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ATOMS AND A SAKS TYPE DECOMPOSITION IN
EFFECT ALGEBRAS

Mona Khardl, Akhilesh Kumar Singh|2|

Abstract. The present paper deals with the study of the notion of an
atom of a function m defined on an effect algebra L with values in [0, oo];
a few examples of atoms for null-additive as well as for non-null-additive
functions are also given. We have proved a Saks type decomposition the-
orem for an element a with m(a) > 0 (for a suitable m), which does not
contain any atom of m, in a o-complete effect algebra L. A characteriza-
tion for a measure p to be non-atomic (i is defined on a o-complete effect
algebra with values in [0, 0o]) is established and a result for a non-atomic
measure p is proved, which has resemblance with the Intermediate Value
Theorem for continuous functions.
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1. Introduction

In 1992, Kopka [15] defined the D-posets of fuzzy sets, which are closed under
the formations of differences of fuzzy sets, while studying the axiomatical sys-
tems of fuzzy sets. A generalization of such structures of fuzzy sets to an abstract
partially ordered set, where the basic operation is the difference, yields a very
general and, at the same time, a very simple structure called a D-poset [I4]. The
structure of a D-poset supports a non-commutative measure theory and allows
the solution of some problems of non-commutative probability theory, includ-
ing some problems of theory of quantum measurement. Almost at the same
time, Bennett and Foulis [4] introduced so-called effect algebras with partial
addition as a primary operation, which are essentially equivalent to D-posets,
with the aim of modelling unsharp measurements in a quantum mechanical sys-
tem. They are generalization of orthomodular lattices, MV -algebras, and also
of many structures used in Quantum Physics [7], in Mathematical Economics
[10, 1T} 12} 25] and in Fuzzy Theory [8]. The categorical equivalence of D-posets
and effect algebras is discussed in [9]. For a list of nice examples of effect al-
gebras we refer to [5] and for some of its properties we refer also to [6] and
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In the present paper, we have introduced the notion of an atom of a function
m defined on an effect algebra L with values in [0, o], which we have illustrated
by means of several examples and investigated some properties of atoms of a null-
additive function on L. Suzuki [21], for the first time introduced and investigated
the concept of an atom of a fuzzy measure. Pap [I7], further introduced and
studied atoms of null-additive set functions. In 2000, Wu and Wu [24] pointed
out the incorrectness of Lemma 1 and Theorem 1 of [I7], by a counterexample
and gave the correct proof, followed by some properties of atoms of a non-
monotone function. Some important contributions to the study of the theory of
atoms are done by several authors [16] (18] 22| 23]. Prerequisites and some basic
results on effect algebras are collected in Section 2, which have been extensively
used in the subsequent sections. In Section 3, we have studied some properties
of atoms of a null-additive non-monotone function m and obtained that an
element a in a o-complete effect algebra L, with m(a) > 0, for a suitable m
defined on L, can be written as a finite sum of elements a; € L, covered by
a, with m(a;) < e, for every ¢ and for any € > 0. In Section 4, we have also
considered a function p with values in [0, 00] defined on a o-complete effect
algebra L. The notions of lower-semicontinuous (Isc), upper-semicontinuous
(usc) and m-continuous functions on L are introduced, and it is proved that
each atom of a null-additive function m is also an atom of an m-continuous
null-additive function p. In the rest of this section, we have concentrated on
the study of a non-atomic measure, and the a characterization for a measure p
to be non-atomic is established.

Finally, we have proved a theorem for a non-atomic measure p which has
resemblance with the Intermediate Value Theorem for continuous functions.
This result has an interesting history including contributions from Sierpinski,
Fréchet and Hahn and the constructions in this proof are due to Newton [I3].

2. Preliminaries and Basic Results

An effect algebra (L; ®,0,1) is a structure consisting of a set L, two special
elements 0 and 1, and a partially defined binary operation & on L x L satisfying
the following conditions for every a,b,c € L :

(1) If a @ b is defined then b @ a is defined and a ®b =0 P a.

(2) If b®dcand a® (b® c) are defined, then a ® b and (a ® b) @ ¢ are defined
and a® (bdc)=(a®b) ®e.

(3) For every a € L, there exists a unique a* € L such that a ®at is defined
and a ®at = 1.

(4) If a ® 1 is defined, then a = 0.

Throughout the paper, L = (L;®,0,1) denotes, in general, an effect algebra.
In every effect algebra L, a dual operation & to @ can be defined as follows:
a © c exists and equals b if and only if b @ ¢ exists and equals a. We say that
two elements a,b € L are orthogonal and we write a L b, if a @ b exists. For
every a € L, we have a* = 1 © a. We can define a binary relation on L by
a < b if and only if there exists ¢ € L such that ¢c®a = b; < is a partial ordering
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in L, with 0 as the smallest element. Also a L b if and only if a < bt and
(a®b)t =at ©b=>b"0a Moreover, a’ satisfies naturally:

(i) a<b= bt <at,

(ii) (at)t = a.

For ay,...,a, € L, we inductively define a1 ®...®a, = (a1 D ... D an_1)®d
a,, provided that the right-hand side exists. The definition is independent on
permutations of the elements. We say that a finite subset {aj,...,a,} of L
is orthogonal if a; & ... ® a, exists. More generally, we say that {a,} is an
orthogonal family if every finite subfamily is orthogonal. For a sequence {a,}
in L, we say that it is orthogonal if, for every n, @, ,, a; exists. If, moreover
sup,, B¢, a; exists, the sum P,y an of an orthogonal sequence {a,} in L is
defined as sup,, ®i<n a;; N denotes the set of natural numbers.

An effect algebra L is called a o-complete effect algebra if every orthogonal
sequence in L has its sum.

Let us recall the following results which we shall use in the sequel.

2.1 [I]. Let a,b,c € L, such that b < a and ¢ < (¢ ©b). Then b L ¢ and
bdc<a.

2.2 [2]). (i) Let {a1,...,an} C L be orthogonal. If 1 < k < n, then {ay, ..., ar}
and {ag41,...,a,} are orthogonal and @), a; = EBf:I ai ® P i

(1) Let {a, } be an orthogonal sequence in L and A, B C N disjoint such that
a=,cr0n and b=, pa, exist. Thena L band a® b=, 4,5 0n-

2.3 [I]. Let L be a o-complete effect algebra. If {a,} is an increasing
(respectively, decreasing) sequence, then sup,, a,, (respectively, inf, a,) exists.

2.4. Assume that a, b, ¢ are elements of an effect algebra L.

(i) Ifa<b, thenb=a® (boa) [2].

(i) fa< b, thenboa<band bo (b a)=a [A.

(iii) fa < b< ¢, then a® (cOb) = co (bSa) and (cOb)® (bOa) = (cOa)
.

(iv) fa<b<c, then (c8b) < (cOa)and (cSa)s (cebd) =(boa) [9.

(V) Ifa<b<ec then (b8 a)<(cOa)and (cSa)e (bea)=(coOb) [2.

(vifa<b<e¢ thena l (cob)anda® (cob)=co (boa) [2].

(vii) If a < bt < ¢t thena @ (boc) = (a® b) © c [1.

(viii) If a L b, thena < a®band (a®b)©a=0[2.
(

i
ix) Ifalband (a®d) <c, thenco(a®b)=(ca)eb=(ceb)Sal9.

3. Atoms in an Effect Algebra

Throughout this section m is a [0, co]-valued function defined on an effect
algebra L. We have the following definitions.

Definition 3.1. m is called monotone, if we have m(a) < m(b), whenever
a,b € L and a < b; m is called exhaustive, if we have lim,_ . m(a,) = 0 for
any orthogonal sequence {a,} of elements from L; m is called order continuous
(at 0) if limy, 0o m(ay) = 0 whenever a, | 0.
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Example 3.1. Let £ ={0,1, %, %, ey %, ...}. Let us define: for each %, 0@% =
%, % &) % =1,001=1andif p #gq, % @ % cannot be defined. Evidently, F is
an effect algebra. Let us consider the function m defined on E by m(z) = 1 if
x = 1 and otherwise m(x) = 0. Then one can observe that m is a monotone,

exhaustive and order continuous function.

Definition 3.2. m is called null-additive if we have m(a @ b) = m(a), when-
ever a,b € L, a L b and m(b) = 0.

Example 3.2. Let E = {0,a,b,¢,1}. Let us define: a®@b=0b®a=¢,bDc
=c®b=a®a=1landlet 0 =06z for all x € E. Then one can easily
see that E is an effect algebra. Consider two functions m, and ms defined on
E as follows:

(¢) mi(xz) =1 if x € {¢,1} and otherwise my(x) = 0,

(#7) mo(z) =1 if x € {0,0a, ¢, 1} and otherwise mo(x) = 0.
Then m; is not a null-additive function while ms is a null-additive function.

Example 3.3. Let F = {0,a,b,¢,d,e,1}. Let us define: a b =bPa = ¢,
b@Gc=chdb=add=dda=cPe=1landlet 0 =0z forall x € F.
Then one can easily see that F is an effect algebra. Consider two functions m;
and mo defined on E as follows:

(i) my(x) =1 if z € {0, a, ¢} and otherwise m;(z) =0,

(ii) ma(x) =1 if z € {a,c, 1} and otherwise mo(z) = 0.
Then both m; and ms are not null-additive functions.

Definition 3.3. An element a € L with m(a) > 0 is called an atom of m if
fora,b e L with b < a,

(¢2) m(b) =0 or

(#3) m(a) = m(b) and m(a © b) = 0.

Remark 3.1. For a null-additive function m, we may suppose in (ii) only
m(a ©b) = 0. Since b®at > b, we get (b®at)t < bt ie. aob < bt.
Hence b @ (a © b) exists and therefore from null-additivity of m we get
m(b @& (a & b)) =m(b), i.e. m(a) =m(b).

Example 3.4. (i) In Example 3.2, the elements ¢ and 1 of E are atoms of my,
while the elements 0, a, ¢ and 1 of E are not atoms of ms.

(74) In Example 3.3, the elements 0, a and ¢ of E are not atoms of m,, while
elements a, ¢ and 1 of E are atoms of mso.

Definition 3.4. An element a € L with m(a) > 0 is said to have an atom of
m if there exists b € L with b < a, such that b is an atom of m.

One can observe that if an element a € L with m(a) > 0 does not contain
any atom of m, then q itself is not an atom of m and any element b < a, b€ L
with m(b) > 0 also does not contain any atom of m.
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Proposition 3.1. Let m be a null-additive function and let a; and as be or-
thogonal atoms of m with m(a1Aaz) = 0. Then a16(a1Aaz) and a26(a1Nas) are
orthogonal atoms of m and m(a1S(a1Aaz)) = m(ay), m(azS(a1Naz)) = m(asz).

Proof. Let b < a; © (a1 Aaz), b€ L and m(b) > 0. Since b < a1 © (a1 A ag) <
a1, using 2.4(ii) and (ili) we get ((a1 © (a1 A a2)) ©b) ® (a1 A az) exists and
((a1 © (a1 AN az)) ©b) & (a1 Aaz) = (a1 ©b). Also, since m is null-additive and
m(a1 A ag) =0, we get

m((a1 © (a1 Nag))©b) = m(((a1 © (a1 Naz)) ©b) & (a1 A az))
= m(a; ©D)
0.

Hence a1 S (a1 Aag) is an atom of m. Similarly, we can prove that as © (a1 Aag)
is also an atom of m.
Further, since a; and ay are orthogonal, we get

a; © (a1 A ag) < aj‘ < ((Zz S (a1 A ag))l,

ie. (a16(a1MNa2))@ (a0 (a1 ag)) exists. Hence a3 © (a1 Aaz) and ax© (a1 Aag)
are orthogonal atoms of m.

Finally, since m is null-additive and a; and as are atoms of m, we get
m(ay © (a1 A az)) = m(ar) and m(as © (a1 A az)) = m(az). O

Proposition 3.2. Letm be a null-additive function and let a1 and as be atoms
of m with m(a; Aag) > 0. Then ay Aaz is an atom of m and m(ay © (a1 ANag)) =
m(az © (a1 A az)) =0 and m(ar A az) = m(ar1) = m(ag).

Proof. Since a1 Aas < a1, a1 Aag < ag and a; and ag are atoms of m, we get by
the definition of an atom of m, m(a; © (a1 Aaz)) = 0 and m(az © (a1 Aaz)) = 0.

Again, let b < a3 Aag, b € L and m(b) > 0. Since (a1 Aa2)Sb < a;Aaz < ay.
Using 2.4(ii) and (vi), we get ((a1 A a2) ©b) @ (a1 © (a1 A a2)) exists and
((a1 ANa2) ©b) ® (a1 © (a1 A az)) = (a1 ©b). Also since m is null-additive and
ay is an atom of m, it follows that

m((ar Aag) ©b) = m(((a1 ANa2) ©b) @ (a1 © (a1 A az)))
= m(a; ©b)

e

Hence a; A as is an atom of m.
Finally, since a; A as < a1, a1 A as < az and m is null-additive, we get

m(a1 A az) = m(ay) and m(a; A az) = m(az)

and therefore m(a1 A az2) = m(a1) = m(asz). O
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Remark 3.2. For two atoms a; and as of m, only one of the relations
m(a; Aaz) =0, m(ay A az) =m(ar) = m(asz)
s possible.

Proposition 3.3. Let m be a finite, order continuous and ezhaustive function
defined on a o-complete effect algebra L. Let A be an orthogonal family of atoms
of m. Then

(1) A is at most countable;

(”) m(an) = m(an+1): ne Nz'

(#41) limy,— oo m(ay) = 0;

(iv) for any e > 0, there exists ko € N such that m (@, .1 an) <.

Proof. (i) For n € N, let F,, = {a € A:m(a) > 1}. Then F, is at most finite.
Otherwise, by exhaustivity of m, we get lim;_,o, m(a;) = 0 for an orthogonal
sequence {a;} in F,, and so, for ¢ = %, n € N, we have v € N with m(a;) < %,
i > v. Clearly, A= J,cy Fn- This yields that A is at most countable.

(ii) Clearly, we can suppose that a,, satisfies m(a,) = m(any1), n € N.

(iii) Follows by the exhaustivity of m.

(iv) Since @;2, 1 a; | 0 and m is order continuous, we have the assertion.
O

Theorem 3.1. Let m be a bounded, null-additive and exhaustive function,
defined on a o-complete effect algebra L. If each a € L with m(a) > 0 contains
an atom of m, then there exist at most a countable number of pairwise orthogonal
atoms a; from L with a; < a (i € I), such that m(a © @,;c; a;) = 0, where each
element a € L contains at most a countable number of distinct atoms of m.

Proof. Let a € L with m(a) > 0. If g itself is an atom of m, then the theorem
is proved. Otherwise, we take a; € L, a1 < a, which is an atom of m such that
m(ay) > 3sup{m(c) : ¢ < a, cis an atom of m}. Then either m(a & a;) =0
and then the theorem is proved, or m(a © a1) > 0 and in this case we have
az € L, as < a © a1, which is an atom of m and such that

1
m(ag) > B sup{m(c):c<a©ay, cis an atom of m}.
Now let us consider (a © a1) © az < a. Then either m((a © a1) S az) = 0, i.e.
with the aid of 2.1 and 2.4(ix), m((a © a1) © az) = m(a & (a1 ® az)) = 0, and

then the theorem is proved or m(a © (a1 @ az)) > 0 and in this case we have
az € L, a3 < a© (a1 ® as), which is an atom of m and such that

1
m(as) > 3 sup{m(c) : ¢ < a S (a1 Daz), cis an atom of m}.

By the successive use of 2.1 and 2.4(ix), inductively at j*" stage, either we have
m (a ) @f:_ll ai> = 0 and then the theorem is proved or m (a S) @5;11 ai) >0
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and in this case, continuing the above procedure, we obtain a sequence {a;} of
pairwise orthogonal atoms of m from L such that a; € L, a; < a© @Z;ll a;, for
j € Nand

1 =
(1) m(ajy) > 2 Sup {m(c) i< (a S @ai> , cis an atom of m} .

We claim that m (e ©@;2;a;) = 0. If we suppose on contrary that
m(a© @2, a;) > 0, then there exists a' € L, a* < (e © P ai), and a'
is an atom of m. Now using 2.2 and 2.4(iv), we get a' < (a© @2, a;) <

(a S EBf;ll ai) and therefore (1) yields

2m(a;) > m(a') (j €N).

Finally, the exhaustivity of m yields that m(a') = 0, which contradicts the fact
that a! is an atom of m. o

Lemma 3.1. Let m be a null-additive and exhaustive function. If a given
element a € L with m(a) > 0 does not contain any atom of m, then for every
€ >0, there exists b € L, b < a, such that 0 < m(b) < e.

Proof. Since a is not an atom of m, there exists a; € L, a; < a, such that
m(a1) > 0 and m(a S a1) > 0. If m(a1) < € or m(a © a1) < €, then the
conclusion holds. Otherwise, we have m(a;) > ¢ and m(a © a1) > €. Since
(a©ay) is an atom of m, there exists as € L, as < (a©aq) such that m(ag) >0
and m((a©a1)©az) > 0, i.e. with the aid of 2.1 and 2.4 (ix), m((e©a1)©az) =
m(a & (a1 ® az)) > 0. If m(az) < € or m(a © (a1 B az)) < € holds, then the
conclusion holds. Otherwise we have m(az) > € and m(a © (a1  az)) > e.
By the successive applications of 2.1 and 2.4(ix) and proceeding inductively in
this manner, we obtain that if the conclusion does not hold, a sequence {a,} of
pairwise orthogonal elements, a,, < a, from L such that m(a,) > ¢ (n € N), a
contradiction by the exhaustivity of m. a

Theorem 3.2. (Saks Type Decomposition Theorem)

Let m be a null-additive, exhaustive and order continuous function defined on a
o-complete effect algebra L. Let a given element a € L with m(a) > 0 contain no
atom of m. Then for every e > 0, there exists at most a finite number of pairwise
orthogonal elements ag,a1,as,...,ar with a; < a, a; € L, (i = 0,1,2,...,k)
such that a = @f 0@ and m(a;) <e (i=0,1,2,...,k).

Proof. If the element a € L with m(a) > 0 does not contain any atom of m,
then by Lemma 3.1 there exists a; € L, a1 < a, such that 0 < m(a;) < e.
If m(a © a1) = 0, the conclusion holds. Otherwise m(a © a1) > 0, and so by
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Lemma 3.1, there exists as € L, az < a © a1, such that 0 < m(az) < £ and we
may suppose that
1
m(ag) > §sup{m( ¢):ce€L,c<aa,0<mc) <el.

If m((a©a1) ©az) =0, ie. with the aid of 2.1 and 2.4(ix), m((a © a1) © az) =
m(a© (a1 ®az)) = 0, then the conclusion holds. Otherwise, m(a© (a1 ® az)) >
0, then by Lemma 3.1 there exists az € L, ag < a S (a1 ® as), such that
0 < m(a3) < ¢ and we may suppose that

m(a3) > %sup{m( Jic€Lc<as (a ®az),0 <m(c) el

Continuing on in this manner and by the successive use of 2.1 and 2.4(ix), we
obtain that there exist a; € L, a; < a © @’_] a;, such that 0 < m(a;) < & and
we may suppose that

(2) m(a;) >

i=1

j—1
{ ():cEL,cga@@ai,0<m(C)<5}'

>t
2"
If m (a o 691 1 al) = 0, then the conclusion holds. Otherwise, there exists

a; € L, a; < a,(j € N), which are pairwise orthogonal and satisfy (2]).

We claim that m (e © @;o, a;) = 0. If we suppose on the contrary that
m(a© @, a;) > 0, there exists a' € L, a' < (a&@;°, ai), such that
0 < m(a') < e. Now using 2.2 and 2.4(iv), we get a' < (a©@P;2; a;) <

(a@ @1;11 ai) and (@) yields that 2m(a;) = m(a'), j € N. Consequently,

lim;_o m(a;) = m(a') > 0, a contradiction by the exhaustivity of m.
Since @fin a; | 0, by order continuity of m, we have

(o)
lim m( @ a;) =0
T i

and hence there is k € N such that m (@;2,, a;) < e. Taking ag = a@@le ai,
by 2.2 and 2.4(i), (ix), we deduce that

o (® ) Do @ o) i (w0 G )

i=k+1 i=k+1 i=k+1
and we get by null-additivity of m,

mia) = m ((j: eél‘“) D (ﬁéi‘“))
(&)

i=k+1

Hencea:@fzoai and m(a;) <e (1=0,1,2,...,k). O
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4. Non-atomic Measure on a 0-Complete Effect Algebra

Let p be a [0, oo]-valued function defined on an effect algebra L. Then p is
called a measure [3], if we have p(a ®b) = p(a) + u(b), whenever a,b € L and
a L b. Tt is easy to see that u is a measure iff a < b implies pu(bSa) = pu(b)—pu(a).
Using 2.4(iv), one can observe that if a € L is an atom of a measure p then any
element b < a,b € L with u(b) > 0 is also an atom of the measure u.

Definition 4.1. u is called lower-semicontinuous (Isc)(respectively, upper-sems
-continuous (usc)), if an € L, an < apy1, n = 1,2,... = p(\V,—jan) =
limy, oo pt(ay), provided \/;—, an exists (respectively, if a, € L, an > an41,
n=12,...and p(ar) < 0o = pu(Apey an) = lim, o pt(ay,), provided \;-, an
exists); p is called semicontinuous, if it is both lower-semicontinuous and upper-
Semicontinuous.

Definition 4.2. Let m be a [0, 00)-valued function defined on L. We say that
p is absolutely continuous with respect to m (or in brief m-continuous), if for
any a € L, m(a) = 0, implies p(a) = 0.

Proposition 4.1. If u is an m-continuous and null-additive function on L,
then each atom a € L of a null-additive function m is also an atom of p, provided
p(a) > 0.

Proof. Let a be an atom of m, and let b < a. Then by the definition of an atom,
when m(b) > 0, and by the null-additivity of m, we get m(a © b) = 0. Also,
since p is m-continuous, we have p(a © b) = 0. Therefore g is also an atom of
w, when p(a) > 0.

Definition 4.3. In the case there is no atom of p in L, p is called non-atomic
on L.

Example 4.1. In Example 3.2, ms is a non-atomic, while in Example 3.3, my
is a non-atomic function.

From now onwards, L = (L, 1) denotes a finite m-continuous and semicon-
tinuous measure space; L is a o-complete effect algebra and m is a usc measure
defined on L.

Lemma 4.1. If u is non-atomic on L, then for every a € L with pu(a) > 0,
there exists b € L such that b < a and 0 < p(b) < p(a).

Proof. Let us suppose on the contrary that
3) b< a, ju(b) > 0= p(b) = u(a),

Take an element a1 € L, a1 < a, with u(ar) > 0 satisfying u(a1) = p(a) and
p(a © ar) = pla). Such an a; surely exists. Indeed, if for every a; < a, with
wu(ar) > 0, u(a © ay) = 0, then a must be an atom of p in view of (3). Thus,
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it follows that p(a © a1) > 0, for some a; < a with p(a;) > 0, which actually
implies p(a©a1) = p(a), together with (3). Since m is a measure defined on L,
we may assume that m(a1) < $m(a). Applying the same argument to a; instead
of a, we obtain as € L, as < aq, such that p(as) = u(ar) and m(as) < %m(al).
Continue this construction inductively to obtain a decreasing sequence {a,}
from L such that

1(an) = p(a) and m(ay) < (;)nm(a)7 n=1,2,. ...

Now, the upper-semicontinuity of m and p and 2.3 gives, m (A ,—, an) = 0
and p (A, an) = p(a) respectively. Also, since p is m-continuous, therefore
w(A—q ar) = 0 and, consequently, we get p(a) = 0, which contradicts the fact

that p(a) > 0. O

Theorem 4.1. p is non-atomic on L if and only if for a given element a € L
with p(a) > 0 and € > 0, there exists b€ L, b < a, such that 0 < u(b) < e.

Proof. The if part: Suppose on the contrary that ¢ € L be an atom of u.
Then p(c) > 0 and therefore there exists b € L, b < ¢ such that 0 < u(b) < ¢,
for any € > 0. Also, u(b) = p(c) and pu(c ©b) = 0, which yields pu(c) =0, a
contradiction.

The only if part: Suppose the contrary and choose an element a € L with
p(a) > 0 and to > 0, for which u(b) > ¢y holds if b < a, b € L and u(b) > 0.
Define t1 = inf{u(b) : b € L,b < a, u(b) > 0}. Then obviously 0 < ¢y < t1. Take
a1 < a, a1 € L with 1 < p(ay) < t1 + 1 and setting to = inf{u(b) : b € L,b <
ay, u(b) > 0}. Choose as < a1 with tg < p(ag) < t2+ % Continuing the process
in the same manner, we obtain sequences {t,} and {a,} such that o < t; <
to <...< pla) and a > a1 = ag > ... with ¢, < pla,) < tn—ﬁ—%, for all n.
Using 2.3, put ag = A, an. Clearly, p(ag) = p (Ao an) = limy oo p(ay) =
lim,, oo tn, > 0. Let b < ag with u(b) > 0. Then p(ag) = w(db) > t,, for any n
and hence u(b) = p(ag). This contradicts Lemma 4.1. a

Theorem 4.2. If i is non-atomic on L, then u takes every value between 0
and p(1).

Proof. Let 0 < t < p(1). According to Theorem 4.1, there are elements ¢ € L
such that 0 < u(c) < t. Let
s1 =sup{pu(c) : c € L, p(c) <t}

(Obviously 0 < s; < t). Then there exists an element ¢; € L such that % <
u(cr) < s1. Let

so =sup{u(c) : c € L,c1 < ¢, p(c) < t}.
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Then there exists an element ¢y € L such that co > ¢1 and 53 — 5 < p(c2) < s2.
Continue this construction inductively to obtain

sn =sup{u(c):c € Lycn—1 < ¢, puc) <t}

and then there exists ¢, > cn_1, ¢, € L such that s, — 5t < p(c,) < sp. It
is clear that {s,} is a decreasing sequence and {c,} is an increasing sequence
of elements in L such that d = \/,_, ¢, € L (using 2.3) and therefore, since
wis Isc, we get lim, o Sp = im0 pu(cn) = (Voo ¢n) = pu(d). Therefore
u(d) = lim, o s, = s(let). Clearly s < t. Now we claim that s = t. For,
otherwise, let us suppose that s < ¢. Since 0 < ¢t < u(1), we get u(1 & d) > 0,
d € L and therefore, by Theorem 4.1, we obtain an element b of L such that
b< (16d) and s < u(d®b) < t. But then d® b > ¢,_1, for all n > 1, which
yields pu(d @ b) < sp, for all n. This will further imply that p(d @ b) < s, a

contradiction. Thus u(d) = t, as required. O

Concluding Remark

Several authors [9, 19 20] have made their contributions to the theory of
atoms in an effect algebra L where the definition of an atom involves only the
structure of L, while in this paper we have coined the concept of an atom
of a function on L and illustrated it by means of a few examples. We have
established a decomposition theorem in the context of atoms of a null-additive
function. The concept of atoms of a function in an effect algebra is complex
and interesting, and null-additivity is found to be an effective tool for its study.
We have also studied non-atomic measures on an effect algebra which becomes
useful in proving some results leading to a theorem having resemblance with the
Intermediate Value Theorem for continuous functions. We intend to address
these concepts in the theory of effect algebras in our further research papers.
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