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A GENERAL CLASS OF CONTRACTIONS:
A-CONTRACTIONS

M. Akram1, A. A. Zafar,1 A. A. Siddiqui2

Abstract. In this article we introduce a new class of contraction maps,
called A-contractions, which includes the contractions studied by R. Bian-
chini, M. S. Khan, S. Reich and T. Kannen. It is shown that the class of
A-contractions is proper super class of Kannan’s and Khan’s contractions.
Several results due to B. Ahmad, F. U. Rehman, Z. Chuanyi, N. Shioji et
al. are extended to the A-contractions. We also show that a metric space
is complete if and only if it has a fixed point property for A-contractions.

AMS Mathematics Subject Classification (2000): 47H10, 54H25

Key words and phrases: complete metric space, contractions, fixed point

1. Introduction

Let R+ denote the set of all non-negative real numbers and A be the set of
all functions α : R3

+ → R+ satisfying

(i) α is continuous on the set R3
+ (with respect to the Euclidean metric on R3).

(ii) a ≤ kb for some k ∈ [0, 1) whenever a ≤ α (a, b, b) or a ≤ α (b, a, b) or
a ≤ α (b, b, a) for all a, b.

Now we introduce the class of contractions called A-contraction:

Definition 1. A self-map T on a metric space X is said to be A-contraction
if it satisfies the condition:

(A)
d (Tx, Ty) ≤ α (d (x, y) , d (x, Tx) , d (y, Ty))
for all x, y ∈ X and some α ∈ A.

We shall show that the class of A-contractions includes the classes of contractions
studied by Kannan [4], Khan[6], Bianchini [2] and Reich [7].

Definition 2. A self-map T on a metric space X is said to be
(i) K-contraction if there exists a number r ∈ [0, 1/2) such that,

(K) d (Tx, Ty) ≤ r {d (Tx, x) + d (Ty, y)} for all x, y ∈ X. (see [3, p. 116.])
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(ii) M-contraction if there exists a number h ∈ [0, 1) such that,

(M) d (Tx, Ty) ≤ h
√

d (Tx, x) d (Ty, y) for all x, y ∈ X (see [6]).

2. Comparison of M and K-contractions with A-contraction

In this section we show that an M-contraction is a K-contraction and every
K-contraction is an A-contraction; consequently every M-contraction is an A-
contraction.

Theorem 1.
(i) Every M-contraction is K-contraction.
(ii) Every K-contraction is A-contraction and hence every M-contraction is

A-contraction.

Proof.
(i) Let T : X → X be an M-contraction. Then there exists some h ∈ [0, 1)

satisfying the condition (M).
We know that the geometric mean of two positive real numbers v, w always

precedes their arithmetic mean, that is
√

vw ≤ v+w
2 . So that h

√
vw ≤ h

v + w

2
for all h ∈ [0, 1). Hence with v = d (Tx, x) , w = d (y, Ty) we have

h
√

d (Tx, x) d (Ty, y) ≤ r {d (Tx, x) + d (Ty, y)}
for all r ∈ [0, 1/2) and for all x, y ∈ X. This, together with inequality (M),
gives that

d (Tx, Ty) ≤ h
√

d (Tx, x) d (Ty, y) ≤ r {d (Tx, x) + d (Ty, y)} .

(ii) Let T : X → X be a K-contraction. Therefore there exists some r ∈
[0, 1/2) such that (K) holds for all x, y in X. Keeping one such r fixed, we
define a map α : R3

+ → R+ as α (u, v, w) = r (v + w) for all u, v, w ∈ R+. Since
addition and multiplication of reals are continuous, so α is continuous.

Case I: if u ≤ α (u, v, v) = r (v + v) then u ≤ kv with k = 2r ∈ [0, 1).
Case II: If u ≤ α (v, u, v) = r (u + v) then u ≤ r (u + v) gives u ≤ r

1−r v = kv
with k = r

1−r ∈ [0, 1).
Similarly, for case III where u ≤ α (v, v, u) we have u ≤ kv with k = r

1−r ∈
[0, 1) . So, in any case u ≤ kv for some k ∈ [0, 1) . Hence α ∈ A.

Now, by taking u = d (x, y) , v = d (Tx, x) and w = d (Ty, y) and using the
inequality (K), we get that

d (Tx, Ty) ≤ a {d (Tx, x) + d (Ty, y)} = α (d (x, y) , d (Tx, x) , d (Ty, y))

for all x, y ∈ X.
This shows that T is an A-contraction whenever T is K-contraction. This,

together with (i), gives that every M-contraction is an A-contraction. 2

Next we show that an A-contraction may not be K-contraction; hence M
and K-contractions are proper sub-classes of A-contractions. For this, we need
the following result.
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Theorem 2. The self-map T on the metric space X satisfying

d (Tx, Ty) ≤ β max {d (Tx, x)+d (Ty, y) , d (Ty, y)+d (x, y) , d (Tx, x)+d (x, y)}
for all x, y in X and some β ∈ [0, 1/2) is an A-contraction.

Proof. Define the map α : R3
+ → R+ as

α (u, v, w) = β max {u + v, v + w, u + w}
for all u, v, w in R+, where β is any fixed number in [0, 1/2) . Then α ∈ A
because,

1. Clearly α is continuous.
2. For u ≤ α (u, v, v) = β max {u + v, v + u, v + v} , we consider the follow-

ing cases.
Case I. max {u + v, v + u, v + v} = u+ v. In this case, u ≤ β

1−β v ≤ kv, with
k = β

1−β ∈ [0, 1) .

Case II. max {u + v, v + u, v + v} = v + v. In this case, u ≤ kv, with k =
2β ∈ [0, 1) . Similarly, for u ≤ α (v, u, v) or u ≤ α (v, v, u) we have u ≤ kv for
some k ∈ [0, 1) . Hence

d (Tx, Ty) ≤ β max{d (Tx, x) + d (Ty, y) , d (Ty, y) + d (x, y) ,

d (Tx, x) + d (x, y)}
= α (d (x, y) , d (Tx, x) , d (Ty, y))

by the construction of α. Thus T is an A-contraction. 2

The following example, together with Theorem 2, shows that the class of
A-contraction is a proper super-class of K-contractions, and hence so is of M-
contraction.

Example 1. Consider X = {0, 1, 2, 3, 4} with usual metric relative to real line.
T be a self-map on X, given by

Tx =

{
2 if x = 0;
1 otherwise.

We observe that the condition K and hence condition M are not satisfied by T
because with x = 0, y = 1 we have

1 = d (Tx, Ty) ≤ r {d (Tx, x) + d (Ty, y)} = r (2 + 0) = 2r < 1

for all r ∈ [0, 1/2); a contradiction.
However, one can easily verify that T satisfies

d (Tx, Ty) ≤ β max {d (Tx, x)+d (Ty, y) , d (Ty, y)+d (x, y) , d (Tx, x)+d (x, y)}
for all x, y ∈ X and some β ∈ [0, 1/2). Hence, by Theorem 2, T must be an
A-contraction.
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3. Comparison of A-contractions with some other contrac-
tions

In this section we investigate comparison of an A-contraction with the con-
traction maps studied by Bianchini [2] and Reich [7].

Definition 3. A self-map T on a metric space X is said to be
(i) B-contraction if there exists a number b ∈ [0, 1) such that

(B) d (Tx, Ty) ≤ bmax {d (x, Tx) , d (y, Ty)} for all x, y ∈ X.

(ii) R-contraction if there exist non-negative numbers a, b, c satisfying a +
b + c ≤ 1 such that

(R) d (Tx, Ty) ≤ ad (Tx, x)+bd (Ty, y)+cd (x, y) for all x, y ∈ X (see [2], [7]).

Theorem 3. Every B-contraction is an A-contraction on any metric space.

Proof. Assume that T on the metric space X is B-contraction. Define α : R3
+ →

R+ by α (u, v, w) = h max {v, w} for all u, v, w ∈ R+ with some fixed h ∈ [0, 1).
Next we show that α ∈ A.

(i) Clearly α is continuous.
(ii) If u ≤ α (u, v, v) then u ≤ h max {v, v} = kv with k = h ∈ [0, 1) . If

u ≤ α (v, u, v) then u ≤ h max {u, v} = hv because h < 1, so that u ≤ kv with
k = h ∈ [0, 1). Similarly, if u ≤ α (v, v, u) then u ≤ kv for some k = h ∈ [0, 1).
So we deduce that α ∈ A. Further, since T is a B-contraction, we get from the
construction of α that

d (Tx, Ty) ≤ h max {d (x, Tx) , d (y, Ty)} = α (d (x, y) , d (x, Tx) , d (y, Ty))

for all x, y ∈ X. We conclude that T is an A-contraction.
Next theorem establishes the fact that the class of A-contractions includes

all R-contractions:

Theorem 4. Every R-contraction is an A-contraction on a metric space X.

Proof. Assume that T : X → X is an R-contraction. Then by definition, (R)
holds for all x, y in X and a + b + c ≤ 1. Let us define α : R3

+ → R+ by
α (u, v, w) = au + bv + cw for all u,v,w ∈ R+. Then α is continuous.

Further, u ≤ α (u, v, v) = au + bv + cv, implies (1− a)u ≤ (b + c) v and so
u ≤ kv with k = b+c

1−a ∈ [0, 1) .
Similarly, u ≤ α (v, u, v) = av + bu + cv implies (1− b)u ≤ (a + c) v, which

gives u ≤ kv with k = a+c
1−b ∈ [0, 1) , and u ≤ α (v, v, u) = av + bv + cu gives

u ≤ kv with k = a+b
1−c ∈ [0, 1) .

So, α ∈ A. Moreover, by taking u = d (Tx, x) , v = d (Ty, y) and w = d (x, y)
we get that

d (Tx, Ty) ≤ ad (Tx, x) + bd (Ty, y) + cd (x, y) = α (d (x, Tx) , d (y, Ty) , d (x, y))
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by (R). 2

Thus T is an A-contraction whenever it is R-contraction.

4. Some fixed point theorems using A-contractions

In this section we give some results on fixed points of A-contractions. These
include the analogues of certain results in [1], [3] and [6].

Theorem 5. Let T be an A-contraction on a complete metric space X. Then
T has a unique fixed point in X such that the sequence {Tnx0} converges to the
fixed point, for any x0 ∈ X.

Proof. Fix x0 ∈ X and define the iterative sequence {xn} by xn = Tnx0

(equivalently, xn+1 = Txn) where Tn stands for the map obtained by n-time
composition of T with T . Since T is an A-contraction, ∃ α ∈ A s.t (A) of
Definition 1 holds, i.e.

(A) d (Tx, Ty) ≤ α (d (x, Ty) , d (x, Tx) , d (y, Ty))

for all x, y in X.
Replacing x by xn+1 and y by xn in (A), we (by construction of α in A) get

the existence of k ∈ [0, 1) satisfying

d (xn, xn+1) = d (Txn−1, Txn)
≤ α (d (xn−1, xn) , d (Txn−1, xn−1) , d (Txn, xn))
≤ α (d (xn−1, xn) , d (xn, xn−1) , d (xn+1, xn))
≤ kd (xn−1, xn) .

Continuing this way we get

d (xn, xn+1) ≤ kd (xn−1, xn) ≤ k2d (xn−2, xn−1) ≤ . . . ≤ knd (x0, x1)

so that d (xn, xn+1) ≤ knd (x0, x1) for some k ∈ [0, 1) . Thus xn is a Cauchy
sequence in X. Since X is complete, there exists x′ ∈ X such that xn → x′ as
n →∞.

Again, with x = x′ and y = xn, the inequality (A) gives

d (Tx, xn+1) = d (Tx′, Txn)
≤ α (d (x′, xn) , d (x′, Tx′) , d (xn, Txn))
= α (d (x′, xn) , d (x′, Tx′) , d (xn, xn+1)) ,

for all n ∈ N.
By allowing n →∞ and using the continuity of α and metric d, we get

d (Tx′, x′) ≤ α (d (x′, x′) , d (x′, Tx′) , d (x′, x′))
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and hence d (Tx′, x′) ≤ k0 = 0. Thus Tx′ = x′.
Now, if w ∈ X satisfies, Tw = w, then by taking x = w and y = x′ in (A)

we get

d (w, x′) = d (Tw, x′)
≤ α (d (w, x′) , d (Tw, w) , d (Tx′, x′))
≤ α (d (w, x′) , d (w,w) , d (x′, x′))
≤ α (d (w, x′) , 0, 0)
≤ 0.

So that w = x′. 2

Corollary 1. A metric space (X, d) is complete if and only if every A-contra-
ction on X has a fixed point in X.

Proof. If the space X is complete then by the above theorem every A-contraction
on X has a fixed point in X.

Conversly, if every A-contraction on a metric space X has a fixed point,
then, in particular, every K-contraction on X has a fixed point (Notice that our
term K-contraction is called Kannan contraction in [4]). Hence by the argument
given in the proof of Theorem 2 of [3], the space X must be complete. 2

Our next theorem extends Theorem 3 of [1] as follows.

Theorem 6. Let α ∈ A and {Tn}∞n=1 be a sequence of self-maps on the com-
plete metric space (X, d) such that

(A′) d (Tix, Tjy) ≤ α (d (x, y) , d (Tix, x) , d (Tjy, y))

for all x, y in X. Then {Tn}∞n=1 has a unique common fixed point in X.

Proof. Taking any x0 ∈ X. For each n ∈ N, we define xn = Tnxn−1. Since
α ∈ A, we get from (A′) that

(1) d (x1, x2) = d (T1x0, T2x1)
≤ α (d (x0, x1) , d (x0, T1x0) , d (x1, T2x1))
= α (d (x0, x1) , d (x0, x1) , d (x1, x2))
≤ kd (x0, x1)

for some k ∈ [0, 1) . Similarly,

(2) d (x2, x3) = d (T2x1, T3x2)
≤ α (d (x1, x2) , d (x1, T2x1) , d (x2, T3x2))
= α (d (x1, x2) , d (x1, x2) , d (x2, x3))
≤ kd (x1, x2) .
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We get from (1) and (2) that

d (x1, x2) ≤ k2d (x0, x1) .

In general, we get
d (xn, xn+1) ≤ knd (x0, x1)

for some k ∈ [0, 1) . Therefore, {xn} is a Cauchy sequence in the complete metric
space X, so it converges to x′ in X. Next,

d (x′, Tnx′) ≤ d (x′, xm+1)+d (xm+1, Tnx′)
= d (x′, xm+1)+d (Tm+1xm, Tnx′)
≤ d (x′, xm+1)+α (d (xm, x′)+d (Tm+1xm, xm) , d (Tnx′, x′)) (by (A′))
≤ d (x′, xm+1)+α (d (xm, x′) , d (xm+1, xm) , d (Tnx′, x′))

for all m,n in N . If m tends to ∞ then the above inequalities give that

d (x′, Tnx′) ≤ d (x′, x′) + α (d (x′, x′) , d (x′, x′) , d (Tnx′, x′))
≤ α (0, 0, d (Tnx′, x′))
≤ 0

and hence Tnx′ = x′, ∀n ∈ N.
For uniqueness of the fixed point x′, we suppose Tny = y for some y ∈ X.

Then by (A′),

d (x′, y) = d (Tix
′, Tjy)

≤ α (d (x′, y) , d (Tix
′, x′) , d (y, Tjy))

= α (d (x′, y) , 0, 0)
≤ 0

implies x′ = y. 2

Next theorem describes common fixed point of two self-maps on X having
two related metrics. This result generalizes Theorem 4 of [1].

Theorem 7. Let X be a set with two metrics d and δ satisfying the following
conditions:

(i) d (x, y) ≤ δ (x, y) for all x, y in X;
(ii) X is complete with respect to d;
(iii) S, T are self-maps on X such that T is continuous with respect to d and

δ (Tx, Sy) ≤ α (δ (x, y) , δ (x, Tx) , δ (y, Ty))

for all x, y in X and for some α ∈ A.
Then S and T have a unique common fixed point.
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Proof. Take any x0 ∈ X. For each n ∈ N, we define

xn =

{
Sxn−1 if n is even;
Txn−1 if n is odd.

Then, by inequality in the above condition (iii) we get

δ (x1, x2) ≤ δ (Tx0, Sx1)
≤ α (δ (x0, x1) , δ (x0, Tx0) , δ (x1, Sx1))
= α (δ (x0, x1) , δ (x0, x1) , δ (x1, x2)) ≤ kδ (x0, x1)

for some k ∈ [0, 1) as α ∈ A. In general, for any n ∈ N we get (as in the proof
of the previous theorem) that δ (xn, xn+1) ≤ knδ (x0, x1) for some k ∈ [0, 1) .
This, by condition (iii), gives

d (xn, xn+1) ≤ δ (xn, xn+1) ≤ knδ (x0, x1)

for all n ∈ N with k ∈ [0, 1) . So, xn is a Cauchy sequence in X with respect to
d and hence by condition (ii), d (xn, x′) → 0 for some x′ ∈ X.
Since T is given to be continuous with the respect to d we have

0 = lim
n→∞

d (x2n−1, x
′) = lim

n→∞
d (Tx2n, x′) = d (Tx′, x′)

So that Tx′ = x′.
Now, by condition (iii)

δ (x′, Sx′) = δ (Tx′, Sx′)
≤ α (δ (x′, x′) , δ (x′, Tx′) , δ (x′, Sx′))
≤ α (0, 0, δ (x′, Sx′))
≤ 0

since α ∈ A. Hence x′ = Sx′. Thus x′ is a common fixed point of S and T .
For the uniqueness, let y be any common fixed point of S and T in X. Then

by condition (iii),

δ (x′, y) = δ (Tx′, Sy) ≤ α (δ (x′, y) , δ (x′, Tx′) , δ (y, Sy)) ≤ α (δ (x′, y) , 0, 0) ≤ 0,

so that x = y. 2
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