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1. Introduction, definitions and results

Let f and g be two nonconstant meromrophic functions defined in the open
complex plane C'. We denote by T'(r) the maximum of T'(r, f) and T'(r, g). The
notation S(r) denotes any quantity satisfying S(r) = o(T'(r)) as r — oo, outside
a possible exceptional set of finite linear measure.

If for some a € C'|J{oo}, f and g have the same set of a-points with same
multiplicities then we say that f and g share the value a CM (counting multi-
plicities). If we do not take the multiplicities into account, f and g are said to
share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements C' | J{oo} and E;(S) = J,cqiz: f(2)—a =
0}, where each zero is counted according to its multiplicity. If we do not count
the multiplicity the set |J,cs{z : f(2) —a = 0} is denoted by Ef(S).

If E;(S) = E4(S) we say that f and g share the set S CM. On the other
hand, if E¢(S) = E4(S), we say that f and g share the set S IM. Especially,
let S = {a}, we say f and g share the value a CM. If Ef(S) = E,(S), and we
say that f and g share the value a IM if E¢(S) = E,(5)(see [3]).

In 1976, Gross [4] proved the following theorem:

Theorem A There exist three sets S;(j = 1,2,3) such that any two non-
constant entire functions f and g satisfying E;(S;) = E4(S;) for j = 1,2,3
must be identical.

Gross posed the following question:
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Question A Can one find two finite sets S;(j = 1,2) such that any two
entire functions satisfying E¢(S;) = E4(S;)(j = 1,2) must be identical?

Recently, H.X.Yi [I0, 1T, T2] gave the affirmative answer to the above ques-
tions completely. H.X.Yi [10] posed the following question:

Question B Can one find three finite sets S;(j = 1,2,3) such that any
two meromorphic functions satisfying E¢(S;) = E4(S;)(j = 1,2,3) must be
identical?

In 1994, H.X. Yi [I0] proved the following result that answered Question B:

Theorem B Let S; = {a + b,a + bw,,...,a + bw" 1} Sy = {c1,c2} and
S3 = {a} or S3 = {0}, where n > 6,b # 0,¢; # a,ca # a,(c1 —a)" #
(2 —a)™, (ckx —a)"(¢c; —a)™ # b*",(k,j = 1,2). Suppose that f and g are
nonconstant meromorphic functions satisfying E;(S;) = E,(S;)(j = 1,2,3),
then f =g.

In 2003, W.C. Lin and H.X. Yi [6] proved the following result that is an
improvement of Theorem B.

Theorem C Let S; = {0}, 55 = {0} and S5 = {w|P(w) = aw™ — n(n —
w? +
2n(n — 2)bw — (n — 1)(n — 2)b*> = 0}, where n(> 4) is an integer, and a and b
are two nonzero complex numbers satisfying ab” 2 # 1,2. If f and g are two
nonconstant meromorphic functions satisfying E¢(S;) = E4(S;) for j = 1,2,3,
then f = g.

Lin and Yi [6] remarked that the assumption Ef(S2) = E4(S2) in the above
results can be relaxed to E;(S2) = E4(S2).

Now based on the above theorems it is natural to ask the following question:

Question 1: Is it possible in any way to further relax the nature of sharing
the set S3 in Theorem C?

In the present paper we shall investigate this problem and obtain the follow-
ing result which will improve the previous theorems mentioned earlier. To state
our main result, we shall take the aid of weighted sharing of values and sets as
introduced in [7, §].

Definition 1.1. Let k be a nonnegative integer or infinity. For a € C|J{oo}
we denote by Ex(a; f) the set of all a-points of f, where an a-point of multiplicity
m is counted m times if m < k and k+1 times if m > k. If Ex(a; f) = Ex(a;9),
we say that f,g share the value a with weight k.

We write f,g share (a,k) to mean that f,g share the value a with weight
k. Clearly if f, g share (a, k) then f, g share (a,p) for any integer p,0 < p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a,0)
or (a,00) respectively.

Definition 1.2. Let S be a set of distinct elements of C|J{oo} and k be a
nonnegative integer or co. We denote by E¢(S, k) the set J,cq Ex(a; f).

Clearly E¢(S) = Ef(S,00) and Ef(S) = E¢(S,0).
We now state the following theorem which is the main result of this paper.
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Theorem 1.3. Let S; = {0},52 = {0} and S5 = {w|P(w) = aw™ — n(n —
Dw? +

2n(n—2)bw — (n—1)(n—2)b* = 0}, where n(> 4) is an integer, and a and b are
two nonzero complex numbers satisfying ab™ 2 # 1,2. If f and g are two non-
constant meromorphic functions satisfying E;(S1,00) = E4(S1,00), E¢(S2,0) =
E,(52,0), Ef(S3,4) = E4(Ss,4), then f=g.

As for the standard definitions and notations of the value distribution theory
we refer to [0], we now explain some notations that are used in this paper.

Definition 1.4. [9] For a € C|J{oo} we denote by N(r,a; f| = 1) the count-
ing function of simple a points of f. For a positive integer m we denote by
N(r,a; f| < m)(N(r,a; f| > m)) the counting function of those a points of f
whose multiplicities are not greater(less) than m, where each a point is counted
according to its multiplicity.

N(r,a; f| < m),(N(r,a; f| > m)) are defined similarly, where in counting
the a-points of f we ignore the multiplicities. o

Also N(r,a; f| < m),N(r,a; f| > m),N(r,a; f| < m) and N(r,a; f| > m)
are defined analogously.

In addition, the following notions will be used in this paper: for a € C'|J{oo}
f,9) (see [, 18, 11]).

2. Lemmas

Lemma 2.1. [8] Let F,G be two nonconstant meromorphic functions sharing
(1,1) and H # 0, then

N(r,,F|=1)=N(r,;,G| =1) < N(r,H) + S(r, F) + 5(r, G),

where H = (I;/,/ - I%Ij,l) - (g,/ - C2¥€I1)

Lemma 2.2. If F,G share (1,0), (c0,0), (0,00) and H £ 0, then for any com-
plex number ¢ # 1

N(r,H) < Ni(r,l;RG)+N*&,OO;F,G)+F(T,C;F|22)
+N(T7C;G| > 2) +N0(T7O;F/) +N0(T7O;G/)

where No(r,0; F') is the reduced counting function of those zeros of F' which
are not the zeros of F(F — 1)(F — ¢) and No(r,0; G') is similarly defined.

Proof. We can easily verify that possible poles of H occur at
(i) multiple zeros of F —c and G — ¢;

(ii) those poles of F' and G whose multiplicities are distinct from the multiplic-
ities of the corresponding poles of G and F’ respectively;
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(iii) those 1-points of F' and G whose multiplicities are distinct from the mul-
tiplicities of the corresponding 1-points of G and F' respectively;

(iv) zeros of F’ which are not the zeros of F(F — 1)(F — ¢);

(v) zeros of G’ which are not the zeros of G(G — 1)(G — ¢).

Since H only has simple poles, the lemma follows from the above. ]

Lemma 2.3. [I] Let f and g be two nonconstant meromorphic functions shar-
ing (1,k), where 2 < k < oo. Then

N(r,1; f| =2)+2N(r,1; f| =3) +--- + (k= 1)N(r,1; f| = k) + kN L(r, 1; )
+k+ )N L(r, 15 g) + kNG (1,15 £) < N(r,1;9) — N(r, 15 ).

Lemma 2.4. [I3] Let f be a nonconstant meromorphic function and let
R()=>anf*) > bif?
k=0 §=0

be an irreducible rational function in f with coefficients {ar} and {b;}, where
an #0 and by, #0. Then

T(r,R(f)) = dT(r, f) +5(r, f),

where d = max{n, m}.

Lemma 2.5. Let F,G share (1,k), (c0,0), (0,00) where 2 < k < oo, then one
of the following cases must occur:

(i)

2T(r, F)+T(r,G) < N(r,0;F)+ Na(r,c; F) + N(r,00; F)
+N.(r,00; F,G) + N(r,0; G) + Na(r, ¢; G)
+N(r,00;G) —m(r,1;G) = N(r,1; F| =3) — - -
—(k=2)N(r,;F|=k)—(k—2)Np(r,1;F)
~(k = )NL(r,1;G) — (k— )Ny " (r,1; F)
+S(r, F) + S(r,Q);

(if) F = %, where A(# 0), B are two constants,

where ¢ # 1 is a complex number.
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Proof. We consider the following two cases:
Case 1. Suppose that H # 0. By the second fundamental theorem we get

(1)
2T (r,F) +2T(r,G) < N(r,0;F)+ N(r,00; F) + N(r,¢; F) + N(r,1; F)
N(r,0;G) + N(r,00;G) + N(r,¢;G) + N(r,1;G)
—No(’f’,O;F) N(](T 0 G ) +S( ) S(T, G)

Since F, G share (1, k), (00, 0), (0, 00), by using Lemmas 2.1 - 2.2 and Lemma
2.3 we see that
(2) _
N(r,1;F)+N(r,1;G)

IN

N(r.1;F|=1)+N(r,1;F| =2)+ N(r,1; F| = 3)
+—~+NmLFhﬂ®+NgHmLF)
+Nr(r,1;F)+ Np(r,1;G) + N(r, 1, G)
Np(r,1;F)+ Nr(r,1;G) + N.(r,00; F, G)
+N(r,c; F| > 2)+ N(r,¢;G| > 2)
+N(r,1;F|=2)+ -+ N(r,1;F| = k)

“WmfwﬁmmmymmL)

IN

+T'(r,G) —m(r,1;G)+O(1) — N(r,1; F| = 2)
—2N(T1F\:3)—-~-—(k—1)N(r1F\—k)
N G L F) — KN L (r, 1 F)
—(k+1)N(r,1;G) + No(r,0; F")
+No(r,0;G") + S(r, F) + S(r,G)
N(r,¢;F| >2)+ N(r,¢;G| > 2)

+N.(r,00; F,G) + T(r,G) — m(r, 1;G)
—N(r,;F|=3)—---—(k—2)N(r,1; F| = k)
—(k = DN (0, 1, F) + No(r, 0; F)
+No(r,0;G") + S(r, F) + S(r, G).

IN

From (1) and (2), then the relation (i) of this lemma follows.
Case 2. Suppose that H = 0. We can obtain
2F F" 2G’ G"

®) F-1 P G-1 G

By integration, we have from (3) that

1 A
(4) Fi-g1' P

where A(# 0), B are constants. From (4) we get

(B+1)G+(A—B—1)

F:
BG + (A—B)

All these prove the lemma. a
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Lemma 2.6. Let

()

n

_ a’fn G _ a’g
n(n—1)(f —a1)(f —a2)’ n(n —1)(g — a1)(g — o)
where [ and g are nonconstant meromorphic functions,n(> 3) is an integer,

and a1, ag are distinct finite complex numbers. If F, G share (1,k), (0,00) and
f,g share (c0,0) and H # 0, then

(6)  N(r,00; f) = N(r,o0;9) < — i 3

N.(r,1;F,G)+ S(r,F) + S(r,G).

Proof. We discuss the following two cases:
Case 1. Suppose that E({oo}, f) = @, then (6) holds obviously.

Case 2. Suppose that E({occ}, f) # @. Since H # 0, we can get ® # 0,
F/ 4

F(F—1)

that zg is a pole of f of order p, a pole of g of order ¢q. From (5) we know that

2o is a pole of F of order (n — 2)p, a pole of G of order (n — 2)g. In view of the

definition of ® we know that zq is zero of ® of order at least n — 3. Thus

where & = — G(gil). Noting that f and g share co IM, we suppose

(7) (n— 3)N(r,00: f) < N(r,0;) < T(r, ®) + O(1),
and
(8) m(r,®) = S(r,F)+ S(r,G).

Noting that F and G share (1, k), (0, 00), we obtain
9) N(r,00;®) < N.(r,1; F,G) + S(r, F) + S(r, G).

Noting n > 3, we get (6) from (7)-(9). So the proof of Lemma 2.6 comes to
an end. |

Lemma 2.7. [2] Let
Qw) = (n— 1)*(w" = ("2 = 1) = n(n — 2)(w" " = 1)?,

then
Qw) = (w—1)"(w — 1) (w — B2) - - - (w = Ban—s),
where 3; € C\{0,1}(j = 1,2,...,2n — 6), which are distinct respectively.

3. Proof of Main Results
Proof. First, suppose that the polynomial P is defined by
P(w) = aw™ — n(n — 1w? + 2n(n — 2)bw — (n — 1)(n — 2)b?,

where n(> 4) is an integer, and a,b are two nonzero finite complex numbers
such that ab"~2 # 2. Now we claim that the polynomial P(w) has only simple
ZEeros.
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In fact, we consider the rational function

aw™

(10) Rlw) = n(n—1)(w—a1)(w—ag)’

where a1 and ay are two distinct roots of the equation n(n — 1)w? — 2n(n —
2)bw + (n — 1)(n — 2)b? = 0. From (14), we have

(n — 2)aw™ 1 (w —b)?
n(n —1)(w—a1)?(w — a)?’

(1) R'(w) =

so w = 0 is one root with multiplicity n of the equation R(w) = 0 and w = b is one
root with multiplicity 3 of the equation R(w) — ¢ = 0, where ¢ = ab"~2/2(# 1).
Thus

a(w = b)*Qu_s(w)

nin —1)(w—a1)(w—az)’

(12) R(w)—c=

where @,,—3(w) is a polynomial of degree n — 3. Moreover, we have

P(w)

(13) Rw)—1= n(n—1)(w—ay)(w — as)

We obtain from (11) and (13) that P(w) = aw™ — n(n — 1)w? + 2n(n — 2)bw —
(n — 1)(n — 2)b? has only simple zeros.
Now let F' and G be defined by

(14) F=R(f), G=R(g)

From (10),(13),(14) and in view of the condition of Theorem 1.3, we conclude
that F' and G share (0,00),(1,4) and (00,0), and by Lemma 2.4 we have

(15)  T(rf) = %T(r, F)+ S F), T(rg)= %T(r, Q)+ S(r, Q).

Let H be mentioned in Section 2, then we consider the following two cases:
Case 1. By Lemma 2.5 we have

2T(r, F)+T(r,G) < N(r,0; F) + Na(r,c; F) + N(r,00; F)
+N.(r,00; F,G) + N(r,0; G) + Na(r,c; G)
+N(r,00;G) — 2N (r,1;F) — 2N 1(r, 1;G)
+S(r, F)+ S(r,G).

(16)

In view of the definition of F, G we have

(17) N(r,00;F) = N(r,a1; f) + N(r, o025 f) + N(r, 005 ),

(18) N(r,00;G) = N(r,a1;9) + N(r, a2;9) + N(r, 005 g),
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(19) N(r,0;F) < N(r,0; f),  N(r,0;G) < N(r,0;9),
(20) Na(r,e; F) <2N(r,b; f) + N(r,0; Qn_3(f)),
(21) No(r,c;G) < 2N(r,b;9) + N(r,0; Qn—3(g))-

On the other hand, by Lemma 2.6 we have

1

(22) W(r,oo;f) ZN(T,oo;g) < n_3

N.(r, 1, F,G)+ S(r,F) + S(r,G).

From (15)-(22), we can get
(23)
T (r, f) +nT(r,g) < N(r,0;f)+2N(r,b; f) + N(r,0; Qu-3(f))
+N(r,a1; f) + N(r, az; f) + N(r, 0; 9)

+2N(r,b;9) + N(r,0; Qn—3(9)) + N(r,a1;9)
+N(r,as;9) + S(r, f)—|-5( ,9)
< m+2{T(r,f)+T(r,g9)} + S(r, f) + S(r,9).
Similarly, we can get
(24)
2nT(r,g) +nT(r, f) < N(r,0;f) +2N(r,b; f) + N(r,0; Qn-3(f))
+N(r,a1; f) + N(r,az; f) + N(r 09)
+2N(rab;g)+N(TvO;Qn 3( )) (7” al;g)
+N(7“70zz;9)+5(7“ f)+5(r9)
<+ DT )+ T(g)} + 801, 1) + 5(r,9).

Adding (23) and (24), we have
3n{T(r, /) + T(r,9)} < @+ 4{T(r, f) + T(r,9)} + 5(r, f) + S(r, 9).

So we get n < 4 which contradicts to the condition of Theorem 1.3.
Case 2. By Lemma 2.5 we have

(B+1)G+(A-B—1)

(25) F=""savua-m

where A(# 0), B are two constants, and
(26) T(r,F)=T(r,G)+0(1)

Now we consider three subcases:
Subcase 2.1 B # 0,1, (25) and the condition of Theorem 1.3 imply that
oo is Picard exceptional value of f and g, then

(27) N(T7007F) :N(nalyf)—’—ﬁ(raa%f)a

(28) N(r,00;G) = N(r,a1;9) + N(r,a2; 9).
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Suppose that A — B —1 # 0. We have from (25) that

— A-B-1

N(r, R ;G) = N(r,0; F).

By the second fundamental theorem, we have

_ — — A-B-1
T(T>G> SN(T7O,G)+N(T,OO7G)+N(T737H,G)+S(T,G)

From (15),(25)-(28), we have
nT(r,g) < N(r,ai;g)+ N(r,as;g) + N(r,0;9) + N(r,0; f) + 5(r, 9)

< 4T(r,g) +5(r.9),

which contradicts our assumption that n < 4. Therefore, we obtain A—B—1 =
0, and from (25) we have

~ (B+1)G
(29) F=Fri1
Hence we get
(30) N(r,1/B; G) = N(r,00; F) = N(r,au; f) + N(r, az; f).

If ¢ # —1/B, from (12) (14) and Lemma 2.4 we have
(31) N(r,¢;G) < (n—2)T(r,g) + S(r,g).
By the second fundamental theorem we have
2T(r,G) < N(r,0;G) + N(r,00;G) + N(r,—1/B;G) + N(r,¢; G) + S(r, G),
i.€.,

2nT(r,g) < N(r,a1;9) + N(r,az;9) + N(r,0;9) + N(r,a1; f)
+N(r,az; f) + (n—2)T(r,g) + S(r, 9)
(n+3)T(r,g) + S(r,g).

IN

Then we get a contradiction since n > 4.
If c = —1/B, we can write (29) as

(1-0G
p=r_9%
G-c '’
i.e.,

(32) G =

Then we have

(33) N(r,1—=¢ F)=N(r,00;G) = N(r,a1;9) + N(r,az; g).
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Similarly, from (25) we have

(34) N(r,e; F) < (n=2)T(r, f) + 5(r, f).

Since ¢ = ab™~2/2 # 1/2, we get that 1 — ¢ # c. By the second fundamental
theorem, we get

2T(r, F) < N(r,0; F) + N(r,00; F) + N(r,1 — ¢; F) + N(r,¢; F) + S(r, F),
i.e.,

2nT(r, f)

IN

Nﬁaal;f) +N(T‘,O{2;f) +N(T707f) +N(T,O{1;g)
+N('I’,042;g) + (’I’L - 2)T(’l", f) + S(Tv f)
(n+3)T(r, )+ S(r, ).

IN

Then we also get a contradiction since n > 4.
Subcase 2.2 B = 0. We can write (26) as
G+ (A-1)
N A

Suppose that A —1 # 0. Since F, G share (0,00), from (35) we know G #
0,1 — A, and by the second fundamental theorem we have

(35) F

N(r,00;G) + S(r,9) B
N(r,a159) + N(r,a2;9) + N(r,00;9) + S(r,9)
3T(r,g) + S(r,9).

nT(r,g)

ININAIA

This is impossible. Then A = 1, i.e. F' = G, in view of the definition of
R(w), F and G, we have
(36)
n(n=1)f2g*(f* 2 =g" ") =2n(n=2)bfg(f* ' =g" ") +(n=1)(n=2)b*(f"~g") = 0.

Let h = f/g, i.e. f = hg; substituting it in (36) we obtain
(37)
n(n—1)h*g*(h" 2 —1) = 2n(n—2)bhg(h" ' —=1) + (n—1)(n —2)b*(h™ —1) = 0.

If h is nonconstant, using Lemma 2.7 and (37), we have
(38)  {n(n—Dh(h"™* = 1)g —n(n —2)b(A"~" = 1)}* = gn(n — 2)b°Q(h),
where Q(h) = (h — )*(h — B1)(h — B2) -+~ (h = fan—c), B € C\{0,1}(j =

1,2,...,2n — 6), which are distinct respectively.

From (38) we know that every zero of h — 8;(j = 1,2,...,2n —6) is of order
at least 2. By the second fundamental theorem we have n < 4, which is a
contradiction. Hence h is a constant. From (38), we have that h"~2? = 1 and
h"~! =1, which imply h =1, i.e. f =g.

Subcase 2.3 B = —1. We write (25) as

A

F=—.
(39) -G+A+1
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If A+1 # 0, noting that F, G share (0, 00), from (39) we know F' # 0, A/(A+
1). By using the second fundamental theorem, we have

nT(r,f) < N(r,o0; F)+S(r, f)
N(r, o5 f) + N(r,a2; f) + N(r, 005 f) + S(r, f)
3T(r, f)+ S(r, f).

Then we get a contradiction. Hence we have A+1 =0, i.e. F = G. In view

of the definition of F, G we obtain
n n 2 -1 2
(40) f g _ni(n - )"
(f —a)(f —a2) (9 —a)(g — a2) a

Since f, g share (0, 00), (00, 0), from (40) we know that 0, a1, ag, 00 are Picard
exceptional values of g. This is also impossible.

Then, the proof Theorem 1.3 comes to an end. O

<
<
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