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ON KINEMATICS OF SEMI-EUCLIDEAN
SUBMANIFOLDS ON THE PLANE IN E3

1
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Abstract. In this study, we obtained an equation of homothetic motion
of any smooth semi-Euclidean submanifold M on its tangent plane at the
contact points, along pole curves which are trajectories of instantaneous
rotation centers at the contact points. Also, we gave some remarks for the
homothetic motions that are both sliding and rolling at every moment.
We establish a surprising relationship between the curvatures of the mov-
ing and fixed pole curves.
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1. Preliminaries

We know that the angular velocity vector has an important role in kine-
matics of two rigid bodies, especially one rolling on another, [1], [8] and [9].
Mathematicians and physicists have interpreted rigid body motions in various
ways. K. Nomizu [9] has studied the 1-parameter motions of orientable sur-
face M on tangent space along the pole curves using parallel vector fields at
the contact points and he gave some characterizations of the angular velocity
vector of rolling without sliding. H. H. Hacisalihoğlu showed some properties of
1-parameter homothetic motions in Euclidean space [4]. In this study we define
the homothetic motion of M on the tangent plane of M and we shall give some
results and conditions using any vector field and Frenet frames along smooth
pole curves on M and on the tangent plane for a homothetic motion.

The homothetic motion in a 3-dimensional semi-Euclidean space with the
index 1 is generated by the transformation

(1.1) F : E3
1 −→ E3

1

X −→ Y = hAX + C

where A ∈ SO1 (3), and X and C are 3 × 1 vectors. The elements of A , C
and h are continuously differentiable functions of time-dependent parameter t
and the elements of X are coordinates of a point in the body. By differentiating
(1.1) we have
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(1.2) Y ′ = hAX ′ + (h′A + hA′) X + C ′

where (h′A + hA′)X +C ′ is the sliding velocity of X. We call X a pole point if
the sliding velocity of X vanishes and locus of points of X call the pole curve.
We take B as hA, so the equation of the moving pole curve is X = −(B′)−1C ′.
Substitution X with X = −(B′)−1C ′ in (1.1) we obtain fixed-pole curve Y =
−B(B′)−1C ′ + C. Now we examine the matrix B(B′)−1.

B(B′)−1 = hA
(
h′−1A−1 + h−1 (A′)−1

)
= hh′−1I3︸ ︷︷ ︸+ A′A−1︸ ︷︷ ︸

ϕ S

where ϕ and S are respective sliding and rolling parts of (1.1). For S 6= 0, there
is a uniquely determined vector W (t) such that S(U) equal to the cross-product
W (t) × U for every vector U . The vector W (t) is called the angular velocity
at instant t and the homothetic motion F in (1.1) is called rolling if W (t) is
tangent to N , and F is rolling if W (t) is normal to N at the contact point of
M and N at an instant t [11].

2. Introduction

It is well known that in a Lorentzian manifold we can find three types of
submanifolds: Space-like (or Riemannian), time-like (Lorentzian) and light-like
(degenerate or null), depending on the induced metric in the tangent vector
space. Lorentz surfaces has been examined in numerous articles and books. In
this article, however, we have examined some characteristics belonging to the
surface by making some special choices of coordinate curves on the surface which
are on the intersection points of tangent vector spaces. Let IR3 be endowed
with the pseudoscalar product of X and Y is defined by

〈X, Y 〉 = x1y1 + x2y2 − x3y3 X = (x1, x2, x3), Y = (y1, y2, y3)

(IR3, 〈, 〉) is called 3-dimensional Lorentzian space denoted by E3
1 . The Loren-

tzian vector product is defined by

XΛY =

∣∣∣∣∣∣

e1 e2 −e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣

A vector X in E3
1 is called a space-like, light-like, time-like vector if 〈X,X〉 >

0, 〈X, X〉 = 0 or 〈X, X〉 < 0, respectively. For a non-null vector X ∈ E3
1 , the

norm of X defined by
‖X‖ =

√
| 〈X, X〉 |

and X is called a unit vector if ‖X‖ = 1[6].
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An arbitrary curve (α) in E3
1 is called a space-like, light-like or time-like

if all of its velocity vectors α′ space-like, light-like or time-like, respectively.
Let T , N and B be tangent, principal normal and binormal vector fields of α,
respectively. If α is a space-like curve with a space-like or time-like principal
normal N , then the Frenet formulae read

(2.1)




T ′

N ′

B′


 =




0 k1 0
−εk1 0 k2

0 k2 0







T
N
B




where 〈T, T 〉 = 1, 〈N, N〉 = ε = ±1, 〈B,B〉 = −ε, 〈T,N〉 = 〈T, B〉 = 〈N,B〉 =
0. If α is a space-like curve with a null principal normal N , then the Frenet
formulae read

(2.2)




T ′

N ′

B′


 =




0 k1 0
0 k2 0
−k1 0 k2







T
N
B




where 〈T, T 〉 = 1, 〈N, N〉 = 〈B, B〉 = 0, 〈T, N〉 = 〈T, B〉 = 0, 〈N,B〉 = 1. If α
is a time-like curve then the Frenet formulae read

(2.3)




T ′

N ′

B′


 =




0 k1 0
k1 0 k2

0 −k2 0







T
N
B




where 〈T, T 〉 = −1, 〈N, N〉 = 〈B,B〉 = 1, 〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0 [3, 7].

3. Homothetic Motion Of Submanifolds M On Σ

Let us consider the smooth semi-Euclidean manifold M and the tangent
plane Σ of M at contact points P ∈ M along moving and fixed smooth pole
curves X(t) on M and Y (t) on Σ starting at P . We shall take a rectangular
coordinate system in E3

1 and the unit vectors (1, 0, 0) , (0, 1, 0) and (0, 0, 1) of
E3

1 . Let ξ be a unit normal vector field of M along the curve (X). We wish to
move homotheticly M on Σ along the smooth pole curves X(t) and Y (t). We
can define homothetic motion M on Σ as

(3.1)
F : M −→ Σ

X −→ Y = BX + C, B = hA

since F (M) is tangent to Σ at the contact points we have ξ = e3 and ξ =
e2 for time-like and space-like manifolds respectively. Suppose that and be
orthonormal systems along pole curves (X) and (Y ) on M and respectively.
Let b1, b2 and a1, a2 be orthonormal vector fields along (X) and (Y ) so that
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b1 = hB−1a1 and b2 = hB−1a2. Hence {b1, b2, ξ} and {a1, a2, e3} (or{a1, a2, e2})
will be a moving and fixed system for (X) and (Y ) respectively. Since ξ (t) ∈
Sp {N, B} we can write

(3.2) ξ(t) = λN + µB

where λ and µ are smooth functions dependent of the time parameter t. To
determine the orthogonal matrix A, we have to construct the frames {b1, b2, ξ}
and {a1, a2, e3} (or {a1, a2, e2}) along the pole curves (X) and (Y ) respectively.
During this operation we make use of a Darboux frame along (X) and tangent
and principal normal vector field of (Y ) at the contact points on M and Σ
respectively.

i. The case when M is submanifold with space-like normal and (X)
is space-like curve:

In this case, from (2.1) we take BΛN = εT, TΛB = N , TΛN = B and we
have λ2 − µ2 = ε and λλ′ − µµ′ = 0 for (X). From (3.2) we obtain

(3.3) ξΛT = −µN − λB

So we can find semi-orthogonal matrices P, Q, R ∈ S1O(3) between the orthonor-
mal systems {T, N, B} and {e1, e2, e3} , {T, ξΛT, ξ} and {T, N, B} , {b1, b2, ξ}
and {T, ξΛT, ξ} respectively. Hence, the matrix A1 = [P ]−1 [Q]−1 [R]−1 ∈
S1O(3) transforms b1 to e1, b2 to e2 and ξ to e3. The tangent spaces Sp {b1, b2}
and Sp {T, ξΛT} are the same spaces and hyperbolic angle between b1 and T (b2

and ξΛT respectively) be θ. We designate the skew-symmetric matrix dA−1
1

dt A1

in semi-Euclidean mean as W1, then W1 will be:

(3.4)

W1=




0
{

ελk1 cosh θ
−εγ sinh θ

}
θ′ + εµk1

−{ελk1 cosh θ−εγ sinh θ} 0 {ελk1 sinh θ−εγ cosh θ}
θ′ + εµk1

{
ελk1 sinh θ
−εγ cosh θ

}
0




where γ = εk2 + λµ′ − λ′µ . Thus we proved the following theorem.

Theorem 1. If θ′ + εk1µ = 0, then b1 and b2 vector fields are parallel with
the connection of M along space-like curve (X). In this case, b1 and b2 have no
any component in TM (X(t)).

Similarly, let T ,N and B vector fields be Frenet vectors of (Y ). Since (Y )
is a planar space-like curve, the binormal vector field of (Y ) will be of the
same direction with the time-like vector e2, so we take B = e2 and (Y ) is
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a space-like curve with time-like principal normal vector field. We can find
again the semi-orthogonal matrices P , Q, R ∈ S1O(3) between the orthonormal
systems

{
T , N, e2

}
and {e1, e2, e3} ,

{
T , e2ΛT , e2

}
and

{
T , N, e2

}
, {a1, a2, e2}

and
{
T , e2ΛT , e2

}
. Thus, the matrix A2 =

[
P

]−1 [
Q

]−1 [
R

]−1
transforms a1

to e1, a2 to e2 and e3 to e3 respectively. The tangent spaces Sp {a1, a2} and
Sp

{
T , e2ΛT

}
are the same spaces and hyperbolic angle between a1 and T (a2

and e2ΛT , respectively) is θ. We designate the skew-symmetric matrix dA−1
2

dt A2

in semi-Euclidean mean as W2, then W2 will be:

(3.5) W2 =




0 0 θ′ − k1

0 0 0
θ′ − k1 0 0




Hence we proved the following theorem.

Theorem 2. If θ′ − k1, then a1 and a2 vector fields are parallel with the
connection of Σ along the space-like curve (Y ). In this case, a1 and a2 have no
any component in TΣ(Y (t)).

Therefore, we can find the matrix A using A1 and A2 as A = A2A
T
1 so

that A transforms b1 to a1, b2 to a2 and ξ to e3. respectively. The skew-
symmetric matrix S = dA

dt A−1 is instantaneous rotation matrix and S represents
a linear transformation as S : TΣ(Y (t)) −→ Sp {e2}. We can find the matrix S
using (3.4) and (3.5) as S = A2 (−W2 + W1)A−1

2 . Consequently, the matrix S
determines a vector W ∈ Sp {a1, a2, e2}. For P ∈ M , we find

(3.6)

W |P =−
{

ελk1 sinh θ−
εγ cosh θ

}
a1|P +

{
ελk1 cosh θ−
εγ sinh θ

}
a2|P +

(
θ′ + εµk1−

θ′ + k1

)
e2|P

Hence, we can give the following theorem and remark.

Theorem 3. Let b1, b2 and a1, a2 be any orthogonal vector fields along the
space-like pole curves (X) and (Y ) respectively. Thus F is a homothetic motion
if and only if θ′ + εµk1 − θ′ + k1 = 0.

Remark 1. If b1, b2 and a1, a2 are parallel vector fields along the space-like
pole curves (X) and (Y ) respectively, then F is a homothetic motion defined as
B(b1) = ha1, B(b2) = ha2 and B(ξ) = he2. In this case, if the space-like pole
curves (X) and (Y ) are geodesics on M and Σ respectively, θ and θ are constant
along the homothetic motion.
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Theorem 4. Let F be a homothetic motion. F is only sliding motion without
rolling if the space-like pole curves (X) is passing through the flat points of
submanifold M , thus the vector field W will vanish at the flat points.

Proof. Let SM be shape operator of the space-like submanifold M, then we
have,

SM

(
dX

dt

)
=

dξ

dt

At the flat point P on (X) of M we have,

SM

(
dX

dt

∣∣∣∣
P

)
= 0

and differentiating of Bξ = he3 with respect to t we obtain

S (e2) = −A
dξ

dt

∣∣∣∣
P

where −Adξ
dt will be at P as follow.

−A
dξ

dt

∣∣∣∣
P

= {ελk1 cosh θ − εγ sinh θ}︸ ︷︷ ︸
β1|P

a1|P − {ελk1 sinh θ − εγ cosh θ}︸ ︷︷ ︸
β2|P

a2|P

Finally, we obtain β1(P ) = 0 and β2(P ) = 0 so S = 0. Consequently, the rolling
part of F will vanish. Hence the homothetic motion F is sliding without rolling
at the flat points on (X) of M . 2

Remark 2. Let (X) be a space-like pole curve on a smooth submanifold M
which does not pass through a flat point of M . There exists a unique homothetic
motion of M on the tangent plane at P = X(to) such that Y (t) = F (X(t)) is
the locus of contact points.

Remark 3. If b1, b2 and a1, a2 are parallel vector fields along the planar
space-like pole curves (X) and (Y ) respectively and λ = 0, then the homothetic
motion F will be a sliding motion.

Remark 4. If (X) is a planar asymptotic space-like pole curve on the sub-
manifold M and θ and θ are constant, then k1

k1
is constant.

Remark 5. During the homothetic motion, the Darboux vector field W will be

null, time-like and space-like if γ = ∓λk1, γ =
√

λ2k2
1 − 1, and γ =

√
λ2k2

1 + 1,
respectively.
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ii. The case when M is a submanifold with space-like normal and
(X) is time-like curve:

In this case, from (2.3) we take BΛN = T, TΛB = −N , TΛN = B and we
have λ2 + µ2 = 1 and λλ′ + µµ′ = 0 for (X). From (3.2) we obtain

(3.7) ξΛT = µN − λB

So we can find the semi-orthogonal matrices P, Q, R ∈ S1O(3) between the
orthonormal systems {T, N, B} and {e1, e2, e3} , {T, ξΛT, ξ} and {T, N,B} ,

{b1, b2, ξ} and {T, ξΛT, ξ} respectively. Hence, A1 = [P ]−1 [Q]−1 [R]−1 ∈ S1O(3)
is the matrix which transforms b1 to e1, b2 to e2 and ξ to e3. The tangent spaces
Sp {b1, b2} and Sp {T, ξΛT} are the same spaces and hyperbolic angle between
b1 and T (b2 and ξΛT respectively) is θ. We designate the skew-symmetric

matrix dA−1
1

dt A1 in semi-Euclidean mean as W1, then W1 will be follows.

(3.8)

W1 =




0 {λk1 sinh θ+δ cosh θ} θ′+µk1

−{λk1 sinh θ+δ cosh θ} 0 {λk1 cosh θ+δ sinh θ}
θ′+µk1 {λk1 cosh θ+δ sinh θ} 0




where δ = k2 + λµ′ − λ′µ. Thus we proved the following theorem.

Theorem 5. If θ′ + k1µ = 0, then b1 and b2 vector fields are parallel with the
connection of M along the space-like curve (X). In this case, b1 and b2 have no
any component in TM (X(t)) .

Similarly, let T ,N and B vector fields be Frenet vectors of (Y ). Since the
(Y ) is a planar space-like curve, the binormal vector field of (Y ) will be of
the same direction as the time-like vector e2. So we take B = e2 and (Y )
is a space-like curve with time-like principal normal vector field. We can find
again the semi-orthogonal matrices P , Q, R ∈ S1O(3) between the orthonormal
systems

{
T , N, e2

}
and {e1, e2, e3} ,

{
T , e2ΛT , e2

}
and

{
T , N, e2

}
, {a1, a2, e2}

and
{
T , e2ΛT , e2

}
. Thus, the matrix A2 =

[
P

]−1 [
Q

]−1 [
R

]−1
transforms a1

to e1, a2 to e3 and e2 to e2 respectively. The tangent spaces Sp {a1, a2} and
Sp

{
T , e2ΛT

}
are the same spaces and the hyperbolic angle between a1 and T

(a2 and e2ΛT respectively) will be θ. We designate the skew-symmetric matrix
dA−1

2
dt A2 in semi-Euclidean mean as W2, then W2 will be as follows:

(3.9) W2 =




0 0 θ′ + k1

0 0 0
θ′ + k1 0 0




Hence we proved the following theorem.
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Theorem 6. If θ′ + k1, then a1 and a2 vector fields are parallel with the
connection of Σ along the space-like curve (Y ). In this case, a1 and a2 have no
any component in TΣ(Y (t)).

Therefore we can find the matrix A, using A1 and A2 as A = A2A
T
1 so that

A transforms b1 to a1, b2 to a2 and ξ to e2, respectively. The skew-symmetric
matrix S = dA

dt A−1 is an instantaneous rotation matrix and S represents a
linear transformation as S : TΣ(Y (t)) −→ Sp {e2}. We can find the matrix S
using (3.8) and (3.9) as S = A2 (−W2 + W1) A−1

2 . Consequently, the matrix S
determines a vector W ∈ Sp {a1, a2, e2}. For P ∈ M , we find

(3.10)

W |P =
{

λk1 sinh θ+
δ cosh θ

}
a1|P +

{
λk1 cosh θ+
δ sinh θ

}
a2|P +

(
θ′ + µk1−

θ′ − k1

)
e2|P

Thus we can give the following theorems and remarks.

Theorem 7. Let b1, b2 and a1, a2 be any orthogonal vector fields along the
space-like pole curves (X) and (Y ) respectively. Hence F is a homothetic motion
if and only if θ′ + µk1 − θ′ − k1 = 0.

Remark 6. If b1, b2 and a1, a2 are parallel vector fields along the time-like
pole curves (X) and (Y ) respectively, then F is a homothetic motion defined as
B(b1) = ha1, B(b2) = ha2 and B(ξ) = he2. In this case, if the space-like pole
curves (X) and (Y ) are geodesics on M and Σ respectively, θ and θ are constant
along the homothetic motion.

Theorem 8. Let F be a homothetic motion. F is only sliding motion without
rolling if the time-like pole curves (X) passing through the flat points of the
submanifold M , thus the vector field W will vanish at the flat points.

Proof. It can be easily proved, similarly as Theorem 4. 2

Remark 7. Let (X) be a time-like pole curve on a smooth submanifold M
which does not pass through a flat point of M . There exists a unique homothetic
motion of M on the tangent plane at P = X(to) such that Y (t) = F (X(t)) is
the locus of contact points.

Remark 8. If b1, b2 and a1, a2 are parallel vector fields along the planar time-
like pole curves (X) and (Y ) respectively and λ = 0, then the homothetic motion
F will be a sliding motion.

Remark 9. If (X) is a planar asymptotic time-like pole curve on the subman-
ifold M and θ and θ are constant, then k1

k1
is constant.
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Remark 10. During the homothetic motion, the Darboux vector field W will

be null, time-like and space-like if δ = ∓λk1, δ =
√

λ2k2
1 − 1, and δ =

√
λ2k2

1 + 1,
respectively.

iii. The case when M is a submanifold with time-like normal and
(X) is space-like curve:

In this case, from (2.1) we take BΛN = εT, TΛB = −N , TΛN = B and
we have λ2 − µ2 = −ε and λλ′ − µµ′ = 0 for (X). From (3.2) we obtain

(3.11) ξΛT = −µN − λB

So we can find the semi-orthogonal matrices P, Q, R ∈ S1O(3) between the
orthonormal systems {T, N, B} and {e1, e2, e3} , {T, ξΛT, ξ} and {T, N,B} ,

{b1, b2, ξ} and {T, ξΛT, ξ} respectively. Hence, A1 = [P ]−1 [Q]−1 [R]−1 ∈ S1O(3)
is the matrix which transforms b1 to e1, b2 to e2 and ξ to e3. The tangent spaces
Sp {b1, b2} and Sp {T, ξΛT} are the same spaces and the angle between b1 and
T (b2 and ξΛT respectively) will be θ. We designate the skew-symmetric matrix
dA−1

1
dt A1 in semi-Euclidean mean as W1, then W1 will be as follows.

(3.12)

W1 =




0 θ′−εµk1 {−ελk1 cos θ+εϕ sin θ}
−θ′+εµk1 0 {ελk1 sin θ+εϕ cos θ}

{−ελk1 cos θ+εϕ sin θ} {ελk1 sin θ+εϕ cos θ} 0




where ϕ = −εk2 + λµ′ − λ′µ. Thus we proved the following theorem.

Theorem 9. If θ′ − εµk1 = 0, then b1 and b2 vector fields are parallel with
the connection of M along space-like curve (X). In this case, b1 and b2 have no
any component in TM (X(t)).

Similarly, let T ,N and B vector fields be Frenet vectors of (Y ). Since (Y )
is a planar space-like curve, the binormal vector field of (Y ) will be of the
same direction with the time-like vector e3. So we take B = e3 and (Y ) is
a space-like curve with time-like principal normal vector field. We can find
again a semi-orthogonal matrices P , Q, R ∈ S1O(3) between the orthonormal
systems

{
T , N, e3

}
and {e1, e2, e3} ,

{
T , e3ΛT , e3

}
and

{
T , N, e3

}
, {a1, a2, e3}

and
{
T , e3ΛT , e3

}
. Thus, the matrix A2 =

[
P

]−1 [
Q

]−1 [
R

]−1
transforms a1

to e1, a2 to e2 and e3 to e3 respectively. The tangent spaces Sp {a1, a2} and
Sp

{
T , e2ΛT

}
are the same spaces and the angle between a1 and T (a2 and

e3ΛT respectively) will be θ. We designate the skew-symmetric matrix dA−1
2

dt A2

in semi-Euclidean mean as W2, then W2 will be as follows.

(3.13) W2 =




0 θ′ − k1 0
−θ′ + k1 0 0

0 0 0



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Hence we proved the following theorem.

Theorem 10. If θ′ − k1, then a1 and a2 vector fields are parallel with the
connection of Σ along the space-like curve (Y ). In this case, a1 and a2 have no
any component in TΣ(Y (t)).

Therefore we can find the matrix A using A1 and A2 as A = A2A
T
1 so that

A transforms b1 to a1, b2 to a2 and ξ to e3, respectively. The skew-symmetric
matrix S = dA

dt A−1 is instantaneous rotation matrix and S represents a linear
transformation S : TΣ(Y (t)) −→ Sp {e3}. We can find the matrix S using (3.12)
and (3.13) as S = A2 (−W2 + W1)A−1

2 . Consequently, the matrix S determines
a vector W ∈ Sp {a1, a2, e3}. For P ∈ M , we find

(3.14)

W |P = −
{

ελk1 sin θ+
εϕ cos θ

}
a1|P +

{−ελk1 cos θ+
εϕ sin θ

}
a2|P +

(
θ′ − εµk1−

θ′ + k1

)
e3|P

Thus we can give the following theorems and remarks.

Theorem 11. Let b1, b2 and a1, a2 be any orthogonal vector fields along the
space-like pole curves (X) and (Y ) respectively. Hence F is a homothetic motion
if and only if θ′ − εµk1 − θ′ + k1 = 0.

Remark 11. If b1, b2 and a1, a2 are parallel vector fields along the space-like
pole curves (X) and (Y ) respectively, then F is a homothetic motion defined as
B(b1) = ha1, B(b2) = ha2 and B(ξ) = he3. In this case, if the space-like pole
curves (X) and (Y ) are geodesics on M and Σ respectively, θ and θ are constant
along the homothetic motion.

Theorem 12. Let F be a homothetic motion. F is only sliding motion without
rolling if the space-like pole curves (X) is passing through the flat points of the
submanifold M , thus the vector field W will vanish at the flat points.

Proof. It can be easily proved, similarly Theorem 4. 2

Remark 12. Let (X) be a space-like pole curve on a smooth submanifold M
which does not pass through a flat point of M . There exists a unique homothetic
motion of M on the tangent plane at P = X(to) such that Y (t) = F (X(t)) is
the locus of points of contact.

Remark 13. If b1, b2 and a1, a2 are parallel vector fields along the planar
space-like pole curves (X) and (Y ) respectively and λ = 0, then the homothetic
motion F will be sliding motion.
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Remark 14. If (X) is a planar asymptotic space-like pole curve on the sub-
manifold M , and θ and θ are constant then k1

k1
is constant.

Remark 15. If λ = k2 = 0 (or k1 = 0 and ϕ = 0) and ϕ =
√

1− λ2k2
1 satisfy

during the homothetic motion then the Darboux vector field W will be null and
space-like respectively. Thus W will never be time-like during homothetic motion
F .

Remark 16. Homothetic motion can not be defined if one of the submanifold
M , (X) and (Y ) curves is light-like. In this case the matrix A is not an orthog-
onal (in semi-Euclidean sense). Furthermore, in this case, homothetic motions
is not regular motions.

Example 1. Let the submanifold M be cylinder with the time-like principal
normal which has the equation x2

1 − (1− x3)2 = −1 and

X (t) =
(

sinh
(

t√
2

)
,

t√
2
, 1− cosh

(
t√
2

))

be regular space-like curve with time-like principal normal on M . We obtain

T = 1√
2

(
cosh

(
t√
2

)
, 1,− sinh

(
t√
2

))
, N =

(
sinh

(
t√
2

)
, 0,− cosh

(
t√
2

))

B = 1√
2

(
− cosh

(
t√
2

)
, 1, sinh

(
t√
2

))
, ξ =

(
sinh

(
t√
2

)
, 0,− cosh

(
t√
2

))

k1 = 1
2 , k2 = −1

2 , ψ = π, λ = 1, µ = 0

for (X) and let Y (t) =
(

t2

2 , 0, 0
)

be planar space-like curve with space-like
principal normal on Σ. We find

T = 1√
2

(1, 1, 0) , N = 1√
2

(1,−1, 0) , B = (0, 0, 1) ,

k1 = 0, k2 = 0, ψ = π
2 , λ = 0, µ = 1

for (Y ) curve. Since ‖dY/dt‖ = h we find h = t and using dY
dt = B dX

dt we
obtain θ(t) = θ = π

2 so the motion will be as follows.

Y (t) =




t√
2

cosh
(

t√
2

)
t√
2

− t√
2

sinh
(

t√
2

)

− t√
2

cosh
(

t√
2

)
t√
2

t√
2

sinh
(

t√
2

)

−t sinh
(

t√
2

)
0 t cosh

(
t√
2

)


 X(t)+




− t√
2

sinh
(

t√
2

)

− t2√
2

+ t√
2

sinh
(

t√
2

)

−t + t cosh
(

t√
2

)




After calculations we obtain the skew-symmetric matrix S = dA
dt A−1 and W

Darboux vector field from (3.14)

S =




0 0 − 1
2

0 0 1
2

− 1√
2

1√
2

0



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and

W |P =
(
−1

2
,−1

2
, 0

)

respectively and the condition θ′ − εµk1 − θ′ + k1 = 0 = 0 is satisfied. So, the
motion Y (t) = BX(t) + C is homothetic motion.

The space-like cylinder rolling its space-like tangent plane at the contact
points, along the pole curves X(t) and Y(t), respectively
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