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1. Introduction, definitions and results

Let f and g be two nonconstant meromrophic functions defined in the open
complex plane C. We denote by T (r) the maximum of T (r, f) and T (r, g). The
notation S(r) denotes any quantity satisfying S(r) = o(T (r)) as r →∞, outside
a possible exceptional set of finite linear measure.

If for some a ∈ C
⋃{∞}, f and g have the same set of a-points with same

multiplicities then we say that f and g share the value a CM (counting multi-
plicities). If we do not take the multiplicities into account, f and g are said to
share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements C
⋃{∞} and Ef (S) =

⋃
a∈S{z : f(z)−a =

0}, where each zero is counted according to its multiplicity. If we do not count
the multiplicity the set

⋃
a∈S{z : f(z)− a = 0} is denoted by Ef (S).

If Ef (S) = Eg(S) we say that f and g share the set S CM . On the other
hand, if Ef (S) = Eg(S), we say that f and g share the set S IM . Especially,
let S = {a}, we say f and g share the value a CM . If Ef (S) = Eg(S), and we
say that f and g share the value a IM if Ef (S) = Eg(S)(see [3]).

In 1976, Gross [4] proved the following theorem:
Theorem A There exist three sets Sj(j = 1, 2, 3) such that any two non-

constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2, 3
must be identical.

Gross posed the following question:
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Question A Can one find two finite sets Sj(j = 1, 2) such that any two
entire functions satisfying Ef (Sj) = Eg(Sj)(j = 1, 2) must be identical?

Recently, H.X.Yi [10, 11, 12] gave the affirmative answer to the above ques-
tions completely. H.X.Yi [10] posed the following question:

Question B Can one find three finite sets Sj(j = 1, 2, 3) such that any
two meromorphic functions satisfying Ef (Sj) = Eg(Sj)(j = 1, 2, 3) must be
identical?

In 1994, H.X. Yi [10] proved the following result that answered Question B:
Theorem B Let S1 = {a + b, a + bω, , . . . , a + bωn−1}, S2 = {c1, c2} and

S3 = {a} or S3 = {∞}, where n > 6, b 6= 0, c1 6= a, c2 6= a, (c1 − a)n 6=
(c2 − a)n, (ck − a)n(cj − a)n 6= b2n, (k, j = 1, 2). Suppose that f and g are
nonconstant meromorphic functions satisfying Ef (Sj) = Eg(Sj)(j = 1, 2, 3),
then f ≡ g.

In 2003, W.C. Lin and H.X. Yi [6] proved the following result that is an
improvement of Theorem B.

Theorem C Let S1 = {0}, S2 = {∞} and S3 = {ω|P (ω) = aωn − n(n −
1)ω2 +
2n(n − 2)bω − (n − 1)(n − 2)b2 = 0}, where n(> 4) is an integer, and a and b
are two nonzero complex numbers satisfying abn−2 6= 1, 2. If f and g are two
nonconstant meromorphic functions satisfying Ef (Sj) = Eg(Sj) for j = 1, 2, 3,
then f ≡ g.

Lin and Yi [6] remarked that the assumption Ef (S2) = Eg(S2) in the above
results can be relaxed to Ef (S2) = Eg(S2).

Now based on the above theorems it is natural to ask the following question:
Question 1: Is it possible in any way to further relax the nature of sharing

the set S3 in Theorem C?
In the present paper we shall investigate this problem and obtain the follow-

ing result which will improve the previous theorems mentioned earlier. To state
our main result, we shall take the aid of weighted sharing of values and sets as
introduced in [7, 8].

Definition 1.1. Let k be a nonnegative integer or infinity. For a ∈ C
⋃{∞}

we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight
k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0)
or (a,∞) respectively.

Definition 1.2. Let S be a set of distinct elements of C
⋃{∞} and k be a

nonnegative integer or ∞. We denote by Ef (S, k) the set
⋃

a∈S Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).
We now state the following theorem which is the main result of this paper.
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Theorem 1.3. Let S1 = {0}, S2 = {∞} and S3 = {ω|P (ω) = aωn − n(n −
1)ω2 +
2n(n−2)bω− (n−1)(n−2)b2 = 0}, where n(> 4) is an integer, and a and b are
two nonzero complex numbers satisfying abn−2 6= 1, 2. If f and g are two non-
constant meromorphic functions satisfying Ef (S1,∞) = Eg(S1,∞), Ef (S2, 0) =
Eg(S2, 0), Ef (S3, 4) = Eg(S3, 4), then f ≡ g.

As for the standard definitions and notations of the value distribution theory
we refer to [5], we now explain some notations that are used in this paper.

Definition 1.4. [9] For a ∈ C
⋃{∞} we denote by N(r, a; f | = 1) the count-

ing function of simple a points of f . For a positive integer m we denote by
N(r, a; f | ≤ m)(N(r, a; f | ≥ m)) the counting function of those a points of f
whose multiplicities are not greater(less) than m, where each a point is counted
according to its multiplicity.

N(r, a; f | ≤ m), (N(r, a; f | ≥ m)) are defined similarly, where in counting
the a-points of f we ignore the multiplicities.

Also N(r, a; f | < m), N(r, a; f | > m), N(r, a; f | < m) and N(r, a; f | > m)
are defined analogously.

In addition, the following notions will be used in this paper: for a ∈ C
⋃{∞}

and an integer k, N(r, a; f | = k), NL(r, a; f), N
(k+1

E (r, a; f), N2(r, a; f), N∗(r, a;
f, g) (see [7, 8, 11]).

2. Lemmas

Lemma 2.1. [8] Let F, G be two nonconstant meromorphic functions sharing
(1, 1) and H 6≡ 0, then

N(r, 1; F | = 1) = N(r, 1; G| = 1) ≤ N(r,H) + S(r, F ) + S(r,G),

where H = (F ′′
F ′ − 2F ′

F−1 )− (G′′
G′ − 2G′

G−1 ).

Lemma 2.2. If F, G share (1, 0), (∞, 0), (0,∞) and H 6≡ 0, then for any com-
plex number c 6= 1

N(r,H) ≤ N∗(r, 1;F,G) + N∗(r,∞; F, G) + N(r, c; F | ≥ 2)
+N(r, c;G| ≥ 2) + N0(r, 0; F ′) + N0(r, 0;G′)

where N0(r, 0; F ′) is the reduced counting function of those zeros of F ′ which
are not the zeros of F (F − 1)(F − c) and N0(r, 0;G′) is similarly defined.

Proof. We can easily verify that possible poles of H occur at

(i) multiple zeros of F − c and G− c;

(ii) those poles of F and G whose multiplicities are distinct from the multiplic-
ities of the corresponding poles of G and F respectively;
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(iii) those 1-points of F and G whose multiplicities are distinct from the mul-
tiplicities of the corresponding 1-points of G and F respectively;

(iv) zeros of F ′ which are not the zeros of F (F − 1)(F − c);

(v) zeros of G′ which are not the zeros of G(G− 1)(G− c).

Since H only has simple poles, the lemma follows from the above. 2

Lemma 2.3. [1] Let f and g be two nonconstant meromorphic functions shar-
ing (1, k), where 2 ≤ k ≤ ∞. Then

N(r, 1; f | = 2) + 2N(r, 1; f | = 3) + · · ·+ (k − 1)N(r, 1; f | = k) + kNL(r, 1; f)

+(k + 1)NL(r, 1; g) + kN
(k+1

E (r, 1; f) ≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.4. [13] Let f be a nonconstant meromorphic function and let

R(f) =
n∑

k=0

akfk/

m∑

j=0

bjf
j

be an irreducible rational function in f with coefficients {ak} and {bj}, where
an 6= 0 and bm 6= 0. Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max{n, m}.

Lemma 2.5. Let F, G share (1, k), (∞, 0), (0,∞) where 2 ≤ k < ∞, then one
of the following cases must occur:

(i)

2T (r, F ) + T (r,G) ≤ N(r, 0; F ) + N2(r, c; F ) + N(r,∞;F )
+N∗(r,∞; F,G) + N(r, 0;G) + N2(r, c;G)
+N(r,∞; G)−m(r, 1;G)−N(r, 1; F | = 3)− · · ·
−(k − 2)N(r, 1;F | = k)− (k − 2)NL(r, 1; F )

−(k − 1)NL(r, 1; G)− (k − 1)N
(k+1

E (r, 1;F )
+S(r, F ) + S(r,G);

(ii) F = (B+1)G+(A−B−1)
BG+(A−B) , where A(6= 0), B are two constants,

where c 6= 1 is a complex number.
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Proof. We consider the following two cases:
Case 1. Suppose that H 6≡ 0. By the second fundamental theorem we get

(1)
2T (r, F ) + 2T (r,G) ≤ N(r, 0; F ) + N(r,∞;F ) + N(r, c; F ) + N(r, 1; F )

N(r, 0; G) + N(r,∞; G) + N(r, c; G) + N(r, 1; G)
−N0(r, 0; F ′)−N0(r, 0; G′) + S(r, F ) + S(r,G).

Since F, G share (1, k), (∞, 0), (0,∞), by using Lemmas 2.1 - 2.2 and Lemma
2.3 we see that
(2)
N(r, 1; F ) + N(r, 1; G) ≤ N(r.1; F | = 1) + N(r, 1;F | = 2) + N(r, 1;F | = 3)

+ · · ·+ N(r, 1; F | = k) + N
(k+1

E (r, 1; F )
+NL(r, 1; F ) + NL(r, 1; G) + N(r, 1; G)

≤ NL(r, 1; F ) + NL(r, 1; G) + N∗(r,∞; F, G)
+N(r, c; F | ≥ 2) + N(r, c; G| ≥ 2)
+N(r, 1; F | = 2) + · · ·+ N(r, 1; F | = k)
+N

(k+1

L (r, 1;F ) + NL(r, 1;F ) + NL(r, 1; G)
+T (r,G)−m(r, 1; G) + O(1)−N(r, 1;F | = 2)
−2N(r, 1; F | = 3)− · · · − (k − 1)N(r, 1; F | = k)
−kN

(k+1

L (r, 1;F )− kNL(r, 1; F )
−(k + 1)NL(r, 1; G) + N0(r, 0;F ′)
+N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ N(r, c; F | ≥ 2) + N(r, c;G| ≥ 2)
+N∗(r,∞;F,G) + T (r,G)−m(r, 1; G)
−N(r, 1; F | = 3)− · · · − (k − 2)N(r, 1; F | = k)
−(k − 1)N

(k+1

E (r, 1;F ) + N0(r, 0; F ′)
+N0(r, 0;G′) + S(r, F ) + S(r,G).

From (1) and (2), then the relation (i) of this lemma follows.
Case 2. Suppose that H ≡ 0. We can obtain

(3)
2F ′

F − 1
− F ′′

F ′
≡ 2G′

G− 1
− G′′

G′
.

By integration, we have from (3) that

(4)
1

F − 1
≡ A

G− 1
+ B,

where A(6= 0), B are constants. From (4) we get

F =
(B + 1)G + (A−B − 1)

BG + (A−B)
.

All these prove the lemma. 2
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Lemma 2.6. Let

(5) F =
afn

n(n− 1)(f − α1)(f − α2)
, G =

agn

n(n− 1)(g − α1)(g − α2)

where f and g are nonconstant meromorphic functions,n(> 3) is an integer,
and α1, α2 are distinct finite complex numbers. If F, G share (1, k), (0,∞) and
f, g share (∞, 0) and H 6≡ 0, then

(6) N(r,∞; f) = N(r,∞; g) ≤ 1
n− 3

N∗(r, 1; F, G) + S(r, F ) + S(r,G).

Proof. We discuss the following two cases:
Case 1. Suppose that E({∞}, f) = Ø, then (6) holds obviously.
Case 2. Suppose that E({∞}, f) 6= Ø. Since H 6≡ 0, we can get Φ 6≡ 0,

where Φ = F ′
F (F−1) − G′

G(G−1) . Noting that f and g share ∞ IM , we suppose
that z0 is a pole of f of order p, a pole of g of order q. From (5) we know that
z0 is a pole of F of order (n− 2)p, a pole of G of order (n− 2)q. In view of the
definition of Φ we know that z0 is zero of Φ of order at least n− 3. Thus

(7) (n− 3)N(r,∞; f) ≤ N(r, 0;Φ) ≤ T (r,Φ) + O(1),

and

(8) m(r,Φ) = S(r, F ) + S(r,G).

Noting that F and G share (1, k), (0,∞), we obtain

(9) N(r,∞; Φ) ≤ N∗(r, 1;F, G) + S(r, F ) + S(r,G).

Noting n > 3, we get (6) from (7)-(9). So the proof of Lemma 2.6 comes to
an end. 2

Lemma 2.7. [2] Let

Q(w) = (n− 1)2(wn − 1)(wn−2 − 1)− n(n− 2)(wn−1 − 1)2,

then
Q(w) = (w − 1)4(w − β1)(w − β2) · · · (w − β2n−6),

where βj ∈ C\{0, 1}(j = 1, 2, . . . , 2n− 6), which are distinct respectively.

3. Proof of Main Results

Proof. First, suppose that the polynomial P is defined by

P (ω) = aωn − n(n− 1)ω2 + 2n(n− 2)bω − (n− 1)(n− 2)b2,

where n(> 4) is an integer, and a, b are two nonzero finite complex numbers
such that abn−2 6= 2. Now we claim that the polynomial P (ω) has only simple
zeros.



Uniqueness theorems for meromorphic functions ... 77

In fact, we consider the rational function

(10) R(ω) =
aωn

n(n− 1)(ω − α1)(ω − α2)
,

where α1 and α2 are two distinct roots of the equation n(n − 1)ω2 − 2n(n −
2)bω + (n− 1)(n− 2)b2 = 0. From (14), we have

(11) R′(ω) =
(n− 2)aωn−1(ω − b)2

n(n− 1)(ω − α1)2(ω − α2)2
,

so ω = 0 is one root with multiplicity n of the equation R(ω) = 0 and ω = b is one
root with multiplicity 3 of the equation R(ω)− c = 0, where c = abn−2/2(6= 1).

Thus

(12) R(ω)− c =
a(ω − b)3Qn−3(ω)

n(n− 1)(ω − α1)(ω − α2)
,

where Qn−3(ω) is a polynomial of degree n− 3. Moreover, we have

(13) R(ω)− 1 =
P (ω)

n(n− 1)(ω − α1)(ω − α2)

We obtain from (11) and (13) that P (ω) = aωn − n(n− 1)ω2 + 2n(n− 2)bω −
(n− 1)(n− 2)b2 has only simple zeros.

Now let F and G be defined by

(14) F = R(f), G = R(g).

From (10),(13),(14) and in view of the condition of Theorem 1.3, we conclude
that F and G share (0,∞), (1, 4) and (∞, 0), and by Lemma 2.4 we have

(15) T (r, f) =
1
n

T (r, F ) + S(r, F ), T (r, g) =
1
n

T (r,G) + S(r,G).

Let H be mentioned in Section 2, then we consider the following two cases:
Case 1. By Lemma 2.5 we have

(16)

2T (r, F ) + T (r,G) ≤ N(r, 0; F ) + N2(r, c; F ) + N(r,∞;F )
+N∗(r,∞;F,G) + N(r, 0; G) + N2(r, c; G)
+N(r,∞;G)− 2NL(r, 1; F )− 2NL(r, 1;G)
+S(r, F ) + S(r,G).

In view of the definition of F, G we have

(17) N(r,∞; F ) = N(r, α1; f) + N(r, α2; f) + N(r,∞; f),

(18) N(r,∞; G) = N(r, α1; g) + N(r, α2; g) + N(r,∞; g),
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(19) N(r, 0; F ) ≤ N(r, 0; f), N(r, 0; G) ≤ N(r, 0; g),

(20) N2(r, c; F ) ≤ 2N(r, b; f) + N(r, 0; Qn−3(f)),

(21) N2(r, c; G) ≤ 2N(r, b; g) + N(r, 0; Qn−3(g)).

On the other hand, by Lemma 2.6 we have

(22) N(r,∞; f) = N(r,∞; g) ≤ 1
n− 3

N∗(r, 1; F, G) + S(r, F ) + S(r,G).

From (15)-(22), we can get
(23)

2nT (r, f) + nT (r, g) ≤ N(r, 0; f) + 2N(r, b; f) + N(r, 0; Qn−3(f))
+N(r, α1; f) + N(r, α2; f) + N(r, 0; g)
+2N(r, b; g) + N(r, 0; Qn−3(g)) + N(r, α1; g)
+N(r, α2; g) + S(r, f) + S(r, g)

≤ (n + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Similarly, we can get
(24)

2nT (r, g) + nT (r, f) ≤ N(r, 0; f) + 2N(r, b; f) + N(r, 0; Qn−3(f))
+N(r, α1; f) + N(r, α2; f) + N(r, 0; g)
+2N(r, b; g) + N(r, 0; Qn−3(g)) + N(r, α1; g)
+N(r, α2; g) + S(r, f) + S(r, g)

≤ (n + 2){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Adding (23) and (24), we have

3n{T (r, f) + T (r, g)} ≤ (2n + 4){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

So we get n ≤ 4 which contradicts to the condition of Theorem 1.3.
Case 2. By Lemma 2.5 we have

(25) F =
(B + 1)G + (A−B − 1)

BG + (A−B)
,

where A( 6= 0), B are two constants, and

(26) T (r, F ) = T (r,G) + O(1)

Now we consider three subcases:
Subcase 2.1 B 6= 0, 1, (25) and the condition of Theorem 1.3 imply that

∞ is Picard exceptional value of f and g, then

(27) N(r,∞;F ) = N(r, α1; f) + N(r, α2; f),

(28) N(r,∞;G) = N(r, α1; g) + N(r, α2; g).
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Suppose that A−B − 1 6= 0. We have from (25) that

N(r,
A−B − 1

B + 1
;G) = N(r, 0; F ).

By the second fundamental theorem, we have

T (r,G) ≤ N(r, 0;G) + N(r,∞;G) + N(r,
A−B − 1

B + 1
;G) + S(r,G).

From (15),(25)-(28), we have

nT (r, g) ≤ N(r, α1; g) + N(r, α2; g) + N(r, 0; g) + N(r, 0; f) + S(r, g)
≤ 4T (r, g) + S(r, g),

which contradicts our assumption that n ≤ 4. Therefore, we obtain A−B−1 =
0, and from (25) we have

(29) F =
(B + 1)G
BF + 1

.

Hence we get

(30) N(r, 1/B; G) = N(r,∞; F ) = N(r, α1; f) + N(r, α2; f).

If c 6= −1/B, from (12) (14) and Lemma 2.4 we have

(31) N(r, c; G) ≤ (n− 2)T (r, g) + S(r, g).

By the second fundamental theorem we have

2T (r,G) ≤ N(r, 0;G) + N(r,∞;G) + N(r,−1/B;G) + N(r, c; G) + S(r,G),

i.e.,

2nT (r, g) ≤ N(r, α1; g) + N(r, α2; g) + N(r, 0; g) + N(r, α1; f)
+N(r, α2; f) + (n− 2)T (r, g) + S(r, g)

≤ (n + 3)T (r, g) + S(r, g).

Then we get a contradiction since n > 4.
If c = −1/B, we can write (29) as

F =
(1− c)G
G− c

,

i.e.,

(32) G =
cF

F − (1− c)
.

Then we have

(33) N(r, 1− c;F ) = N(r,∞; G) = N(r, α1; g) + N(r, α2; g).
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Similarly, from (25) we have

(34) N(r, c; F ) ≤ (n− 2)T (r, f) + S(r, f).

Since c = abn−2/2 6= 1/2, we get that 1− c 6= c. By the second fundamental
theorem, we get

2T (r, F ) ≤ N(r, 0; F ) + N(r,∞; F ) + N(r, 1− c; F ) + N(r, c;F ) + S(r, F ),

i.e.,

2nT (r, f) ≤ N(r, α1; f) + N(r, α2; f) + N(r, 0; f) + N(r, α1; g)
+N(r, α2; g) + (n− 2)T (r, f) + S(r, f)

≤ (n + 3)T (r, f) + S(r, f).

Then we also get a contradiction since n > 4.
Subcase 2.2 B = 0. We can write (26) as

(35) F =
G + (A− 1)

A

Suppose that A − 1 6= 0. Since F,G share (0,∞), from (35) we know G 6=
0, 1−A, and by the second fundamental theorem we have

nT (r, g) ≤ N(r,∞; G) + S(r, g)
≤ N(r, α1; g) + N(r, α2; g) + N(r,∞; g) + S(r, g)
≤ 3T (r, g) + S(r, g).

This is impossible. Then A = 1, i.e. F ≡ G, in view of the definition of
R(ω), F and G, we have
(36)
n(n−1)f2g2(fn−2−gn−2)−2n(n−2)bfg(fn−1−gn−1)+(n−1)(n−2)b2(fn−gn) = 0.

Let h = f/g, i.e. f = hg; substituting it in (36) we obtain
(37)
n(n−1)h2g2(hn−2−1)−2n(n−2)bhg(hn−1−1)+(n−1)(n−2)b2(hn−1) = 0.

If h is nonconstant, using Lemma 2.7 and (37), we have

(38) {n(n− 1)h(hn−2 − 1)g − n(n− 2)b(hn−1 − 1)}2 = gn(n− 2)b2Q(h),

where Q(h) = (h − 1)4(h − β1)(h − β2) · · · (h − β2n−6), βj ∈ C\{0, 1}(j =
1, 2, . . . , 2n− 6), which are distinct respectively.

From (38) we know that every zero of h− βj(j = 1, 2, . . . , 2n− 6) is of order
at least 2. By the second fundamental theorem we have n ≤ 4, which is a
contradiction. Hence h is a constant. From (38), we have that hn−2 = 1 and
hn−1 = 1, which imply h ≡ 1, i.e. f ≡ g.

Subcase 2.3 B = −1. We write (25) as

(39) F =
A

−G + A + 1
.
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If A+1 6= 0, noting that F,G share (0,∞), from (39) we know F 6= 0, A/(A+
1). By using the second fundamental theorem, we have

nT (r, f) ≤ N(r,∞;F ) + S(r, f)
≤ N(r, α1; f) + N(r, α2; f) + N(r,∞; f) + S(r, f)
≤ 3T (r, f) + S(r, f).

Then we get a contradiction. Hence we have A + 1 = 0, i.e. F ≡ G. In view
of the definition of F,G we obtain

(40)
fn

(f − α1)(f − α2)
gn

(g − α1)(g − α2)
=

n2(n− 1)2

a2
.

Since f, g share (0,∞), (∞, 0), from (40) we know that 0, α1, α2,∞ are Picard
exceptional values of g. This is also impossible.

Then, the proof Theorem 1.3 comes to an end. 2
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