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ON INDEFINITE BINARY QUADRATIC FORMS AND
QUADRATIC IDEALS
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Abstract. We consider some properties of indefinite binary quadratic
forms F (x, y) = ax2 +bxy−y2 of discriminant ∆ = b2 +4a, and quadratic
ideals I = [a, b−√∆ ].
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1. Introduction

A real binary quadratic form (or just a form) F is a polynomial in two
variables x, y of the type

(1.1) F = F (x, y) = ax2 + bxy + cy2

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discrim-
inant of F is defined by the formula b2 − 4ac and is denoted by ∆ = ∆(F ). A
quadratic form F of discriminant ∆ is called indefinite if ∆ > 0, and is called
integral if and only if a, b, c ∈ Z. An indefinite quadratic form F = (a, b, c) of
discriminant ∆ is said to be reduced if

(1.2)
∣∣∣
√

∆− 2|a|
∣∣∣ < b <

√
∆.

Most properties of quadratic forms (the most is equivalence of forms) can
be given by the aid of extended modular group Γ (see [5]). Gauss defined the
group action of Γ on the set of forms as follows:

gF (x, y) =
(
ar2 + brs + cs2

)
x2 + (2art + bru + bts + 2csu)xy(1.3)

+
(
at2 + btu + cu2

)
y2

for g =
(

r s
t u

)
∈ Γ, that is, gF is obtained from F by making the substitu-

tion x → rx+ tu and y → sx+uy. Moreover, ∆(F ) = ∆(gF ) for all g ∈ Γ, that
is, the action of Γ on forms leaves the discriminant invariant. If F is indefinite
or integral, then so is gF for all g ∈ Γ. Let F and G be two forms. If there exists
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a g ∈ Γ such that gF = G, then F and G are called equivalent. If detg = 1,
then F and G are called properly equivalent, and if detg = −1, then F and G
are called improperly equivalent. If a form F is improperly equivalent to itself,
then F is called ambiguous (for further details on binary quadratic forms see
[1, 2, 3]).

Let ρ(F ) denote the normalization (it means that replacing F by its nor-
malization, for further details see [1, p. 88]) of (c,−b, a). We set

(1.4) ρi(F ) = (c,−b + 2cri, cr
2
i − bri + a),

where

(1.5) ri = ri(F ) =





sign(c)
⌊

b
2|c|

⌋
if |c| ≥ √

∆

sign(c)
⌊

b+
√

∆
2|c|

⌋
if |c| < √

∆

for i ≥ 0. Then the number ri is called the reducing number and the form
ρi(F ) is called the reduction of F . If ρ1(F ) is not reduced, then we apply the
reduction algorithm again and hence we get ρ2(F ). If ρ2(F ) is not reduced,
then we apply the reduction algorithm again and hence we get ρ3(F ). After
a finite step j ≥ 1, the form ρj(F ) is reduced. The form ρj(F ) is called the
reducing type of F . Buchmann and Vollmer [1] proved that given an indefinite
form F the algorithm reduction terminates with a correct result after at most
log(|a|/√∆)

2 + 2 reduction step. If F is reduced, then ρi(F ) is also reduced by
(1.2). In fact, ρi is a permutation of the set of all reduced indefinite forms.

Now consider the following transformation

(1.6) τ(F ) = τ(a, b, c) = (−a, b,−c).

Then the cycle of F is the sequence ((τρ)i(G)) for i ∈ Z, where G = (A,B, C)
is a reduced form with A > 0 which is equivalent to F . We represent the cycle
of F by its period

F0 ∼ F1 ∼ · · · ∼ Fl−1

of length l. We explain how the compute the cycle of F by the following theorem.

Theorem 1.1. [1, Sec: 6.10, p. 106] Let F = (a, b, c) be reduced indefinite
quadratic form of discriminant ∆. Let F0 = F = (a0, b0, c0),

(1.7) si = |s(Fi)| =
⌊

bi +
√

∆
2|ci|

⌋

and

Fi+1 = (ai+1, bi+1, ci+1)
=

(|ci|, −bi + 2si|ci|, −(ai + bisi + cis
2
i )

)
(1.8)

for 1 ≤ i ≤ l− 2. Then the cycle of F is F0 ∼ F1 ∼ F2 ∼ · · · ∼ Fl−1 of length l.
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Mollin [4, p. 4] considered the arithmetic of ideals in his book. Let D 6= 1
be a square free integer and let ∆ = 4D

r2 , where r = 2 if D ≡ 1(mod 4) and
r = 1 otherwise. If we set K = Q(

√
D), then K is called a quadratic number

field of discriminant ∆ and O∆ is the ring of integers of the quadratic field
K of discriminant ∆. Let I = [α, β] denote the Z-module αZ ⊕ βZ, i.e., the
additive abelian group, with basis elements α and β consisting of {αx + βy :
x, y ∈ Z}. Note that O∆ =

[
1, 1+

√
D

r

]
. In this case w∆ = r−1+

√
D

r is called
the principal surd. Every principal surd w∆ ∈ O∆ can be uniquely expressed as
w∆ = xα + yβ, where x, y ∈ Z and α, β ∈ O∆. We call [α, β] an integral basis
for K. If αβ−βα√

∆
> 0, then α and β are called ordered basis elements.

Recall that two basis of an ideal are ordered if and only if they are equivalent
under an element of Γ. If I has ordered basis elements, then we say that I is
simply ordered. If I is ordered, then

F (x, y) =
N(αx + βy)

N(I)

is a quadratic form of discriminant ∆ (here N(x) denotes the norm of x). In
this case we say that F belongs to I and write I → F . Conversely, let us assume
that

G(x, y) = Ax2 + Bxy + Cy2 = d(ax2 + bxy + cy2)

be a quadratic form, where d = ±gcd(A,B, C) and b2−4ac = ∆. If B2−4AC >
0, then we get d > 0 and if B2 − 4AC < 0, and choose d such that a > 0. If

I = [α, β] =





[
a, b−√∆

2

]
for a > 0

[
a, b−√∆

2

]√
∆ for a < 0 and ∆ > 0,

then I is an ordered O∆-ideal. Note that if a > 0, then I is primitive and if
a < 0, then I√

∆
is primitive. Thus to every form G corresponds an ideal I to

which G belongs and we write G → I. Hence we have a correspondence between
ideals and quadratic forms (for further details see [4, p. 350].

Theorem 1.2. [4, Sec: 1.2, p. 9] If I = [a, b + cw∆], then I is a non-zero
ideal of O∆ if and only if

c|b, c|a and ac|N(b + cw∆).

Let δ denote a real quadratic irrational integer with trace t = δ+δ and norm
n = δδ. Given a real quadratic irrational γ ∈ Q(δ), there are rational integers
P and Q such that γ = P+δ

Q with Q|(δ + P )(δ + P ). Hence for each

(1.9) γ =
P + δ

Q
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there is a corresponding Z−module

(1.10) Iγ = [Q, P + δ]

(in fact, this module is an ideal by Theorem 1.2), and an indefinite quadratic
form

(1.11) Fγ(x, y) = Q(x + δy)(x + δy)

of discriminant ∆ = t2 − 4n. The ideal Iγ in (1.10) is said to be reduced if and
only if

(1.12) P + δ > Q and −Q < P + δ < 0

and is said to be ambiguous if and only if it contains both P+δ
Q and P+δ

Q , so if
and only if 2P

Q ∈ Z.

Let [m0; m1,m2, · · · ,ml−1] denote continued fraction expansion of γ = P+δ
Q

with a period length l = l(I). Then the cycle of Iγ is Iγ = I0
γ ∼ I1

γ ∼ · · · ∼ I l−1
γ

of length l, where

(1.13) mi =
⌊

Pi + δ

Qi

⌋
, Pi+1 = miQi − Pi and Qi+1 =

δ2 − P 2
i+1

Qi

for i ≥ 0.

2. Indefinite Binary Quadratic Forms

In [6, 7, 8], we considered some properties of quadratic irrationals γ, quadratic
ideals Iγ and indefinite binary quadratic forms Fγ defined in (1.9), (1.10) and
(1.11), respectively. In this section, we consider some properties of indefinite
binary quadratic forms

F = (a, b,−1)

of the discriminant ∆ = b2 + 4a. First we give the following theorem.

Theorem 2.1. If ∆ ≡ 0(mod 4), say ∆ = 4k for an integer k ≥ 2, then there
exist m−indefinite binary quadratic forms of the type

(2.1) Fi = (ai, bi, ci) = (k − i2, 2i,−1), 1 ≤ i ≤ m

of discriminant ∆, where m = b
√

kc.
Proof. Let ∆ = 4k for k ≥ 2. Then ∆ is even. Let Fi = (ai, bi,−1) be given a
form of discriminant ∆. Then the coefficient bi must be an even number since
ai must be an integer. Let bi = 2i for i ≥ 1. Then

ai =
∆− b2

i

4
=

4k − 4i2

4
= k − i2.
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By the assumption ai must be positive. Therefore k − i2 > 0, that is, i <
√

k.
Hence we obtain the form Fi = (k − i2, 2i,−1) of discriminant ∆ = 4k for
1 ≤ i ≤ m. 2

Let S(F ) denote the set of indefinite binary quadratic forms Fi defined in
(2.1), that is,

(2.2) S(F ) =
{
Fi : Fi = (k − i2, 2i,−1), 1 ≤ i ≤ m

}
.

Then we have the following theorem.

Theorem 2.2. Fm is the only reduced and ambiguous form in S(F ).

Proof. Note that Fm = (am, bm, cm) = (k − m2, 2m,−1) by (2.2). We know
that m = b

√
kc. So m <

√
k. Therefore k −m2 > 0. Note that

√
k − k + m2 is

positive or negative. Nevertheless its absolute value is always smaller than m,
that is, |

√
k − k + m2| < m. Hence

∣∣∣
√

k − k + m2
∣∣∣ < m <

√
k since m <

√
k.

Therefore we conclude that Fm is reduced by (1.2) since
∣∣∣
√

k − k + m2
∣∣∣ < m <

√
k ⇔

∣∣∣
√

k − |k −m2|
∣∣∣ < m <

√
k

⇔ 2
∣∣∣
√

k − |k −m2|
∣∣∣ < 2m < 2

√
k

⇔
∣∣∣2
√

k − 2|k −m2|
∣∣∣ < 2m < 2

√
k

⇔
∣∣∣
√

4k − 2|k −m2|
∣∣∣ < 2m <

√
4k

⇔
∣∣∣
√

∆− 2|a|
∣∣∣ < b <

√
∆.

The other forms Fi = (ai, bi, ci) = (t − i2, 2i,−1) for 1 ≤ i ≤ m − 1 are not
reduced since for these forms

∣∣∣
√

∆− 2|ai|
∣∣∣ > bi.

Now we show that Fm = (k−m2, 2m,−1) is ambiguous. Let g =
(

r s
t u

)
∈

Γ. Then by (1.3), we have

(k −m2)r2 + 2mrs− s2 = k −m2

2(k −m2)rt + 2mru + 2mts− 2su = 2m

(k −m2)t2 + 2mtu− u2 = −1.

This system of equations has a solution for r = 1, s = 2m, t = 0 and u = −1.
Therefore gFm = Fm for

g =
(

1 2m
0 −1

)
.

Hence Fm is improperly equivalent to itself since detg = −1. So Fm is ambiguous
by definition. 2

We see as above that the forms Fi = (k − i2, 2i,−1) for 1 ≤ i ≤ m − 1 are
not reduced. But we can make them reduced using the reduction algorithm as
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we mentioned in Section 1.

Theorem 2.3. Let Fi = (k− i2, 2i,−1) for 1 ≤ i ≤ m−1. Then the reduction
number is

ri = −(m + i),

and the reduction type of Fi is

ρ1(Fi) = (−1, 2m, k −m2).

Proof. Let Fi = (ai, bi, ci) = (k − i2, 2i,−1) for 1 ≤ i ≤ m − 1. Note that
| − 1| <

√
4k. Then by (1.5), we get

ri = sign(ci)

⌊
bi +

√
∆

2|ci|

⌋
= −

⌊
2i +

√
4k

2

⌋
= −

⌊
i +

√
k
⌋

= −i−m.

Applying (1.4), we deduce that

ρ1(Fi) = (ci,−bi + 2rici, cir
2
i − biri + ai)

=
(−1,−2i + 2(−m− i)(−1), (−1)(−i−m)2 − 2i(−m− i) + k − i2

)

= (−1, 2m, k −m2).

Note that k ≥ 2. So
√

k − 1 > 0. Therefore |
√

k − 1| =
√

k − 1. Hence it is
easily seen that the form ρ1(Fi) is reduced since

√
k − 1 < m <

√
k ⇔

∣∣∣
√

k − 1
∣∣∣ < m <

√
k

⇔ 2
∣∣∣
√

k − 1
∣∣∣ < 2m < 2

√
k

⇔
∣∣∣
√

4k − 2| − 1|
∣∣∣ < 2m <

√
4k

⇔
∣∣∣
√

∆− 2|a|
∣∣∣ < b <

√
∆.

Therefore the reduction type of Fi is ρ1(Fi) = (−1, 2m, k−m2), as we claimed.
2

3. Cycles of Indefinite Binary Quadratic Forms

We see as above that the form Fm = (k−m2, 2m,−1) is reduced. Therefore
we can consider its cycle. In this section we consider its cycle in four cases:

k = m2 + 2m− 1, k = m2 + 2m, k = m2 + m and k = m2 + 1.

Theorem 3.1. Let Fm = (k −m2, 2m,−1).
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1. If k = m2 + 2m− 1, then the cycle of Fm = (2m− 1, 2m,−1) is

F 0
m = (2m− 1, 2m,−1) ∼ F 1

m = (1, 2m, 1− 2m) ∼
F 2

m = (2m− 1, 2m− 2,−2) ∼ F 3
m = (2, 2m− 2, 1− 2m).

2. If k = m2 + 2m, then the cycle of Fm = (2m, 2m,−1) is

F 0
m = (2m, 2m,−1) ∼ F 1

m = (1, 2m,−2m).

3. If k = m2 + m, then the cycle of Fm = (m, 2m,−1) is

F 0
m = (m, 2m,−1) ∼ F 1

m = (1, 2m,−m).

4. If k = m2 + 1, then the cycle of Fm = (1, 2m,−1) is

F 0
m = (1, 2m,−1).

Proof. (1) Let k = m2 + 2m− 1. Then Fm = (2m− 1, 2m,−1). Hence by (1.7),
we get

s0 =

⌊
b0 +

√
∆

2|c0|

⌋
=

⌊
2m +

√
4(m2 + 2m− 1)
2| − 1|

⌋
= 2m

and from (1.8)

F 1
m = (a1, b1, c1)

=
(|c0|, −b0 + 2s0|c0|, −a0 − b0s0 − c0s

2
0

)

=
(
1, −2m + 2.2m, 1− 2m− 2m.2m + 4m2

)

= (1, 2m, 1− 2m) .

For i = 1 we have

s1 =

⌊
b1 +

√
∆

2|c1|

⌋
=

⌊
2m +

√
4(m2 + 2m− 1)

2|1− 2m|

⌋
= 1

and hence

F 2
m = (a2, b2, c2)

=
(|c1|, −b1 + 2s1|c1|, −a1 − b1s1 − c1s

2
1

)

= (2m− 1, −2m + 2.(2m− 1), −1− 2m− (1− 2m))
= (2m− 1, 2m− 2,−2) .

For i = 2 we have

s2 =

⌊
b2 +

√
∆

2|c2|

⌋
=

⌊
2m− 2 +

√
4(m2 + 2m− 1)

2| − 2|

⌋
= m− 1
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and hence

F 3
m = (a3, b3, c3)

=
(|c2|, −b2 + 2s2|c2|, −a2 − b2s2 − c2s

2
2

)

=
(
2, 2− 2m + 2(m− 1).2, 1− 2m− (2m− 2)(m− 1) + 2(m− 1)2

)

= (2, 2m− 2, 1− 2m) .

For i = 3 we have

s3 =

⌊
b3 +

√
∆

2|c3|

⌋
=

⌊
2m− 2 +

√
4(m2 + 2m− 1)

2|1− 2m|

⌋
= 1

and hence

F 4
m = (a4, b4, c4)

=
(|c3|, −b3 + 2s3|c3|, −a3 − b3s3 − c3s

2
3

)

= (2m− 1, 2− 2m + 2(2m− 1),−2− (2m− 2)− (1− 2m))
= (2m− 1, 2m,−1)
= F 0

m.

Therefore the cycle of Fm is completed and is F 0
m = (2m− 1, 2m,−1) ∼ F 1

m =
(1, 2m, 1− 2m) ∼ F 2

m = (2m− 1, 2m− 2,−2) ∼ F 3
m = (2, 2m− 2, 1− 2m).

(2) Let k = m2 + 2m. Then Fm = (2m, 2m,−1). Then by (1.7), we get

s0 =

⌊
b0 +

√
∆

2|c0|

⌋
=

⌊
2m +

√
4(m2 + 2m)

2| − 1|

⌋
= 2m

and hence by (1.8)

F 1
m = (a1, b1, c1)

=
(|c0|, −b0 + 2s0|c0|, −a0 − b0s0 − c0s

2
0

)

=
(
1, −2m + 2.2m,−2m− 2m.2m + 4m2

)

= (1, 2m,−2m) .

For i = 1 we have

s1 =

⌊
b1 +

√
∆

2|c1|

⌋
=

⌊
2m +

√
4(m2 + 2m)

2| − 2m|

⌋
= 1

and hence

F 2
m = (a2, b2, c2)

=
(|c1|, −b1 + 2s1|c1|, −a1 − b1s1 − c1s

2
1

)

= (2m, −2m + 2.2m, −1− 2m + 2m)
= (2m, 2m− 1)
= F 0

m.
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Therefore the cycle of Fm is completed and is F 0
m = (2m, 2m,−1) ∼ F 1

m =
(1, 2m,−2m).

(3) Let t = m2 + m. Then Fm = (m, 2m,−1) and hence by (1.7)

s0 =

⌊
b0 +

√
∆

2|c0|

⌋
=

⌊
2m +

√
4(m2 + m)

2| − 1|

⌋
= 2m.

So by (1.8)

F 1
m = (a1, b1, c1)

=
(|c0|, −b0 + 2s0|c0|, −a0 − b0s0 − c0s

2
0

)

=
(
1, −2m + 2.2m,−m− 2m.2m + 4m2

)

= (1, 2m,−m) .

For i = 1 we have

s1 =

⌊
b1 +

√
∆

2|c1|

⌋
=

⌊
2m +

√
4(m2 + m)

2| −m|

⌋
= 2

and hence

F 2
m = (a2, b2, c2)

=
(|c1|, −b1 + 2s1|c1|, −a1 − b1s1 − c1s

2
1

)

= (m, −2m + 2.2.m, −1− 2m.2 + 4m)
= (m, 2m,−1)
= F 0

m.

Therefore the cycle of Fm is completed and is F 0
m = (m, 2m,−1) ∼ F 1

m =
(1, 2m,−m).

(4) Let k = m2 + 1. Then Fm = (1, 2m,−1) and hence

s0 =

⌊
b0 +

√
∆

2|c0|

⌋
=

⌊
2m +

√
4(m2 + 1)

2| − 1|

⌋
= 2m.

So

F 1
m = (a1, b1, c1)

=
(|c0|, −b0 + 2s0|c0|, −a0 − b0s0 − c0s

2
0

)

=
(
1, −2m + 2.2m,−1− 2m.2m + 4m2

)

= (1, 2m,−1)
= F 0

m.

Therefore the cycle of Fm is completed and is F 0
m = (1, 2m,−1). 2
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4. Cycle of Ideals I = [a, b−√∆]

In the previous section, we considered the cycles of the form
Fm = (am, bm,−1) = (k −m2, 2m,−1) of discriminant ∆ = b2

m + 4am in four
cases. Similarly, in this section we consider the cycles of ideals I = [a, b−√∆]
in four cases.

Theorem 4.1. Let I = [a, b−√∆].

1. If a = b − 1 and if a = 4k + 1 for an integer k ≥ 1, then the continued
fraction expansion of γ = 4k+2−√16k2+32k+8

4k+1 is [−1; 1, 2k, 2, k, 2, 2k + 1],
and the cycle of I = [4k + 1, 4k + 2−√16k2 + 32k + 8] is

I0 = [4k + 1, 4k + 2−
√

16k2 + 32k + 8] ∼
I1 = [−1− 12k,−3− 8k −

√
16k2 + 32k + 8] ∼

I2 = [−4, 2− 4k −
√

16k2 + 32k + 8] ∼
I3 = [−1− 4k,−2− 2k −

√
16k2 + 32k + 8] ∼

I4 = [−8,−4k −
√

16k2 + 32k + 8] ∼
I5 = [−1− 4k,−4k −

√
16k2 + 32k + 8] ∼

I6 = [−4,−2− 2k −
√

16k2 + 32k + 8].

2. If a = b = 2k for an integer k > 3, then the continued fraction expansion
of γ = 2k−√4k2+8k

2k is [−1; 1, k − 1, 2, k], and the cycle of I = [2k, 2k −√
4k2 + 8k] is

I0 = [2k, 2k −
√

4k2 + 8k] ∼ I1 = [4− 6k,−4k −
√

4k2 + 8k] ∼
I2 = [−4, 4− 2k −

√
4k2 + 8k] ∼ I3 = [−2k,−2k −

√
4k2 + 8k] ∼

I4 = [−4,−2k −
√

4k2 + 8k].

3. If b = 2a, then the continued fraction expansion of γ = 2a−√4a2+4a
a is

[−1; 1, a− 1, 4, a], and the cycle of I = [a, 2a−√4a2 + 4a] is

I0 = [a, 2a−
√

4a2 + 4a] ∼ I1 = [4− 5a,−3a−
√

4a2 + 4a] ∼
I2 = [−4, 4− 2a−

√
4a2 + 4a] ∼ I3 = [−a,−2a−

√
4a2 + 4a] ∼

I4 = [−4,−2a−
√

4a2 + 4a].

4. If a = 1 and b = 2k for an integer k ≥ 1, then the continued fraction
expansion of γ = 2k−√4k2+4

1 is [−1; 1, k − 1, 4k, k], and the cycle of I =
[1, 2k −√4k2 + 4] is

I0 = [1, 2k −
√

4k2 + 4] ∼ I1 = [3− 4k,−1− 2k −
√

4k2 + 4] ∼
I2 = [−4, 4− 2k −

√
4k2 + 4] ∼ I3 = [−1,−2k −

√
4k2 + 4] ∼

I4 = [−4,−2k −
√

4k2 + 4].
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Proof. (1) Let I = I0 = [4k + 1, 4k + 2−√16k2 + 32k + 8]. Then by (1.13) we
get m0 = −1 and hence

P1 = m0Q0 − P0 = −1(4k + 1)− (4k + 2) = −8k − 3

Q1 =
D − P 2

1

Q0
=

16k2 + 32k + 8− (−8k − 3)2

4k + 1
= −1− 12k.

For i = 1 we have m1 = 1 and hence

P2 = m1Q1 − P1 = 1(−1− 12k)− (−3− 8k) = 2− 4k

Q2 =
D − P 2

2

Q1
=

16k2 + 32k + 8− (2− 4k)2

−1− 12k
= −4.

For i = 2 we have m2 = 2k and hence

P3 = m2Q2 − P2 = 2k(−4)− (2− 4k) = −2− 4k

Q3 =
D − P 2

3

Q2
=

16k2 + 32k + 8− (−2− 4k)2

−4
= −1− 4k.

For i = 3 we have m3 = 2 and hence

P4 = m3Q3 − P3 = 2(−1− 4k)− (−2− 4k) = −4k

Q4 =
D − P 2

4

Q3
=

16k2 + 32k + 8− (−4k)2

−1− 4k
= −8.

For i = 4 we have m4 = k and hence

P5 = m4Q4 − P4 = k(−8)− (−4k) = −4k

Q5 =
D − P 2

5

Q4
=

16k2 + 32k + 8− (−4k)2

−8
= −1− 4k.

For i = 5 we have m5 = 2 and hence

P6 = m5Q5 − P5 = 2(−1− 4k)− (−4k) = −2− 4k

Q6 =
D − P 2

6

Q5
=

16k2 + 32k + 8− (−2− 4k)2

−1− 4k
= −4.

For i = 6 we have m6 = 2k + 1 and hence

P7 = m6Q6 − P6 = (2k + 1)(−4)− (−2− 4k) = −2− 4k = P3

Q7 =
D − P 2

7

Q6
=

16k2 + 32k + 8− (−2− 4k)2

−4
= −1− 4k = Q3.

For i = 7 we have m7 = 2 = m3. Therefore the continued fraction expan-
sion of γ is [−1; 1, 2k, 2, k, 2, 2k + 1], and the cycle of I is I0 = [4k + 1, 4k +
2 − √16k2 + 32k + 8] ∼ I1 = [−1 − 12k,−3 − 8k − √16k2 + 32k + 8] ∼ I2 =
[−4, 2− 4k−√16k2 + 32k + 8] ∼ I3 = [−1− 4k,−2− 2k−√16k2 + 32k + 8] ∼
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I4 = [−8,−4k −√16k2 + 32k + 8] ∼ I5 = [−1− 4k,−4k −√16k2 + 32k + 8] ∼
I6 = [−4,−2− 2k −√16k2 + 32k + 8].

(2) Let I = I0 = [2k, 2k −√4k2 + 8k]. Then by (1.13) we get m0 = −1 and
hence

P1 = m0Q0 − P0 = −1(2k)− (2k) = −4k

Q1 =
D − P 2

1

Q0
=

4k2 + 8k − (−4k)2

2k
=

2k(4− 6k)
2k

= 4− 6k.

For i = 1 we have m1 = 1 and hence

P2 = m1Q1 − P1 = 1.(4− 6k)− (−4k) = 4− 2k

Q2 =
D − P 2

2

Q1
=

4k2 + 8k − (4− 2k)2

4− 6k
=
−4(4− 6k)

4− 6k
= −4.

For i = 2 we have m2 = k − 1 and hence

P3 = m2Q2 − P2 = (k − 1)(−4)− (4− 2k) = −2k

Q3 =
D − P 2

3

Q2
=

4k2 + 8k − (−2k)2

−4
=

8k

−4
= −2k.

For i = 3 we have m3 = 2 and hence

P4 = m3Q3 − P3 = 2(−2k)− (−2k) = −2k

Q4 =
D − P 2

4

Q3
=

4k2 + 8k − (−2k)2

−2k
=

8k

−2k
= −4.

For i = 4 we have m4 = k and hence

P5 = m4Q4 − P4 = k(−4)− (−2k) = −2k = P3

Q5 =
D − P 2

5

Q4
=

4k2 + 8k − (−2k)2

−4
=

8k

−4
= −2k = Q3.

For i = 5 we have m5 = 2 = m3. Therefore the continued fraction expansion
of γ is [−1; 1, k − 1, 2, k], and the cycle of I is I0 = [2k, 2k − √

4k2 + 8k] ∼
I1 = [4 − 6k,−4k − √

4k2 + 8k] ∼ I2 = [−4, 4 − 2k − √
4k2 + 8k] ∼ I3 =

[−2k,−2k −√4k2 + 8k] ∼ I4 = [−4,−2k −√4k2 + 8k].
(3) Let b = 2a and let I = I0 = [a, 2a−√4a2 + 4a]. Then by (1.13) we get

m0 = −1 and hence

P1 = m0Q0 − P0 = −1(a)− (2a) = −3a

Q1 =
D − P 2

1

Q0
=

4a2 + 4a− (−3a)2

a
=

a(4− 5a)
a

= 4− 5a.

For i = 1 we have m1 = 1 and hence

P2 = m1Q1 − P1 = 1.(4− 5a)− (−3a) = 4− 2a

Q2 =
D − P 2

2

Q1
=

4a2 + 4a− (4− 2a)2

4− 5a
=
−4(4− 5a)

4− 5a
= −4.
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For i = 2 we have m2 = a− 1 and hence

P3 = m2Q2 − P2 = (a− 1)(−4)− (4− 2a) = −2a

Q3 =
D − P 2

3

Q2
=

4a2 + 4a− (−2a)2

−4
=

4a

−4
= −a.

For i = 3 we have m3 = 4 and hence

P4 = m3Q3 − P3 = 4(−a)− (−2a) = −2a

Q4 =
D − P 2

4

Q3
=

4a2 + 4a− (−2a)2

−a
=

4a

−a
= −4.

For i = 4 we have m4 = a and hence

P5 = m4Q4 − P4 = a(−4)− (−2a) = −2a = P3

Q5 =
D − P 2

5

Q4
=

4a2 + 4a− (−2a)2

−4
=

4a

−4
= −a = Q3.

For i = 5 we have m5 = 4 = m3. Therefore the continued fraction expansion
of γ is [−1; 1, a − 1, 4, a], and the cycle of I is I0 = [a, 2a − √4a2 + 4a ∼ I1 =
[4 − 5a,−3a −√4a2 + 4a] ∼ I2 = [−4, 4 − 2a −√4a2 + 4a] ∼ I3 = [−a,−2a −√

4a2 + 4a] ∼ I4 = [−4,−2a−√4a2 + 4a].
(4) Let a = 1, let b = 2k, and let I = I0 = [1, 2k − √

4k2 + 4]. Then by
(1.13) we get m0 = −1 and hence

P1 = m0Q0 − P0 = −1(1)− (2k) = −1− 2k

Q1 =
D − P 2

1

Q0
=

4k2 + 4− (−1− 2k)2

1
= 3− 4k.

For i = 1 we have m1 = 1 and hence

P2 = m1Q1 − P1 = 1.(3− 4k)− (−1− 2k) = 4− 2k

Q2 =
D − P 2

2

Q1
=

4k2 + 4− (4− 2k)2

3− 4k
= −4.

For i = 2 we have m2 = k − 1 and hence

P3 = m2Q2 − P2 = (k − 1)(−4)− (4− 2k) = −2k

Q3 =
D − P 2

3

Q2
=

4k2 + 4− (−2k)2

−4
= −1.

For i = 3 we have m3 = 4k and hence

P4 = m3Q3 − P3 = 4k(−1)− (−2k) = −2k

Q4 =
D − P 2

4

Q3
=

4k2 + 4− (−2k)2

−1
= −4.
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For i = 4 we have m4 = k and hence

P5 = m4Q4 − P4 = k(−4)− (−2k) = −2k = P3

Q5 =
D − P 2

5

Q4
=

4k2 + 4− (−2k)2

−4
= −1 = Q3.

For i = 5 we have m5 = 4k = m3. Therefore the continued fraction expansion
of γ is [−1; 1, k − 1, 4k, k], and the cycle of I is I0 = [1, 2k − √

4k2 + 4] ∼
I1 = [3 − 4k,−1 − 2k − √

4k2 + 4] ∼ I2 = [−4, 4 − 2k − √
4k2 + 4] ∼ I3 =

[−1,−2k −√4k2 + 4] ∼ I4 = [−4,−2k −√4k2 + 4]. 2
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