\left(Q_{i \bar{j}}\right)$ is a non-singular $n \times n$ complex matrix with inverse $\left(Q^{\bar{j} i}\right)$;
- C_{i} and $C_{\bar{\imath}}:=\overline{C_{i}}, i=1, . ., n$, are complex numbers;
- $C^{i}:=Q^{\bar{j} i} C_{\bar{j}}$ and its conjugates; $C^{2}:=C^{i} C_{i}=\bar{C}^{i} C_{\bar{\imath}} ; H_{i \bar{j}}:=Q_{i \bar{j}} \pm C_{i} C_{\bar{j}}$

Then
i) $\operatorname{det}\left(H_{i \bar{j}}\right)=\left(1 \pm C^{2}\right) \operatorname{det}\left(Q_{i \bar{j}}\right)$
ii) Whenever $1 \pm C^{2} \neq 0$, the matrix $\left(H_{i \bar{j}}\right)$ is invertible and in this case its inverse is $H^{\bar{j} i}=Q^{\bar{j} i} \mp \frac{1}{1 \pm C^{2}} C^{i} C^{\bar{j}}$.

Proposition 3.4. For the \mathbb{R}-complex non-Hermitian Randers space $F:=\alpha+$ $|\beta|$, (with $a_{i \bar{j}}=0$), we have
i) $g^{i j}=\frac{\alpha}{F} a^{i j}+\frac{\alpha(2 \beta+\alpha \omega)}{F M} \eta^{i} \eta^{j}+\frac{\alpha^{2} \bar{\gamma}}{F M} b^{i} b^{j}-\frac{\alpha^{2}(\varepsilon+2 \alpha)}{F M}\left(\eta^{i} b^{j}+b^{i} \eta^{j}\right)$;
ii) $\operatorname{det}\left(g_{i j}\right)=\left(\frac{F}{\alpha}\right)^{n} \frac{M}{4 \alpha^{2} F} \operatorname{det}\left(a_{i j}\right)$,
where

$$
\begin{align*}
\gamma & : \quad=a_{j k} \eta^{j} \eta^{k}=l_{k} \eta^{k} ; l_{i}=a_{i j} \eta^{j} ; \gamma+\bar{\gamma}=2 \alpha^{2} ; \tag{3.5}\\
b^{k} & =a^{j k} b_{j} ; b_{l}=b^{k} a_{k l} ; \\
M & :=\bar{\gamma}(\alpha \omega+2 \beta)+\alpha(2 \alpha+\varepsilon)^{2}
\end{align*}
$$

Proof. Applying Proposition 11.2.1, p. 287 from [6] in two steps, we are yields $g^{i j}$ and $\operatorname{det}\left(g_{i j}\right)$. For the beginning we write $g_{i j}$ in the form $g_{i \bar{j}}=$ $\frac{F}{\alpha}\left(a_{i j}-\frac{1}{2 \alpha^{2}} l_{i} l_{j}+\frac{\alpha}{2 F^{3}} \eta_{i} \eta_{j}\right)$.

1) In the first applications we set $Q_{i j}:=a_{i j}$ and $C_{i}:=\frac{1}{\alpha \sqrt{2}} l_{i}$. We obtain $Q^{j i}=a^{j i}, C^{2}=\frac{\gamma}{2 \alpha^{2}}, 1-C^{2}=\frac{\bar{\gamma}}{2 \alpha^{2}}$ and $C^{i}=\frac{1}{\alpha \sqrt{2}} \eta^{i}$. So, the matrix $H_{i j}=$ $a_{i j}-\frac{1}{2 \alpha^{2}} l_{i} l_{j}$ is invertible with $H^{j i}=a^{j i}-\frac{1}{\bar{\gamma}} \eta^{i} \eta^{j}$ and $\operatorname{det}\left(a_{i j}-\frac{1}{2 \alpha^{2}} l_{i} l_{j}\right)=$ $\frac{\bar{\gamma}}{2 \alpha^{2}} \operatorname{det}\left(a_{i j}\right)$.
2) Now, we consider $Q_{i j}:=a_{i j}-\frac{1}{2 \alpha^{2}} l_{i} l_{j}$ and $C_{i}:=\frac{\sqrt{\alpha}}{F \sqrt{2 F}} \eta_{i}$. Hence $Q^{\bar{j} i}=$ $a^{\bar{j} i}+\frac{1}{\bar{\gamma}} \eta^{i} \bar{\eta}^{j}, C^{2}=\frac{\alpha}{2 F^{3}}\left[a^{j i}+\frac{1}{\bar{\gamma}} \eta^{i} \eta^{j}\right] \eta_{i} \eta_{j}=\frac{M-2 \bar{\gamma} F}{2 \bar{\gamma} F}, 1+C^{2}=\frac{M}{2 \bar{\gamma} F} \neq 0$ and $C^{i}=\frac{\sqrt{\alpha}}{F \sqrt{2 F}}\left[a^{j i}+\frac{1}{\bar{\gamma}} \eta^{i} \eta^{j}\right] \eta_{j}=\sqrt{\frac{\alpha}{2 F}}\left(\frac{2 \alpha+\varepsilon}{\bar{\gamma}} \eta^{i}+b^{i}\right)$. It results that the inverse of $H_{i j}=a_{i j}-\frac{1}{2 \alpha^{2}} l_{i} l_{j}+\frac{\alpha}{2 F^{3}} \eta_{i} \eta_{j}$ exists. It is
$H^{j i}=a^{j i}+\frac{1}{\bar{\gamma}} \eta^{i} \eta^{j}-\frac{\alpha \bar{\gamma}}{M}\left(\frac{2 \alpha+\varepsilon}{\bar{\gamma}} \eta^{i}+b^{i}\right)\left(\frac{2 \alpha+\varepsilon}{\bar{\gamma}} \eta^{j}+b^{j}\right)$ and
$\operatorname{det}\left(a_{i j}-\frac{1}{2 \alpha^{2}} l_{i} l_{j}+\frac{\alpha}{2 F^{3}} \eta_{i} \eta_{j}\right)=\frac{M}{2 \bar{\gamma} F} \operatorname{det}\left(a_{i j}-\frac{1}{2 \alpha^{2}} l_{i} l_{j}\right)=\frac{M}{4 \alpha^{2} F} \operatorname{det}\left(a_{i j}\right)$.
Taking into account that $g_{i j}=\frac{F}{\alpha} H_{i j}$, with $H_{i j}$ from 2), we obtain $g^{j i}=$ $\frac{\alpha}{F} H^{j i}$ and $\operatorname{det}\left(g_{i j}\right)=\left(\frac{F}{\alpha}\right)^{n} \operatorname{det}\left(H_{i j}\right)$. From here, immediately results i) and ii).

Example 1. We set α as

$$
\begin{equation*}
\alpha^{2}(z, \eta):=\frac{\left(1+\varepsilon|z|^{2}\right) \sum_{k=1}^{n} R e\left(\eta^{k}\right)^{2}-\varepsilon R e<z, \eta>^{2}}{\left(1+\varepsilon|z|^{2}\right)^{2}} \tag{3.6}
\end{equation*}
$$

where $|z|^{2}:=\sum_{k=1}^{n} z^{k} \bar{z}^{k},\langle z, \eta\rangle:=\sum_{k=1}^{n} z^{k} \bar{\eta}^{k}$, defined over the disk

$$
\Delta_{r}^{n}=\left\{z \in \mathbf{C}^{n},|z|<r, \quad r:=\sqrt{\frac{1}{|\varepsilon|}}\right\}
$$

if $\varepsilon<0$, on \mathbf{C}^{n} if $\varepsilon=0$ and on the complex projective space $P^{n}(\mathbf{C})$ if $\varepsilon>0$. By computation we obtain $a_{i j}=\frac{1}{1+\varepsilon|z|^{2}}\left(\delta_{i j}-\varepsilon \frac{\bar{z}^{i} \bar{z}^{j}}{1+\varepsilon|z|^{2}}\right)$ and $a_{i \bar{j}}=0$ and so, $\alpha^{2}(z, \eta)=\frac{1}{2}\left(a_{i j} \eta^{i} \eta^{j}+a_{\bar{\imath} \bar{j}} \bar{\eta}^{i} \bar{\eta}^{j}\right)$. Now, taking $\beta(z, \eta):=\operatorname{Re} \frac{<z, \eta>}{1+\varepsilon|z|^{2}}$, where $b_{i}:=$ $\frac{\bar{z}^{i}}{1+\varepsilon|z|^{2}}$, we obtain some examples of \mathbb{R}-complex non-Hermitian Randers metrics:

$$
\begin{equation*}
F_{\varepsilon}:=\frac{\sqrt{\left(1+\varepsilon|z|^{2}\right) \sum_{k=1}^{n} R e\left(\eta^{k}\right)^{2}-\varepsilon R e<z, \eta>^{2}}}{1+\varepsilon|z|^{2}}+\operatorname{Re} \frac{<z, \eta>}{1+\varepsilon|z|^{2}} \tag{3.7}
\end{equation*}
$$

Proposition 3.5. For the \mathbb{R}-complex Hermitian Randers space $F:=\alpha+|\beta|$, (with $a_{i j}=0$), we have
i) $g^{j \bar{\imath}}=\frac{\alpha}{F} a^{j \bar{j}}+\frac{2 \beta+\alpha \omega}{F H} \eta^{i} \eta^{j}-\frac{\alpha^{3}}{F H} b^{i} \bar{b}^{j}-\frac{\alpha}{F H}\left[(\bar{\varepsilon}+2 \alpha) \eta^{i} \bar{b}^{j}+(\varepsilon+2 \alpha) b^{i} \bar{\eta}^{j}\right]$;
ii) $\operatorname{det}\left(g_{i \bar{j}}\right)=\left(\frac{F}{\alpha}\right)^{n} \frac{H}{4 \alpha F} \operatorname{det}\left(a_{i \bar{j}}\right)$,
where

$$
\begin{align*}
\alpha^{2} & =a_{j \bar{k}} \eta^{j} \bar{\eta}^{k}=l_{\bar{k}} \bar{\eta}^{k} ; l_{i}=a_{i \bar{j}} \bar{\eta}^{j} ; \tag{3.8}\\
b^{k} & =a^{\bar{j} k} b_{\bar{j}} ; b_{\bar{l}}=b^{k} a_{k \bar{l}} ; \\
H & :=\alpha(4 F+2 \beta+\alpha \omega)+\varepsilon \bar{\varepsilon} .
\end{align*}
$$

Proof. We apply Proposition 3.3 two times. Again, we write
$g_{i \bar{j}}=\frac{F}{\alpha}\left(a_{i \bar{j}}-\frac{1}{2 \alpha^{2}} l_{i} l_{\bar{j}}+\frac{\alpha}{2 F^{3}} \eta_{i} \eta_{\bar{j}}\right)$.

1) Setting $Q_{i \bar{j}}:=a_{i \bar{j}}$ and $C_{i}:=\frac{1}{\alpha \sqrt{2}} l_{i}$ we obtain $Q^{\bar{j} i}=a^{\bar{j} i}, C^{2}=\frac{1}{2}$, $1-C^{2}=\frac{1}{2}$ and $C^{i}=\frac{1}{\alpha \sqrt{2}} \eta^{i}$. So, the matrix $H_{i \bar{j}}=a_{i \bar{j}}-\frac{1}{2 \alpha^{2}} l_{i} l_{\bar{j}}$ is invertible with $H^{\bar{j} i}=a^{\bar{j} i}+\frac{1}{\alpha^{2}} \eta^{i} \bar{\eta}^{j}$ and $\operatorname{det}\left(a_{i \bar{j}}-\frac{1}{2 \alpha^{2}} l_{i} l_{\bar{j}}\right)=\frac{1}{2} \operatorname{det}\left(a_{i \bar{j}}\right)$.
2) Considering $Q_{i \bar{j}}:=a_{i \bar{j}}-\frac{1}{2 \alpha^{2}} l_{i} l_{\bar{j}}$ and $C_{i}:=\frac{\sqrt{\alpha}}{F \sqrt{2 F}} \eta_{i}$, it gives $Q^{\bar{j} i}=a^{\bar{j} i}+$ $\frac{1}{\alpha^{2}} \eta^{i} \bar{\eta}^{j}, C^{2}=\frac{\alpha}{2 F^{3}}\left[a^{\bar{j} i}+\frac{1}{\alpha^{2}} \eta^{i} \bar{\eta}^{j}\right] \eta_{i} \bar{\eta}_{j}=\frac{H-2 \alpha F}{2 \alpha F}, 1+C^{2}=\frac{H}{2 \alpha F} \neq 0$ and $C^{i}=$ $\frac{\sqrt{\alpha}}{F \sqrt{2 F}}\left[a^{\bar{j} i}+\frac{1}{\alpha^{2}} \eta^{i} \bar{\eta}^{j}\right] \bar{\eta}_{j}=\sqrt{\frac{\alpha}{2 F}}\left(\frac{2 \alpha+\bar{\varepsilon}}{\alpha^{2}} \eta^{i}+b^{i}\right)$. So, $H_{i \bar{j}}=a_{i \bar{j}}-\frac{1}{2 \alpha^{2}} l_{i} l_{\bar{j}}+\frac{\alpha}{2 F^{3}} \eta_{i} \eta_{\bar{j}}$ is invertible and its inverse is $H^{\bar{j} i}=a^{\bar{j} i}+\frac{1}{\alpha^{2}} \eta^{i} \bar{\eta}^{j}-\frac{\alpha^{2}}{H}\left(\frac{2 \alpha+\bar{\varepsilon}}{\alpha^{2}} \eta^{i}+b^{i}\right)\left(\frac{2 \alpha+\varepsilon}{\alpha^{2}} \bar{\eta}^{j}+\bar{b}^{j}\right)$ and $\operatorname{det}\left(a_{i \bar{j}}-\frac{1}{2 \alpha^{2}} l_{i} l_{\bar{j}}+\frac{\alpha}{2 F^{3}} \eta_{i} \eta_{\bar{j}}\right)=\frac{H}{2 \alpha F} \operatorname{det}\left(a_{i \bar{j}}-\frac{1}{2 \alpha^{2}} l_{i} l_{\bar{j}}\right)=\frac{H}{4 \alpha F} \operatorname{det}\left(a_{i \bar{j}}\right)$. But $g_{i \bar{j}}=\frac{F}{\alpha} H_{i \bar{j}}$, with $H_{i \bar{j}}$ from 2), so that we obtain $g^{\bar{j} i}=\frac{\alpha}{F} H^{\bar{j} i}$ and $\operatorname{det}\left(g_{i \bar{j}}\right)=$ $\left(\frac{F}{\alpha}\right)^{n} \operatorname{det}\left(H_{i \bar{j}}\right)$. It results in i) and $\left.i i\right)$.

Example 2. We consider α given by

$$
\begin{equation*}
\alpha^{2}(z, \eta):=\frac{|\eta|^{2}+\varepsilon\left(|z|^{2}|\eta|^{2}-|<z, \eta>|^{2}\right)}{\left(1+\varepsilon|z|^{2}\right)^{2}} \tag{3.9}
\end{equation*}
$$

defined over the disk

$$
\Delta_{r}^{n}=\left\{z \in \mathbf{C}^{n},|z|<r, \quad r:=\sqrt{\frac{1}{|\varepsilon|}}\right\}
$$

if $\varepsilon<0$, on \mathbf{C}^{n} if $\varepsilon=0$ and on the complex projective space $P^{n}(\mathbf{C})$ if $\varepsilon>0$, where $\left.|<z, \eta>|^{2}:=<z, \eta\right\rangle\left\langle z, \eta>\right.$. By computation we obtain $a_{i j}=0$ and $a_{i \bar{j}}=\frac{1}{1+\varepsilon|z|^{2}}\left(\delta_{i \bar{j}}-\varepsilon \frac{\bar{z}^{i} z^{j}}{1+\varepsilon|z|^{2}}\right)$ and so, $\alpha^{2}(z, \eta)=a_{i \bar{j}}(z) \eta^{i} \bar{\eta}^{j}$. Thus it determines a purely Hermitian metrics which have special properties. They are Kähler with constant holomorphic curvature $\mathcal{K}_{\alpha}=4 \varepsilon$. Particularly, for $\varepsilon=-1$ we obtain the Bergman metric on the unit disk $\Delta^{n}:=\Delta_{1}^{n}$; for $\varepsilon=0$ the Euclidean metric on \mathbf{C}^{n}, and for $\varepsilon=1$ the Fubini-Study metric on $P^{n}(\mathbf{C})$. Setting $\beta(z, \eta)$ as in

Example 1, we obtain some examples of \mathbb{R}-complex Hermitian Randers metrics:

$$
\begin{equation*}
F_{\varepsilon}:=\frac{\sqrt{|\eta|^{2}+\varepsilon\left(|z|^{2}|\eta|^{2}-|<z, \eta>|^{2}\right)}}{1+\varepsilon|z|^{2}}+\operatorname{Re} \frac{<z, \eta>}{1+\varepsilon|z|^{2}} \tag{3.10}
\end{equation*}
$$

Similar considerations can be done for the \mathbb{R}-complex Kropina spaces. We are aware of the fact that the subject offers much other working paths with various applications.

References

[1] Abate, M., Patrizio, G., Finsler Metrics - A Global Approach. Lecture Notes in Math. 1591, Springer-Verlag, 1994.
[2] Aikou, T., Projective Flatness of Complex Finsler Metrics. Publ. Math. Debrecen 63 (2003), 343-362.
[3] Aldea, N., Complex Finsler spaces of constant holomorphic curvature. Diff. Geom. and its Appl., Proc. Conf. Prague 2004, Charles Univ. Prague (Czech Republic) 2005, 179-190.
[4] Aldea, N., Munteanu, G., On complex Finsler spaces with Randers metric. (submitted).
[5] Aldea, N., Munteanu, G., (α, β)-complex Finsler metrics. Proc. MENP-4, Bucharest 2006, Geom. Balk. Press 2007, 1-6.
[6] Bao, D., Chern, S. S., Shen, Z., An Introduction to Riemannian Finsler Geom. Graduate Texts in Math. 200, Springer-Verlag, 2000.
[7] Bao, D., Robles, C., On Randers spaces of constant flag curvature. Rep. Math. Phys. 51 (2003), 9-42.
[8] Fukui, Complex Finsler manifold. J. Math. Kyoto Univ. 29 No. 4 (1989), 609-624.
[9] Kobayashi, S., Horst, C., Wu H. H., Complex Differential Geometry, Birkhäuser Verlag, 1983.
[10] Matsumoto, M., Theory of Finsler spaces with (α, β)-metric. Rep. on Math. Phys. 31 (1991), 43-83.
[11] Miron, R., General Randers spaces. Kluwer Acad. Publ., FTPH No. 76 (1996), 126-140.
[12] Miron, R., Hassan, B. T., Variational problem in Finsler Spaces with (α, β) metric. Algebras Groups and Geometries 20 (2003), 285-300.
[13] Munteanu, G., Complex Spaces in Finsler, Lagrange and Hamilton Geometries. Kluwer Acad. Publ. FTPH 141, 2004.
[14] Munteanu, G., Purcaru, M., About \mathbb{R}-complex Finsler Spaces. (submitted).
[15] Royden, H.L., Complex Finsler Metrics. Contemporary Math. 49 (1984), 119-124.
[16] Spiro, A., The Structure Equations of a Complex Finsler Manifold. Asian J. Math. 5 (2001), 291-326.
[17] Wong, P.-Mann, A survey of complex Finsler geometry. Advanced Studied in Pure Math. Vol. 48 Math. Soc. of Japan (2007), 375-433.
[18] Sabãu, V. S., Shimada, H., Remarkable classes of (α, β)-metric spaces. Rep. on Math. Phys. 47 No. 1 (2001), 31-48.

Received by the editors December 14, 2006

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics, 'Transilvania' Univ. Braşov, Iuliu Maniu 50, Braşov 500091, Romania, e-mail: nicoleta.aldea@lycos.com, mpurcaru@unitbv.ro

