# ON INDEFINITE BINARY QUADRATIC FORMS AND QUADRATIC IDEALS 

## Ahmet TEKCAN ${ }^{11}$


#### Abstract

We consider some properties of indefinite binary quadratic forms $F(x, y)=a x^{2}+b x y-y^{2}$ of discriminant $\Delta=b^{2}+4 a$, and quadratic ideals $I=[a, b-\sqrt{\Delta}]$.

AMS Mathematics Subject Classification (2000): 11E04, 11E12, 11E16 Key words and phrases: Binary quadratic forms, ideals, cycles of forms, cycles of ideals


## 1. Introduction

A real binary quadratic form (or just a form) $F$ is a polynomial in two variables $x, y$ of the type

$$
\begin{equation*}
F=F(x, y)=a x^{2}+b x y+c y^{2} \tag{1.1}
\end{equation*}
$$

with real coefficients $a, b, c$. We denote $F$ briefly by $F=(a, b, c)$. The discriminant of $F$ is defined by the formula $b^{2}-4 a c$ and is denoted by $\Delta=\Delta(F)$. A quadratic form $F$ of discriminant $\Delta$ is called indefinite if $\Delta>0$, and is called integral if and only if $a, b, c \in \mathbb{Z}$. An indefinite quadratic form $F=(a, b, c)$ of discriminant $\Delta$ is said to be reduced if

$$
\begin{equation*}
|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta} \tag{1.2}
\end{equation*}
$$

Most properties of quadratic forms (the most is equivalence of forms) can be given by the aid of extended modular group $\bar{\Gamma}$ (see [5). Gauss defined the group action of $\bar{\Gamma}$ on the set of forms as follows:

$$
\begin{align*}
g F(x, y)= & \left(a r^{2}+b r s+c s^{2}\right) x^{2}+(2 a r t+b r u+b t s+2 c s u) x y  \tag{1.3}\\
& +\left(a t^{2}+b t u+c u^{2}\right) y^{2}
\end{align*}
$$

for $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$, that is, $g F$ is obtained from $F$ by making the substitution $x \rightarrow r x+t u$ and $y \rightarrow s x+u y$. Moreover, $\Delta(F)=\Delta(g F)$ for all $g \in \bar{\Gamma}$, that is, the action of $\bar{\Gamma}$ on forms leaves the discriminant invariant. If $F$ is indefinite or integral, then so is $g F$ for all $g \in \bar{\Gamma}$. Let $F$ and $G$ be two forms. If there exists

[^0]a $g \in \bar{\Gamma}$ such that $g F=G$, then $F$ and $G$ are called equivalent. If $\operatorname{det} g=1$, then $F$ and $G$ are called properly equivalent, and if $\operatorname{det} g=-1$, then $F$ and $G$ are called improperly equivalent. If a form $F$ is improperly equivalent to itself, then $F$ is called ambiguous (for further details on binary quadratic forms see [1, 2, 3).

Let $\rho(F)$ denote the normalization (it means that replacing $F$ by its normalization, for further details see [1, p. 88]) of $(c,-b, a)$. We set

$$
\begin{equation*}
\rho^{i}(F)=\left(c,-b+2 c r_{i}, c r_{i}^{2}-b r_{i}+a\right) \tag{1.4}
\end{equation*}
$$

where

$$
r_{i}=r_{i}(F)=\left\{\begin{array}{cl}
\operatorname{sign}(c)\left\lfloor\frac{b}{2|c|}\right\rfloor & \text { if }|c| \geq \sqrt{\Delta}  \tag{1.5}\\
\operatorname{sign}(c)\left\lfloor\frac{b+\sqrt{\Delta}}{2|c|}\right\rfloor & \text { if }|c|<\sqrt{\Delta}
\end{array}\right.
$$

for $i \geq 0$. Then the number $r_{i}$ is called the reducing number and the form $\rho^{i}(F)$ is called the reduction of $F$. If $\rho^{1}(F)$ is not reduced, then we apply the reduction algorithm again and hence we get $\rho^{2}(F)$. If $\rho^{2}(F)$ is not reduced, then we apply the reduction algorithm again and hence we get $\rho^{3}(F)$. After a finite step $j \geq 1$, the form $\rho^{j}(F)$ is reduced. The form $\rho^{j}(F)$ is called the reducing type of $F$. Buchmann and Vollmer [1] proved that given an indefinite form $F$ the algorithm reduction terminates with $a$ correct result after at most $\frac{\log (|a| / \sqrt{\Delta})}{2}+2$ reduction step. If $F$ is reduced, then $\rho^{i}(F)$ is also reduced by (1.2). In fact, $\rho^{i}$ is a permutation of the set of all reduced indefinite forms.

Now consider the following transformation

$$
\begin{equation*}
\tau(F)=\tau(a, b, c)=(-a, b,-c) \tag{1.6}
\end{equation*}
$$

Then the cycle of $F$ is the sequence $\left((\tau \rho)^{i}(G)\right)$ for $i \in \mathbb{Z}$, where $G=(A, B, C)$ is a reduced form with $A>0$ which is equivalent to $F$. We represent the cycle of $F$ by its period

$$
F_{0} \sim F_{1} \sim \cdots \sim F_{l-1}
$$

of length $l$. We explain how the compute the cycle of $F$ by the following theorem.
Theorem 1.1. [1, Sec: 6.10, p. 106] Let $F=(a, b, c)$ be reduced indefinite quadratic form of discriminant $\Delta$. Let $F_{0}=F=\left(a_{0}, b_{0}, c_{0}\right)$,

$$
\begin{equation*}
s_{i}=\left|s\left(F_{i}\right)\right|=\left\lfloor\frac{b_{i}+\sqrt{\Delta}}{2\left|c_{i}\right|}\right\rfloor \tag{1.7}
\end{equation*}
$$

and

$$
\begin{align*}
F_{i+1} & =\left(a_{i+1}, b_{i+1}, c_{i+1}\right) \\
& =\left(\left|c_{i}\right|,-b_{i}+2 s_{i}\left|c_{i}\right|,-\left(a_{i}+b_{i} s_{i}+c_{i} s_{i}^{2}\right)\right) \tag{1.8}
\end{align*}
$$

for $1 \leq i \leq l-2$. Then the cycle of $F$ is $F_{0} \sim F_{1} \sim F_{2} \sim \cdots \sim F_{l-1}$ of length $l$.

Mollin [4, p. 4] considered the arithmetic of ideals in his book. Let $D \neq 1$ be a square free integer and let $\Delta=\frac{4 D}{r^{2}}$, where $r=2$ if $D \equiv 1(\bmod 4)$ and $r=1$ otherwise. If we set $\mathbb{K}=\mathbb{Q}(\sqrt{D})$, then $\mathbb{K}$ is called a quadratic number field of discriminant $\Delta$ and $O_{\Delta}$ is the ring of integers of the quadratic field $\mathbb{K}$ of discriminant $\Delta$. Let $I=[\alpha, \beta]$ denote the $\mathbb{Z}$-module $\alpha \mathbb{Z} \oplus \beta \mathbb{Z}$, i.e., the additive abelian group, with basis elements $\alpha$ and $\beta$ consisting of $\{\alpha x+\beta y$ : $x, y \in \mathbb{Z}\}$. Note that $O_{\Delta}=\left[1, \frac{1+\sqrt{D}}{r}\right]$. In this case $w_{\Delta}=\frac{r-1+\sqrt{D}}{r}$ is called the principal surd. Every principal surd $w_{\Delta} \in O_{\Delta}$ can be uniquely expressed as $w_{\Delta}=x \alpha+y \beta$, where $x, y \in \mathbb{Z}$ and $\alpha, \beta \in O_{\Delta}$. We call $[\alpha, \beta]$ an integral basis for $\mathbb{K}$. If $\frac{\alpha \bar{\beta}-\beta \bar{\alpha}}{\sqrt{\Delta}}>0$, then $\alpha$ and $\beta$ are called ordered basis elements.

Recall that two basis of an ideal are ordered if and only if they are equivalent under an element of $\bar{\Gamma}$. If $I$ has ordered basis elements, then we say that $I$ is simply ordered. If $I$ is ordered, then

$$
F(x, y)=\frac{N(\alpha x+\beta y)}{N(I)}
$$

is a quadratic form of discriminant $\Delta$ (here $N(x)$ denotes the norm of $x$ ). In this case we say that $F$ belongs to $I$ and write $I \rightarrow F$. Conversely, let us assume that

$$
G(x, y)=A x^{2}+B x y+C y^{2}=d\left(a x^{2}+b x y+c y^{2}\right)
$$

be a quadratic form, where $d= \pm \operatorname{gcd}(A, B, C)$ and $b^{2}-4 a c=\Delta$. If $B^{2}-4 A C>$ 0 , then we get $d>0$ and if $B^{2}-4 A C<0$, and choose $d$ such that $a>0$. If

$$
I=[\alpha, \beta]= \begin{cases}{\left[a, \frac{b-\sqrt{\Delta}}{2}\right]} & \text { for } a>0 \\ {\left[a, \frac{b-\sqrt{\Delta}}{2}\right] \sqrt{\Delta}} & \text { for } a<0 \text { and } \Delta>0\end{cases}
$$

then $I$ is an ordered $O_{\Delta}$-ideal. Note that if $a>0$, then $I$ is primitive and if $a<0$, then $\frac{I}{\sqrt{\Delta}}$ is primitive. Thus to every form $G$ corresponds an ideal $I$ to which $G$ belongs and we write $G \rightarrow I$. Hence we have a correspondence between ideals and quadratic forms (for further details see [4, p. 350].

Theorem 1.2. [4, Sec: 1.2, p. 9] If $I=\left[a, b+c w_{\Delta}\right]$, then $I$ is a non-zero ideal of $O_{\Delta}$ if and only if

$$
c|b, c| a \quad \text { and } \quad a c \mid N\left(b+c w_{\Delta}\right) .
$$

Let $\delta$ denote a real quadratic irrational integer with trace $t=\delta+\bar{\delta}$ and norm $n=\delta \bar{\delta}$. Given a real quadratic irrational $\gamma \in \mathbb{Q}(\delta)$, there are rational integers $P$ and $Q$ such that $\gamma=\frac{P+\delta}{Q}$ with $Q \mid(\delta+P)(\bar{\delta}+P)$. Hence for each

$$
\begin{equation*}
\gamma=\frac{P+\delta}{Q} \tag{1.9}
\end{equation*}
$$

there is a corresponding $\mathbb{Z}$-module

$$
\begin{equation*}
I_{\gamma}=[Q, P+\delta] \tag{1.10}
\end{equation*}
$$

(in fact, this module is an ideal by Theorem 1.2), and an indefinite quadratic form

$$
\begin{equation*}
F_{\gamma}(x, y)=Q(x+\delta y)(x+\bar{\delta} y) \tag{1.11}
\end{equation*}
$$

of discriminant $\Delta=t^{2}-4 n$. The ideal $I_{\gamma}$ in (1.10) is said to be reduced if and only if

$$
\begin{equation*}
P+\delta>Q \text { and }-Q<P+\bar{\delta}<0 \tag{1.12}
\end{equation*}
$$

and is said to be ambiguous if and only if it contains both $\frac{P+\delta}{Q}$ and $\frac{P+\bar{\delta}}{Q}$, so if and only if $\frac{2 P}{Q} \in \mathbb{Z}$.

Let $\left[m_{0} ; \overline{m_{1}}, m_{2}, \cdots, m_{l-1}\right]$ denote continued fraction expansion of $\gamma=\frac{P+\delta}{Q}$ with a period length $l=l(I)$. Then the cycle of $I_{\gamma}$ is $I_{\gamma}=I_{\gamma}^{0} \sim I_{\gamma}^{1} \sim \cdots \sim I_{\gamma}^{l-1}$ of length $l$, where

$$
\begin{equation*}
m_{i}=\left\lfloor\frac{P_{i}+\delta}{Q_{i}}\right\rfloor, \quad P_{i+1}=m_{i} Q_{i}-P_{i} \quad \text { and } \quad Q_{i+1}=\frac{\delta^{2}-P_{i+1}^{2}}{Q_{i}} \tag{1.13}
\end{equation*}
$$

for $i \geq 0$.

## 2. Indefinite Binary Quadratic Forms

In [6, 7, 8, we considered some properties of quadratic irrationals $\gamma$, quadratic ideals $I_{\gamma}$ and indefinite binary quadratic forms $F_{\gamma}$ defined in (1.9), (1.10) and (1.11), respectively. In this section, we consider some properties of indefinite binary quadratic forms

$$
F=(a, b,-1)
$$

of the discriminant $\Delta=b^{2}+4 a$. First we give the following theorem.
Theorem 2.1. If $\Delta \equiv 0(\bmod 4)$, say $\Delta=4 k$ for an integer $k \geq 2$, then there exist $m$-indefinite binary quadratic forms of the type

$$
\begin{equation*}
F_{i}=\left(a_{i}, b_{i}, c_{i}\right)=\left(k-i^{2}, 2 i,-1\right), \quad 1 \leq i \leq m \tag{2.1}
\end{equation*}
$$

of discriminant $\Delta$, where $m=\lfloor\sqrt{k}\rfloor$.
Proof. Let $\Delta=4 k$ for $k \geq 2$. Then $\Delta$ is even. Let $F_{i}=\left(a_{i}, b_{i},-1\right)$ be given a form of discriminant $\Delta$. Then the coefficient $b_{i}$ must be an even number since $a_{i}$ must be an integer. Let $b_{i}=2 i$ for $i \geq 1$. Then

$$
a_{i}=\frac{\Delta-b_{i}^{2}}{4}=\frac{4 k-4 i^{2}}{4}=k-i^{2} .
$$

By the assumption $a_{i}$ must be positive. Therefore $k-i^{2}>0$, that is, $i<\sqrt{k}$. Hence we obtain the form $F_{i}=\left(k-i^{2}, 2 i,-1\right)$ of discriminant $\Delta=4 k$ for $1 \leq i \leq m$.

Let $S(F)$ denote the set of indefinite binary quadratic forms $F_{i}$ defined in (2.1), that is,

$$
\begin{equation*}
S(F)=\left\{F_{i}: F_{i}=\left(k-i^{2}, 2 i,-1\right), \quad 1 \leq i \leq m\right\} . \tag{2.2}
\end{equation*}
$$

Then we have the following theorem.
Theorem 2.2. $\quad F_{m}$ is the only reduced and ambiguous form in $S(F)$.
Proof. Note that $F_{m}=\left(a_{m}, b_{m}, c_{m}\right)=\left(k-m^{2}, 2 m,-1\right)$ by (2.2). We know that $m=\lfloor\sqrt{k}\rfloor$. So $m<\sqrt{k}$. Therefore $k-m^{2}>0$. Note that $\sqrt{k}-k+m^{2}$ is positive or negative. Nevertheless its absolute value is always smaller than $m$, that is, $\left|\sqrt{k}-k+m^{2}\right|<m$. Hence $\left|\sqrt{k}-k+m^{2}\right|<m<\sqrt{k}$ since $m<\sqrt{k}$. Therefore we conclude that $F_{m}$ is reduced by (1.2) since

$$
\begin{aligned}
\left|\sqrt{k}-k+m^{2}\right|<m<\sqrt{k} & \Leftrightarrow\left|\sqrt{k}-\left|k-m^{2}\right|\right|<m<\sqrt{k} \\
& \Leftrightarrow 2\left|\sqrt{k}-\left|k-m^{2}\right|\right|<2 m<2 \sqrt{k} \\
& \Leftrightarrow|2 \sqrt{k}-2| k-m^{2}| |<2 m<2 \sqrt{k} \\
& \Leftrightarrow|\sqrt{4 k}-2| k-m^{2}| |<2 m<\sqrt{4 k} \\
& \Leftrightarrow|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta} .
\end{aligned}
$$

The other forms $F_{i}=\left(a_{i}, b_{i}, c_{i}\right)=\left(t-i^{2}, 2 i,-1\right)$ for $1 \leq i \leq m-1$ are not reduced since for these forms $|\sqrt{\Delta}-2| a_{i}| |>b_{i}$.

Now we show that $F_{m}=\left(k-m^{2}, 2 m,-1\right)$ is ambiguous. Let $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in$ $\bar{\Gamma}$. Then by (1.3), we have

$$
\begin{aligned}
\left(k-m^{2}\right) r^{2}+2 m r s-s^{2} & =k-m^{2} \\
2\left(k-m^{2}\right) r t+2 m r u+2 m t s-2 s u & =2 m \\
\left(k-m^{2}\right) t^{2}+2 m t u-u^{2} & =-1 .
\end{aligned}
$$

This system of equations has a solution for $r=1, s=2 m, t=0$ and $u=-1$. Therefore $g F_{m}=F_{m}$ for

$$
g=\left(\begin{array}{cc}
1 & 2 m \\
0 & -1
\end{array}\right)
$$

Hence $F_{m}$ is improperly equivalent to itself since $\operatorname{det} g=-1$. So $F_{m}$ is ambiguous by definition.

We see as above that the forms $F_{i}=\left(k-i^{2}, 2 i,-1\right)$ for $1 \leq i \leq m-1$ are not reduced. But we can make them reduced using the reduction algorithm as
we mentioned in Section 1.

Theorem 2.3. Let $F_{i}=\left(k-i^{2}, 2 i,-1\right)$ for $1 \leq i \leq m-1$. Then the reduction number is

$$
r_{i}=-(m+i)
$$

and the reduction type of $F_{i}$ is

$$
\rho^{1}\left(F_{i}\right)=\left(-1,2 m, k-m^{2}\right)
$$

Proof. Let $F_{i}=\left(a_{i}, b_{i}, c_{i}\right)=\left(k-i^{2}, 2 i,-1\right)$ for $1 \leq i \leq m-1$. Note that $|-1|<\sqrt{4 k}$. Then by (1.5), we get

$$
r_{i}=\operatorname{sign}\left(c_{i}\right)\left\lfloor\frac{b_{i}+\sqrt{\Delta}}{2\left|c_{i}\right|}\right\rfloor=-\left\lfloor\frac{2 i+\sqrt{4 k}}{2}\right\rfloor=-\lfloor i+\sqrt{k}\rfloor=-i-m
$$

Applying (1.4), we deduce that

$$
\begin{aligned}
\rho^{1}\left(F_{i}\right) & =\left(c_{i},-b_{i}+2 r_{i} c_{i}, c_{i} r_{i}^{2}-b_{i} r_{i}+a_{i}\right) \\
& =\left(-1,-2 i+2(-m-i)(-1),(-1)(-i-m)^{2}-2 i(-m-i)+k-i^{2}\right) \\
& =\left(-1,2 m, k-m^{2}\right)
\end{aligned}
$$

Note that $k \geq 2$. So $\sqrt{k}-1>0$. Therefore $|\sqrt{k}-1|=\sqrt{k}-1$. Hence it is easily seen that the form $\rho^{1}\left(F_{i}\right)$ is reduced since

$$
\begin{aligned}
\sqrt{k}-1<m<\sqrt{k} & \Leftrightarrow|\sqrt{k}-1|<m<\sqrt{k} \\
& \Leftrightarrow 2|\sqrt{k}-1|<2 m<2 \sqrt{k} \\
& \Leftrightarrow|\sqrt{4 k}-2|-1| |<2 m<\sqrt{4 k} \\
& \Leftrightarrow|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta}
\end{aligned}
$$

Therefore the reduction type of $F_{i}$ is $\rho^{1}\left(F_{i}\right)=\left(-1,2 m, k-m^{2}\right)$, as we claimed.

## 3. Cycles of Indefinite Binary Quadratic Forms

We see as above that the form $F_{m}=\left(k-m^{2}, 2 m,-1\right)$ is reduced. Therefore we can consider its cycle. In this section we consider its cycle in four cases:

$$
k=m^{2}+2 m-1, \quad k=m^{2}+2 m, \quad k=m^{2}+m \text { and } k=m^{2}+1 .
$$

Theorem 3.1. Let $F_{m}=\left(k-m^{2}, 2 m,-1\right)$.

1. If $k=m^{2}+2 m-1$, then the cycle of $F_{m}=(2 m-1,2 m,-1)$ is

$$
\begin{aligned}
F_{m}^{0} & =(2 m-1,2 m,-1) \sim F_{m}^{1}=(1,2 m, 1-2 m) \sim \\
F_{m}^{2} & =(2 m-1,2 m-2,-2) \sim F_{m}^{3}=(2,2 m-2,1-2 m)
\end{aligned}
$$

2. If $k=m^{2}+2 m$, then the cycle of $F_{m}=(2 m, 2 m,-1)$ is

$$
F_{m}^{0}=(2 m, 2 m,-1) \sim F_{m}^{1}=(1,2 m,-2 m) .
$$

3. If $k=m^{2}+m$, then the cycle of $F_{m}=(m, 2 m,-1)$ is

$$
F_{m}^{0}=(m, 2 m,-1) \sim F_{m}^{1}=(1,2 m,-m)
$$

4. If $k=m^{2}+1$, then the cycle of $F_{m}=(1,2 m,-1)$ is

$$
F_{m}^{0}=(1,2 m,-1) .
$$

Proof. (1) Let $k=m^{2}+2 m-1$. Then $F_{m}=(2 m-1,2 m,-1)$. Hence by (1.7), we get

$$
s_{0}=\left\lfloor\frac{b_{0}+\sqrt{\Delta}}{2\left|c_{0}\right|}\right\rfloor=\left\lfloor\frac{2 m+\sqrt{4\left(m^{2}+2 m-1\right)}}{2|-1|}\right\rfloor=2 m
$$

and from (1.8)

$$
\begin{aligned}
F_{m}^{1} & =\left(a_{1}, b_{1}, c_{1}\right) \\
& =\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =\left(1,-2 m+2.2 m, 1-2 m-2 m .2 m+4 m^{2}\right) \\
& =(1,2 m, 1-2 m)
\end{aligned}
$$

For $i=1$ we have

$$
s_{1}=\left\lfloor\frac{b_{1}+\sqrt{\Delta}}{2\left|c_{1}\right|}\right\rfloor=\left\lfloor\frac{2 m+\sqrt{4\left(m^{2}+2 m-1\right)}}{2|1-2 m|}\right\rfloor=1
$$

and hence

$$
\begin{aligned}
F_{m}^{2} & =\left(a_{2}, b_{2}, c_{2}\right) \\
& =\left(\left|c_{1}\right|,-b_{1}+2 s_{1}\left|c_{1}\right|,-a_{1}-b_{1} s_{1}-c_{1} s_{1}^{2}\right) \\
& =(2 m-1,-2 m+2 \cdot(2 m-1),-1-2 m-(1-2 m)) \\
& =(2 m-1,2 m-2,-2)
\end{aligned}
$$

For $i=2$ we have

$$
s_{2}=\left\lfloor\frac{b_{2}+\sqrt{\Delta}}{2\left|c_{2}\right|}\right\rfloor=\left\lfloor\frac{2 m-2+\sqrt{4\left(m^{2}+2 m-1\right)}}{2|-2|}\right\rfloor=m-1
$$

and hence

$$
\begin{aligned}
F_{m}^{3} & =\left(a_{3}, b_{3}, c_{3}\right) \\
& =\left(\left|c_{2}\right|,-b_{2}+2 s_{2}\left|c_{2}\right|,-a_{2}-b_{2} s_{2}-c_{2} s_{2}^{2}\right) \\
& =\left(2,2-2 m+2(m-1) \cdot 2,1-2 m-(2 m-2)(m-1)+2(m-1)^{2}\right) \\
& =(2,2 m-2,1-2 m)
\end{aligned}
$$

For $i=3$ we have

$$
s_{3}=\left\lfloor\frac{b_{3}+\sqrt{\Delta}}{2\left|c_{3}\right|}\right\rfloor=\left\lfloor\frac{2 m-2+\sqrt{4\left(m^{2}+2 m-1\right)}}{2|1-2 m|}\right\rfloor=1
$$

and hence

$$
\begin{aligned}
F_{m}^{4} & =\left(a_{4}, b_{4}, c_{4}\right) \\
& =\left(\left|c_{3}\right|,-b_{3}+2 s_{3}\left|c_{3}\right|,-a_{3}-b_{3} s_{3}-c_{3} s_{3}^{2}\right) \\
& =(2 m-1,2-2 m+2(2 m-1),-2-(2 m-2)-(1-2 m)) \\
& =(2 m-1,2 m,-1) \\
& =F_{m}^{0}
\end{aligned}
$$

Therefore the cycle of $F_{m}$ is completed and is $F_{m}^{0}=(2 m-1,2 m,-1) \sim F_{m}^{1}=$ $(1,2 m, 1-2 m) \sim F_{m}^{2}=(2 m-1,2 m-2,-2) \sim F_{m}^{3}=(2,2 m-2,1-2 m)$.
(2) Let $k=m^{2}+2 m$. Then $F_{m}=(2 m, 2 m,-1)$. Then by (1.7), we get

$$
s_{0}=\left\lfloor\frac{b_{0}+\sqrt{\Delta}}{2\left|c_{0}\right|}\right\rfloor=\left\lfloor\frac{2 m+\sqrt{4\left(m^{2}+2 m\right)}}{2|-1|}\right\rfloor=2 m
$$

and hence by (1.8)

$$
\begin{aligned}
F_{m}^{1} & =\left(a_{1}, b_{1}, c_{1}\right) \\
& =\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =\left(1,-2 m+2 m,-2 m-2 m \cdot 2 m+4 m^{2}\right) \\
& =(1,2 m,-2 m)
\end{aligned}
$$

For $i=1$ we have

$$
s_{1}=\left\lfloor\frac{b_{1}+\sqrt{\Delta}}{2\left|c_{1}\right|}\right\rfloor=\left\lfloor\frac{2 m+\sqrt{4\left(m^{2}+2 m\right)}}{2|-2 m|}\right\rfloor=1
$$

and hence

$$
\begin{aligned}
F_{m}^{2} & =\left(a_{2}, b_{2}, c_{2}\right) \\
& =\left(\left|c_{1}\right|,-b_{1}+2 s_{1}\left|c_{1}\right|,-a_{1}-b_{1} s_{1}-c_{1} s_{1}^{2}\right) \\
& =(2 m,-2 m+2.2 m,-1-2 m+2 m) \\
& =(2 m, 2 m-1) \\
& =F_{m}^{0} .
\end{aligned}
$$

Therefore the cycle of $F_{m}$ is completed and is $F_{m}^{0}=(2 m, 2 m,-1) \sim F_{m}^{1}=$ $(1,2 m,-2 m)$.
(3) Let $t=m^{2}+m$. Then $F_{m}=(m, 2 m,-1)$ and hence by (1.7)

$$
s_{0}=\left\lfloor\frac{b_{0}+\sqrt{\Delta}}{2\left|c_{0}\right|}\right\rfloor=\left\lfloor\frac{2 m+\sqrt{4\left(m^{2}+m\right)}}{2|-1|}\right\rfloor=2 m
$$

So by (1.8)

$$
\begin{aligned}
F_{m}^{1} & =\left(a_{1}, b_{1}, c_{1}\right) \\
& =\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =\left(1,-2 m+2.2 m,-m-2 m \cdot 2 m+4 m^{2}\right) \\
& =(1,2 m,-m)
\end{aligned}
$$

For $i=1$ we have

$$
s_{1}=\left\lfloor\frac{b_{1}+\sqrt{\Delta}}{2\left|c_{1}\right|}\right\rfloor=\left\lfloor\frac{2 m+\sqrt{4\left(m^{2}+m\right)}}{2|-m|}\right\rfloor=2
$$

and hence

$$
\begin{aligned}
F_{m}^{2} & =\left(a_{2}, b_{2}, c_{2}\right) \\
& =\left(\left|c_{1}\right|,-b_{1}+2 s_{1}\left|c_{1}\right|,-a_{1}-b_{1} s_{1}-c_{1} s_{1}^{2}\right) \\
& =(m,-2 m+2.2 . m,-1-2 m \cdot 2+4 m) \\
& =(m, 2 m,-1) \\
& =F_{m}^{0} .
\end{aligned}
$$

Therefore the cycle of $F_{m}$ is completed and is $F_{m}^{0}=(m, 2 m,-1) \sim F_{m}^{1}=$ $(1,2 m,-m)$.
(4) Let $k=m^{2}+1$. Then $F_{m}=(1,2 m,-1)$ and hence

$$
s_{0}=\left\lfloor\frac{b_{0}+\sqrt{\Delta}}{2\left|c_{0}\right|}\right\rfloor=\left\lfloor\frac{2 m+\sqrt{4\left(m^{2}+1\right)}}{2|-1|}\right\rfloor=2 m
$$

So

$$
\begin{aligned}
F_{m}^{1} & =\left(a_{1}, b_{1}, c_{1}\right) \\
& =\left(\left|c_{0}\right|,-b_{0}+2 s_{0}\left|c_{0}\right|,-a_{0}-b_{0} s_{0}-c_{0} s_{0}^{2}\right) \\
& =\left(1,-2 m+2.2 m,-1-2 m .2 m+4 m^{2}\right) \\
& =(1,2 m,-1) \\
& =F_{m}^{0} .
\end{aligned}
$$

Therefore the cycle of $F_{m}$ is completed and is $F_{m}^{0}=(1,2 m,-1)$.

## 4. Cycle of Ideals $I=[a, b-\sqrt{\Delta}]$

In the previous section, we considered the cycles of the form $F_{m}=\left(a_{m}, b_{m},-1\right)=\left(k-m^{2}, 2 m,-1\right)$ of discriminant $\Delta=b_{m}^{2}+4 a_{m}$ in four cases. Similarly, in this section we consider the cycles of ideals $I=[a, b-\sqrt{\Delta}]$ in four cases.

Theorem 4.1. Let $I=[a, b-\sqrt{\Delta}]$.

1. If $a=b-1$ and if $a=4 k+1$ for an integer $k \geq 1$, then the continued fraction expansion of $\gamma=\frac{4 k+2-\sqrt{16 k^{2}+32 k+8}}{4 k+1}$ is $[-1 ; 1,2 k, \overline{2, k, 2,2 k+1}]$, and the cycle of $I=\left[4 k+1,4 k+2-\sqrt{16 k^{2}+32 k+8}\right]$ is

$$
\begin{aligned}
& I_{0}=\left[4 k+1,4 k+2-\sqrt{16 k^{2}+32 k+8}\right] \sim \\
& I_{1}=\left[-1-12 k,-3-8 k-\sqrt{16 k^{2}+32 k+8}\right] \sim \\
& I_{2}=\left[-4,2-4 k-\sqrt{16 k^{2}+32 k+8}\right] \sim \\
& I_{3}=\left[-1-4 k,-2-2 k-\sqrt{16 k^{2}+32 k+8}\right] \sim \\
& I_{4}=\left[-8,-4 k-\sqrt{16 k^{2}+32 k+8}\right] \sim \\
& I_{5}=\left[-1-4 k,-4 k-\sqrt{16 k^{2}+32 k+8}\right] \sim \\
& I_{6}=\left[-4,-2-2 k-\sqrt{16 k^{2}+32 k+8}\right]
\end{aligned}
$$

2. If $a=b=2 k$ for an integer $k>3$, then the continued fraction expansion of $\gamma=\frac{2 k-\sqrt{4 k^{2}+8 k}}{2 k}$ is $[-1 ; 1, k-1, \overline{2, k}]$, and the cycle of $I=[2 k, 2 k-$ $\left.\sqrt{4 k^{2}+8 k}\right]$ is

$$
\begin{aligned}
I_{0} & =\left[2 k, 2 k-\sqrt{4 k^{2}+8 k}\right] \sim I_{1}=\left[4-6 k,-4 k-\sqrt{4 k^{2}+8 k}\right] \sim \\
I_{2} & =\left[-4,4-2 k-\sqrt{4 k^{2}+8 k}\right] \sim I_{3}=\left[-2 k,-2 k-\sqrt{4 k^{2}+8 k}\right] \sim \\
I_{4} & =\left[-4,-2 k-\sqrt{4 k^{2}+8 k}\right] .
\end{aligned}
$$

3. If $b=2 a$, then the continued fraction expansion of $\gamma=\frac{2 a-\sqrt{4 a^{2}+4 a}}{a}$ is $[-1 ; 1, a-1, \overline{4, a}]$, and the cycle of $I=\left[a, 2 a-\sqrt{4 a^{2}+4 a}\right]$ is

$$
\begin{aligned}
I_{0} & =\left[a, 2 a-\sqrt{4 a^{2}+4 a}\right] \sim I_{1}=\left[4-5 a,-3 a-\sqrt{4 a^{2}+4 a}\right] \sim \\
I_{2} & =\left[-4,4-2 a-\sqrt{4 a^{2}+4 a}\right] \sim I_{3}=\left[-a,-2 a-\sqrt{4 a^{2}+4 a}\right] \sim \\
I_{4} & =\left[-4,-2 a-\sqrt{4 a^{2}+4 a}\right] .
\end{aligned}
$$

4. If $a=1$ and $b=2 k$ for an integer $k \geq 1$, then the continued fraction expansion of $\gamma=\frac{2 k-\sqrt{4 k^{2}+4}}{1}$ is $[-1 ; 1, k-1, \overline{4 k, k}]$, and the cycle of $I=$ $\left[1,2 k-\sqrt{4 k^{2}+4}\right]$ is

$$
\begin{aligned}
& I_{0}=\left[1,2 k-\sqrt{4 k^{2}+4}\right] \sim I_{1}=\left[3-4 k,-1-2 k-\sqrt{4 k^{2}+4}\right] \sim \\
& I_{2}=\left[-4,4-2 k-\sqrt{4 k^{2}+4}\right] \sim I_{3}=\left[-1,-2 k-\sqrt{4 k^{2}+4}\right] \sim \\
& I_{4}=\left[-4,-2 k-\sqrt{4 k^{2}+4}\right] .
\end{aligned}
$$

Proof. (1) Let $I=I_{0}=\left[4 k+1,4 k+2-\sqrt{16 k^{2}+32 k+8}\right]$. Then by (1.13) we get $m_{0}=-1$ and hence

$$
\begin{aligned}
P_{1} & =m_{0} Q_{0}-P_{0}=-1(4 k+1)-(4 k+2)=-8 k-3 \\
Q_{1} & =\frac{D-P_{1}^{2}}{Q_{0}}=\frac{16 k^{2}+32 k+8-(-8 k-3)^{2}}{4 k+1}=-1-12 k .
\end{aligned}
$$

For $i=1$ we have $m_{1}=1$ and hence

$$
\begin{aligned}
P_{2} & =m_{1} Q_{1}-P_{1}=1(-1-12 k)-(-3-8 k)=2-4 k \\
Q_{2} & =\frac{D-P_{2}^{2}}{Q_{1}}=\frac{16 k^{2}+32 k+8-(2-4 k)^{2}}{-1-12 k}=-4
\end{aligned}
$$

For $i=2$ we have $m_{2}=2 k$ and hence

$$
\begin{aligned}
P_{3} & =m_{2} Q_{2}-P_{2}=2 k(-4)-(2-4 k)=-2-4 k \\
Q_{3} & =\frac{D-P_{3}^{2}}{Q_{2}}=\frac{16 k^{2}+32 k+8-(-2-4 k)^{2}}{-4}=-1-4 k .
\end{aligned}
$$

For $i=3$ we have $m_{3}=2$ and hence

$$
\begin{aligned}
P_{4} & =m_{3} Q_{3}-P_{3}=2(-1-4 k)-(-2-4 k)=-4 k \\
Q_{4} & =\frac{D-P_{4}^{2}}{Q_{3}}=\frac{16 k^{2}+32 k+8-(-4 k)^{2}}{-1-4 k}=-8
\end{aligned}
$$

For $i=4$ we have $m_{4}=k$ and hence

$$
\begin{aligned}
P_{5} & =m_{4} Q_{4}-P_{4}=k(-8)-(-4 k)=-4 k \\
Q_{5} & =\frac{D-P_{5}^{2}}{Q_{4}}=\frac{16 k^{2}+32 k+8-(-4 k)^{2}}{-8}=-1-4 k
\end{aligned}
$$

For $i=5$ we have $m_{5}=2$ and hence

$$
\begin{aligned}
P_{6} & =m_{5} Q_{5}-P_{5}=2(-1-4 k)-(-4 k)=-2-4 k \\
Q_{6} & =\frac{D-P_{6}^{2}}{Q_{5}}=\frac{16 k^{2}+32 k+8-(-2-4 k)^{2}}{-1-4 k}=-4 .
\end{aligned}
$$

For $i=6$ we have $m_{6}=2 k+1$ and hence

$$
\begin{aligned}
P_{7} & =m_{6} Q_{6}-P_{6}=(2 k+1)(-4)-(-2-4 k)=-2-4 k=P_{3} \\
Q_{7} & =\frac{D-P_{7}^{2}}{Q_{6}}=\frac{16 k^{2}+32 k+8-(-2-4 k)^{2}}{-4}=-1-4 k=Q_{3} .
\end{aligned}
$$

For $i=7$ we have $m_{7}=2=m_{3}$. Therefore the continued fraction expansion of $\gamma$ is $\left[-1 ; 1,2 k, \overline{2, k, 2,2 k+1]}\right.$, and the cycle of $I$ is $I_{0}=[4 k+1,4 k+$ $\left.2-\sqrt{16 k^{2}+32 k+8}\right] \sim I_{1}=\left[-1-12 k,-3-8 k-\sqrt{16 k^{2}+32 k+8}\right] \sim I_{2}=$ $\left[-4,2-4 k-\sqrt{16 k^{2}+32 k+8}\right] \sim I_{3}=\left[-1-4 k,-2-2 k-\sqrt{16 k^{2}+32 k+8}\right] \sim$
$I_{4}=\left[-8,-4 k-\sqrt{16 k^{2}+32 k+8}\right] \sim I_{5}=\left[-1-4 k,-4 k-\sqrt{16 k^{2}+32 k+8}\right] \sim$ $I_{6}=\left[-4,-2-2 k-\sqrt{16 k^{2}+32 k+8}\right]$.
(2) Let $I=I_{0}=\left[2 k, 2 k-\sqrt{4 k^{2}+8 k}\right]$. Then by (1.13) we get $m_{0}=-1$ and hence

$$
\begin{aligned}
P_{1} & =m_{0} Q_{0}-P_{0}=-1(2 k)-(2 k)=-4 k \\
Q_{1} & =\frac{D-P_{1}^{2}}{Q_{0}}=\frac{4 k^{2}+8 k-(-4 k)^{2}}{2 k}=\frac{2 k(4-6 k)}{2 k}=4-6 k
\end{aligned}
$$

For $i=1$ we have $m_{1}=1$ and hence

$$
\begin{aligned}
P_{2} & =m_{1} Q_{1}-P_{1}=1 .(4-6 k)-(-4 k)=4-2 k \\
Q_{2} & =\frac{D-P_{2}^{2}}{Q_{1}}=\frac{4 k^{2}+8 k-(4-2 k)^{2}}{4-6 k}=\frac{-4(4-6 k)}{4-6 k}=-4
\end{aligned}
$$

For $i=2$ we have $m_{2}=k-1$ and hence

$$
\begin{aligned}
P_{3} & =m_{2} Q_{2}-P_{2}=(k-1)(-4)-(4-2 k)=-2 k \\
Q_{3} & =\frac{D-P_{3}^{2}}{Q_{2}}=\frac{4 k^{2}+8 k-(-2 k)^{2}}{-4}=\frac{8 k}{-4}=-2 k
\end{aligned}
$$

For $i=3$ we have $m_{3}=2$ and hence

$$
\begin{aligned}
P_{4} & =m_{3} Q_{3}-P_{3}=2(-2 k)-(-2 k)=-2 k \\
Q_{4} & =\frac{D-P_{4}^{2}}{Q_{3}}=\frac{4 k^{2}+8 k-(-2 k)^{2}}{-2 k}=\frac{8 k}{-2 k}=-4
\end{aligned}
$$

For $i=4$ we have $m_{4}=k$ and hence

$$
\begin{aligned}
P_{5} & =m_{4} Q_{4}-P_{4}=k(-4)-(-2 k)=-2 k=P_{3} \\
Q_{5} & =\frac{D-P_{5}^{2}}{Q_{4}}=\frac{4 k^{2}+8 k-(-2 k)^{2}}{-4}=\frac{8 k}{-4}=-2 k=Q_{3}
\end{aligned}
$$

For $i=5$ we have $m_{5}=2=m_{3}$. Therefore the continued fraction expansion of $\gamma$ is $[-1 ; 1, k-1, \overline{2, k}]$, and the cycle of $I$ is $I_{0}=\left[2 k, 2 k-\sqrt{4 k^{2}+8 k}\right] \sim$ $I_{1}=\left[4-6 k,-4 k-\sqrt{4 k^{2}+8 k}\right] \sim I_{2}=\left[-4,4-2 k-\sqrt{4 k^{2}+8 k}\right] \sim I_{3}=$ $\left[-2 k,-2 k-\sqrt{4 k^{2}+8 k}\right] \sim I_{4}=\left[-4,-2 k-\sqrt{4 k^{2}+8 k}\right]$.
(3) Let $b=2 a$ and let $I=I_{0}=\left[a, 2 a-\sqrt{4 a^{2}+4 a}\right]$. Then by (1.13) we get $m_{0}=-1$ and hence

$$
\begin{aligned}
P_{1} & =m_{0} Q_{0}-P_{0}=-1(a)-(2 a)=-3 a \\
Q_{1} & =\frac{D-P_{1}^{2}}{Q_{0}}=\frac{4 a^{2}+4 a-(-3 a)^{2}}{a}=\frac{a(4-5 a)}{a}=4-5 a .
\end{aligned}
$$

For $i=1$ we have $m_{1}=1$ and hence

$$
\begin{aligned}
P_{2} & =m_{1} Q_{1}-P_{1}=1 .(4-5 a)-(-3 a)=4-2 a \\
Q_{2} & =\frac{D-P_{2}^{2}}{Q_{1}}=\frac{4 a^{2}+4 a-(4-2 a)^{2}}{4-5 a}=\frac{-4(4-5 a)}{4-5 a}=-4 .
\end{aligned}
$$

For $i=2$ we have $m_{2}=a-1$ and hence

$$
\begin{aligned}
P_{3} & =m_{2} Q_{2}-P_{2}=(a-1)(-4)-(4-2 a)=-2 a \\
Q_{3} & =\frac{D-P_{3}^{2}}{Q_{2}}=\frac{4 a^{2}+4 a-(-2 a)^{2}}{-4}=\frac{4 a}{-4}=-a .
\end{aligned}
$$

For $i=3$ we have $m_{3}=4$ and hence

$$
\begin{aligned}
P_{4} & =m_{3} Q_{3}-P_{3}=4(-a)-(-2 a)=-2 a \\
Q_{4} & =\frac{D-P_{4}^{2}}{Q_{3}}=\frac{4 a^{2}+4 a-(-2 a)^{2}}{-a}=\frac{4 a}{-a}=-4 .
\end{aligned}
$$

For $i=4$ we have $m_{4}=a$ and hence

$$
\begin{aligned}
P_{5} & =m_{4} Q_{4}-P_{4}=a(-4)-(-2 a)=-2 a=P_{3} \\
Q_{5} & =\frac{D-P_{5}^{2}}{Q_{4}}=\frac{4 a^{2}+4 a-(-2 a)^{2}}{-4}=\frac{4 a}{-4}=-a=Q_{3} .
\end{aligned}
$$

For $i=5$ we have $m_{5}=4=m_{3}$. Therefore the continued fraction expansion of $\gamma$ is $[-1 ; 1, a-1, \overline{4, a}]$, and the cycle of $I$ is $I_{0}=\left[a, 2 a-\sqrt{4 a^{2}+4 a} \sim I_{1}=\right.$ $\left[4-5 a,-3 a-\sqrt{4 a^{2}+4 a}\right] \sim I_{2}=\left[-4,4-2 a-\sqrt{4 a^{2}+4 a}\right] \sim I_{3}=[-a,-2 a-$ $\left.\sqrt{4 a^{2}+4 a}\right] \sim I_{4}=\left[-4,-2 a-\sqrt{4 a^{2}+4 a}\right]$.
(4) Let $a=1$, let $b=2 k$, and let $I=I_{0}=\left[1,2 k-\sqrt{4 k^{2}+4}\right]$. Then by (1.13) we get $m_{0}=-1$ and hence

$$
\begin{aligned}
P_{1} & =m_{0} Q_{0}-P_{0}=-1(1)-(2 k)=-1-2 k \\
Q_{1} & =\frac{D-P_{1}^{2}}{Q_{0}}=\frac{4 k^{2}+4-(-1-2 k)^{2}}{1}=3-4 k .
\end{aligned}
$$

For $i=1$ we have $m_{1}=1$ and hence

$$
\begin{aligned}
P_{2} & =m_{1} Q_{1}-P_{1}=1 .(3-4 k)-(-1-2 k)=4-2 k \\
Q_{2} & =\frac{D-P_{2}^{2}}{Q_{1}}=\frac{4 k^{2}+4-(4-2 k)^{2}}{3-4 k}=-4
\end{aligned}
$$

For $i=2$ we have $m_{2}=k-1$ and hence

$$
\begin{aligned}
P_{3} & =m_{2} Q_{2}-P_{2}=(k-1)(-4)-(4-2 k)=-2 k \\
Q_{3} & =\frac{D-P_{3}^{2}}{Q_{2}}=\frac{4 k^{2}+4-(-2 k)^{2}}{-4}=-1
\end{aligned}
$$

For $i=3$ we have $m_{3}=4 k$ and hence

$$
\begin{aligned}
P_{4} & =m_{3} Q_{3}-P_{3}=4 k(-1)-(-2 k)=-2 k \\
Q_{4} & =\frac{D-P_{4}^{2}}{Q_{3}}=\frac{4 k^{2}+4-(-2 k)^{2}}{-1}=-4
\end{aligned}
$$

For $i=4$ we have $m_{4}=k$ and hence

$$
\begin{aligned}
P_{5} & =m_{4} Q_{4}-P_{4}=k(-4)-(-2 k)=-2 k=P_{3} \\
Q_{5} & =\frac{D-P_{5}^{2}}{Q_{4}}=\frac{4 k^{2}+4-(-2 k)^{2}}{-4}=-1=Q_{3}
\end{aligned}
$$

For $i=5$ we have $m_{5}=4 k=m_{3}$. Therefore the continued fraction expansion of $\gamma$ is $[-1 ; 1, k-1, \overline{4 k, k}]$, and the cycle of $I$ is $I_{0}=\left[1,2 k-\sqrt{4 k^{2}+4}\right] \sim$ $I_{1}=\left[3-4 k,-1-2 k-\sqrt{4 k^{2}+4}\right] \sim I_{2}=\left[-4,4-2 k-\sqrt{4 k^{2}+4}\right] \sim I_{3}=$ $\left[-1,-2 k-\sqrt{4 k^{2}+4}\right] \sim I_{4}=\left[-4,-2 k-\sqrt{4 k^{2}+4}\right]$.

## References

[1] Buchmann, J., Vollmer, U., Binary Quadratic Forms: An Algorithmic Aproach. Berlin, Heiderberg: Springer-Verlag, 2007.
[2] Buell, D. A., Binary Quadratic Forms, Clasical Theory and Modern Computations. New York,: Springer-Verlag 1989.
[3] Flath, D. E., Introduction to Number Theory. Wiley, 1989.
[4] Mollin, R. A., Quadratics. New York, London, Tokyo: CRS Press, Boca Raton 1996.
[5] Tekcan, A., Bizim, O., The Connection Between Quadratic Forms and the Extended Modular Group. Mathematica Bohemica 128(3) (2003), 225-236.
[6] Tekcan, A., Cycles of Indefinite Quadratic Forms and Cycles of Ideals. Hacettepe Journal of Mathematics and Statistics 35(1) (2006), 63-70.
[7] Tekcan, A., Özden, H., On the Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms. Bulletin of the Irish Mathematical Society 58 (2006), 69-79.
[8] Tekcan, A., On the Cycles of Indefinite Quadratic Forms and Cycles of Ideals II. Accepted by South East Asian Bulletin of Mathematics.

Received by the editors July 26, 2007


[^0]:    ${ }^{1}$ Uludağ University, Faculty of Science, Department of Mathematics, Görükle, 16059, Bursa-TURKEY
    e-mail: tekcan@uludag.edu.tr http://matematik.uludag.edu.tr/AhmetTekcan.htm

