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ON ENDOMORPHISM MONOIDS OF PARTIAL
ORDERS AND CENTRAL RELATIONS1
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Abstract. In this paper we characterize pairs of Rosenberg relations
(ρ, σ) with the property that the endomorphism monoid of one of the re-
lations is properly contained in the endomorphism monoid of the other
relation. We focus on the situations where one of the relations is a partial
order, or a central relation.
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1. Introduction

In this paper we continue the work from [4, 5, 6, 7] on the description of
all pairs (ρ, σ) of Rosenberg relations satisfying End{ρ} ⊂ End{σ}. Here, we
focus on the situations where one of the relations is a partial order, or a central
relation. Results presented here, together with the results of [4, 5, 6, 7] cover
all but two cases (see Table 1), bringing us, therefore, closer to the complete
characterization.

This line of research was motivated by the paper [1], where the complete-
ness for some special structures (concrete near-rings) was investigated using
techniques from clone theory. It appeared that unary parts (traces) of the max-
imal clones that contain the operation + correspond to the maximal near-rings
containing the identity map. Moreover, if for every two distinct unary parts
M

(1)
i and M

(1)
j of such maximal clones we have M

(1)
i 6⊆ M

(1)
j , then every unary

part is a maximal near–ring. It is natural to ask what goes on in the general
case, i.e. what the relationship between any two traces of maximal clones on a
finite set is. As it was expected, the width of this poset is doubly exponential,
but it was rather surprising to find out that its height is equal to the size of the
underlying set. Moreover, it turns out that the structure of this poset is quite
rich.

2. Preliminaries

Throughout the paper we assume that A is a finite set and |A| > 3. Let
O

(n)
A denote the set of all n-ary operations on A (so that O

(1)
A = AA) and let
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OA =
⋃

n>1 O
(n)
A denote the set of all finitary operations on A. For F ⊆ OA

let F (n) = F ∩ O
(n)
A be the set of all n-ary operations in F . A set C ⊆ OA

of finitary operations is a clone of operations on A if it contains all projec-
tion maps πn

i : An → A : (x1, . . . , xn) 7→ xi and is closed with respect
to composition of functions in the following sense: whenever g ∈ C(n) and
f1, . . . , fn ∈ C(m) for some positive integers m and n then g(f1, . . . , fn) ∈
C(m), where the composition h = g(f1, . . . , fn) is defined by h(x1, . . . , xm) =
g(f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)).

For a clone C, the unary part C(1) of C, will be referred to as the trace of
C.

Let R
(n)
A denote the set of all n-ary relations on A (including the empty

relation) and let RA =
⋃

n>1 R
(n)
A denote the set of all finitary relations on A. If

ρ is a nonempty relation in R
(n)
A we say that its arity is n and write ar(ρ) = n.

The arity of the empty relation is undefined.
We say that an n-ary operation f preserves an h-ary relation ρ if the following

holds:



a11

a21

...
ah1


 ,




a12

a22

...
ah2


 , . . . ,




a1n

a2n

...
ahn


 ∈ ρ implies




f(a11, a12, . . . , a1n)
f(a21, a22, . . . , a2n)

...
f(ah1, ah2, . . . , ahn)


 ∈ ρ.

For a set Q of relations and for a set F of operations let

PolA Q = {f ∈ OA : f preserves every ρ ∈ Q}
InvA F = {ρ ∈ RA : every f ∈ F preserves ρ}.

Let Pol(n)
A Q = (PolA Q) ∩ O

(n)
A . For an h-ary relation θ ⊆ Ah and a unary

operation f ∈ AA it is convenient to write

f(θ) = {(f(x1), . . . , f(xh)) : (x1, . . . , xh) ∈ θ}.

Then clearly f preserves θ if and only if f(θ) ⊆ θ. It follows that Pol(1)A Q is
the endomorphism monoid of the relational structure (A,Q). Therefore instead
of Pol(1)A Q we simply write EndA Q. We shall omit the subscript A in PolA Q,
EndA Q and InvA F and write simply PolQ, EndQ and Inv F . If, however, F ⊆
OB and Q ⊆ RB for some B ⊂ A we shall keep the subscript and write PolB Q,
EndB Q and InvB F to indicate that we restrict our attention to operations and
relations on B.

For a relation ρ of arity k, let ρirr denote the irreflexive part of ρ, that is,
the set of all (x1, . . . , xk) ∈ ρ such that xi 6= xj for all i 6= j. A relation ρ is
irreflexive if ρ = ρirr.

Let B ⊆ A. We say that f ∈ O
(1)
A irreflexively preserves an irreflexive

relation ρ ∈ R
(k)
B if whenever (b1, . . . , bk) ∈ ρ and (f(b1), . . . , f(bk)) ∈ (Bk)irr

then (f(b1), . . . , f(bk)) ∈ ρ. We say that an irreflexive relation ρ is an irreflexive
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invariant of F ⊆ O
(1)
A on B if every operation in F irreflexively preserves ρ. The

set of all irreflexive invariants of F on B will be denoted by IrrB F .
If the underlying set is finite and has at least three elements, then the lattice

of clones has cardinality 2ℵ0 . However, one can show that the lattice of clones
on a finite set has a finite number of coatoms, called maximal clones, and that
every clone distinct from OA is contained in one of the maximal clones. One
of the most influential results in clone theory is the explicite characterization
of the maximal clones, obtained by I. G. Rosenberg as the culmination of the
work of many mathematicians. It is usually stated in terms of the following six
classes of finitary relations on A (the so-called Rosenberg relations).

(R1) Bounded partial orders. These are partial orders on A with a least and a
greatest element.

(R2) Nontrivial equivalence relations. These are equivalence relations on A
distinct from ∆A := {(x, x) : x ∈ A} and A2.

(R3) Permutational relations. These are relations of the form {(x, π(x)) : x ∈
A}, where π is a fixpoint-free permutation of A with all cycles of the same
length p, where p is a prime.

(R4) Affine relations. For a binary operation ⊕ on A let

λ⊕ := {(x, y, u, v) ∈ A4 : u⊕ v = x⊕ y}.

A relation ρ is called affine if there is an elementary abelian p-group
(A,⊕,ª, 0) on A such that ρ = λ⊕.

Suppose now that A is an elementary abelian p-group. Then it is well-
known that f ∈ Pol{λ⊕} if and only if

f(x1 ⊕ y1, . . . , xn ⊕ yn) = f(x1, . . . , xn)⊕ f(y1, . . . , yn)ª f(0, . . . , 0)

for all xi, yi ∈ A. In case f is unary, this condition becomes

f(x⊕ y) = f(x)⊕ f(y)ª f(0).

(R5) Central relations. All unary relations are central relations. For central
relations ρ of arity h > 2 the definition is as follows: ρ is said to be
totally symmetric if (x1, . . . , xh) ∈ ρ implies (xπ(1), . . . , xπ(h)) ∈ ρ for all
permutations π, and it is said to be totally reflexive if (x1, . . . , xh) ∈ ρ
whenever there are i 6= j such that xi = xj . An element c ∈ A is central if
(c, x2, . . . , xh) ∈ ρ for all x2, . . . , xh ∈ A. Finally, ρ 6= Ah is called central
if it is totally reflexive, totally symmetric and has a central element.

(R6) h-regular relations. Let Θ = {θ1, . . . , θm} be a family of equivalence rela-
tions on A. We say that Θ is an h-regular family if every θi has precisely h
blocks, and additionally, if Bi is an arbitrary block of θi for i ∈ {1, . . . , m},
then

⋂m
i=1 Bi 6= ∅.
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An h-ary relation ρ 6= Ah is h-regular if h > 3 and there is an h-regular
family Θ such that (x1, . . . , xh) ∈ ρ if and only if for all θ ∈ Θ there are
distinct i, j with xiθxj .

Note that regular relations are totally reflexive and totally symmetric.

Theorem 2.1. (Rosenberg [8]) A clone M of operations on a finite set is
maximal if and only if there is a relation ρ from one of the classes (R1)–(R6)
such that M = Pol{ρ}.

Every central relation ρ can be written as Cρ ∪ Rρ ∪ Tρ, where Cρ is the
central part of ρ which consists of all the tuples of distinct elements containing
at least one central element, Rρ is the reflexive part of ρ which consists of all
the tuples (x1, . . . , xk) such that there are i 6= j with xi = xj , and Tρ is the tail
of ρ and consists of all the tuples (x1, . . . , xk) such that x1, . . . , xk are distinct
non-central elements. The center of ρ will be denoted by Z(ρ). This is the set
of all central elements of ρ. For a relation ρ by dom(ρ) we denote the domain
of ρ, that is, the set D such that ρ ⊆ Dar(ρ). For most relations in this paper
the domain is obvious. However, for the tail Tρ of a central relation ρ we set
dom(Tρ) = A \ Z(ρ).

There is another way to look at regular relations. Given a finite set A,
|A| > 3, and an h-regular family Θ = {θ1, . . . , θm} on A, let

RΘ = {(x1, . . . , xh) : (∀θ ∈ Θ)(∃i 6= j)xiθxj}

denote the corresponding h-regular relation. We define the elementary (h,m)-
relation Ψh,m on {1, . . . , h}m in the following way:

Ψh,m =

{( 


a1
1
...

a1
m


 , . . . ,




ah
1
...

ah
m




)
: (∀i ∈ {1, . . . , m})(∃j 6= k)aj

i = ak
i

}
.

Note that the elementary (h,m)-relation is the h-regular relation on {1, . . . , h}m

defined by the h-regular family Θ∗ = {θ∗1 , . . . , θ∗m}, where

θ∗i =

{( 


b1
1
...

b1
m


 ,




b2
1
...

b2
m




)
: b1

i = b2
i

}
.

Then, there exists a surjective mapping λ : A → {1, . . . , h}m such that

RΘ = {(x1, . . . , xh) : (λ(x1), . . . , λ(xh)) ∈ Ψh,m}.

Conversely, for every surjective mapping λ : A → {1, . . . , h}m the relation

{(x1, . . . , xh) : (λ(x1), . . . , λ(xh)) ∈ Ψh,m}

is an h-regular relation.
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The complete characterization of all mappings that preserve regular relations
can be found in [3]. We present this result without proof.

Denote by x(i) the i-th coordinate of the tuple x ∈ {1, . . . , h}m. Let f be an
n-ary function on the set A. We define the function fi : An → {1, . . . , h} in the
following way:

fi(x1, . . . , xn) := λi(f(x1, . . . , xn)),

where λi(x) = λ(x)(i) = πi ◦ λ(x).

Proposition 2.2. ([3]) An n-ary function f on a set A preserves an h-regular
relation RΘ if and only if for each i either fi has at most h−1 distinct values or
there exist a permutation s on {1, . . . , h}, a j ∈ {1, . . . , n} and a v ∈ {1, . . . , m}
such that

fi(x1, . . . , xn) = s(λv(xj)).

The results we have obtained up to now, including the results obtained in
this paper, are summarized in Table 1. The entries in this table are to be
interpreted in the following way:

• we write − if End ρ 6⊆ End σ for every pair (ρ, σ) of relations of the indi-
cated type;

• we write + if there is a complete characterization of the situation End ρ ⊆
Endσ;

• we write ? if there is no definite answer, but the reference below the
question mark contains some partial results.

3. Bounded partial orders

Let (A, 6) be a partially ordered set. Recall that S ⊆ A is a retract of A if
there is an idempotent monotonous map f : A → A such that f(A) = S. We
shall say that S ⊆ A is a pseudoretract of A if there is a (not necessarily idem-
potent) monotonous map f : A → A such that f(A) = S. Thus, pseudoretracts
of A are nothing but substructures of A that are at the same time homomorphic
images of A. If ρ ⊆ Sk and θ ⊆ Ak are arbitrary relations, we say that (S, ρ)
is a pseudoretract of (A, θ) if there is a monotonous map f : A → A such that
f(A) = S and f(θ) = ρ.

We start with the characterization of the relationship between bounded par-
tial orders and regular relations. In [5] we obtained the following partial result:

Proposition 3.1. ([5] Proposition 4.25) Let 6 be a bounded partial order.
If RΘ is an h-regular relation defined by Θ = {θ1, . . . , θm} where m > 2, then
End(6) 6⊆ EndRΘ.

Therefore, if End(6) ⊆ EndRΘ then Θ = {θ}. We shall now complete the
characterization. Let θ be an equivalence relation on A and let S be a subset
of A. We write S/θ to denote S/(θ ∩ S2), the set of equivalence classes of the
restriction of θ to S.
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ρ

∖
σ

Bounded
partial
order

Equiva-
lence
relation

Permuta-
tional
relation

Affine
relation

Unary
central
relation

k–ary
central
relation,
k > 2

h–regular
relation

Bounded
partial
order −

[5]

−
[5]

−
[5]

−
[5]

−
[5]

+

Prop. 3.4

+

Prop. 3.2

Equiva-
lence
relation −

[5]

−
[5]

−
[5]

−
[5]

−
[5]

−
[7]

+

[4]

Permuta-
tional
relation −

[5]

+

[5]

−
[5]

+

[5]

−
[5]

−
[7]

+

[5]

Affine
relation −

[5]

−
[5]

−
[5]

−
[5]

−
[5]

−
[7]

+

[5]

Unary
central
relation −

[7]

+

[7]

−
[7]

−
[7]

−
[7]

+

[7]

+

[7]

k–ary
central
rela-
tion,
k > 2

−
[7]

+

[7]

−
[7]

−
[7]

−
[7]

+

Prop. 4.6

+

Prop. 4.10

h–
regular
relation −

[5]

−
[5]

−
[5]

−
[5]

−
[5]

?

[5]

?

[4]

Table 1: Summary of some partial results for End ρ ⊆ Endσ
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Proposition 3.2. Let (A, 6) be a partially ordered set, let Θ be an h-regular
family, h > 3, and RΘ the regular relation generated by the regular family Θ.
Then End(6) ⊆ EndRΘ if and only if Θ = {θ} and for every pseudoretract S
of A, if |S/θ| = h and (S, ρ) is a pseudoretract of (A, θ) then ρ = θ|S.

Proof. (⇒) Let End(6) ⊆ EndRΘ. Then by Proposition 3.1 we have Θ = {θ}
for some equivalence relation θ. Let (S, ρ) be a pseudoretract of (A, θ) and let
|S/θ| = h. Then there is a monotonous map f : A → A such that f(A) = S
and f(θ) = ρ. Let B1, . . . , Bh be the blocks of θ. Since f ∈ End(6) ⊆ EndRΘ

and |f(A)/θ| = |S/θ| = h it follows from Proposition 2.2 that there exists a
permutation α : {1, . . . , h} → {1, . . . , h} such that f(Bi) ⊆ Bα(i) for all i. So,
f ∈ End θ and hence ρ = f(θ) ⊆ θ|S . Let us show that f(θ) = θ|S . Take
any (u, v) ∈ θ|S . Then u, v ∈ Bα(j) for some j. Since f(Bi) ⊆ Bα(i) for
all i, from u, v ∈ S = f(A) it follows that there exist p, q ∈ Bj such that
(f(p), f(q)) = (u, v). Therefore, ρ = f(θ) = θ|S .

(⇐) Assume that Θ = {θ} and that for every pseudoretract S of A, if
|S/θ| = h and (S, ρ) is a pseudoretract of (A, θ) then ρ = θ|S . Take any
f ∈ End(6). If |f(A)/θ| < h then f obviously preserves RΘ, so assume that
|f(A)/θ| = h. Let S = f(A) and ρ = f(θ). Then (S, ρ) is a pseudoretract of
(A, θ) whence ρ = θ|S . So, f preserves θ and consequently f ∈ End RΘ since
Θ = {θ}. ¤

As for the relationship between endomorphism monoids of bounded parital
orders and central relations, in [7] and [5] we obtained the following:

Proposition 3.3. (Proposition 4.10 [7], Proposition 4.19 [5]) Let (A,6)
be a partially ordered set. If ρ is a unary central relation then End(6) 6⊆ End ρ.
If ρ is a binary central relation then End(6) ⊆ End ρ if and only if 6 is not a
chain and ρ = (6) ∪ (6)−1.

We shall now consider central relations of arity h > 3. For ∅ 6= D ⊂ A let
Cenh

A(D) = {(x1, . . . , xh) ∈ (Ah)irr : there exists an i such that xi ∈ D}.

Proposition 3.4. Let 6 be a bounded partial order and σ a central relation
of arity h > 3. Then End(6) ⊆ End σ if and only if

• Tσ ∈ IrrA\Z(σ) End(6), and

• for every pseudoretract S of A, if |S \Z(σ)| > h and (S,D) is a pseudore-
tract of (A, Z(σ)) then Cenh

S\Z(σ)(D) ⊆ Tσ.

Proof. (⇒) Let B = A\Z(σ). Suppose that Tσ /∈ IrrB End(6). Then there exist
f ∈ End(6) and (b1, . . . , bh) ∈ Tσ such that (f(b1), . . . , f(bh)) ∈ (Bh)irr but
(f(b1), . . . , f(bh)) /∈ Tσ. Let us show that in this case f does not preserve σ. It
is obvious that (b1, . . . , bh) ∈ Tσ ⊆ σ. On the other hand, (f(b1), . . . , f(bh)) /∈ σ
since the tuple consists of distinct noncentral elements but it does not belong
to Tσ. Therefore, f ∈ End(6) \ End σ.
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Suppose now that there is a pseudoretract (S, D) of (A,Z(σ)) such that
|S \ Z(σ)| > h but Cenh

S\Z(σ)(D) 6⊆ Tσ. Let f be a monotonous map such that
f(A) = S and f(Z(σ)) = D, and take any (b1, . . . , bh) ∈ Cenh

S\Z(σ)(D) \ Tσ.
Note that (b1, . . . , bh) /∈ σ since the tuple consists of distinct noncentral elements
but it does not belong to Tσ. Also, there is an i such that bi ∈ D, say b1 ∈ D.
Since f(A) = S and f(Z(σ)) = D there exist c ∈ Z(σ) and a2, . . . , ah ∈ A
such that f(c) = b1 and f(ai) = bi for all i > 2. Now, (c, a2, . . . , ah) ∈ σ but
(f(c), f(a2), . . . , f(ah)) = (b1, b2, . . . , bh) /∈ σ, so f ∈ End(6) \ End σ.

(⇐) Suppose that End(6) 6⊆ Endσ and take any f ∈ End(6)\Endσ. Then
there is a (a1, . . . , ah) ∈ σ such that (b1, . . . , bh) /∈ σ, where bi = f(ai) for
all i. Therefore, all the bi’s are distinct noncentral elements and consequently
all the ai’s are distinct. If (a1, . . . , ah) ∈ Tσ then Tσ /∈ IrrA\Z(σ) End(6) since
f ∈ End(6), all the bi’s are distinct noncentral elements but (b1, . . . , bh) /∈ Tσ.
Assume now that (a1, . . . , ah) ∈ Cσ. Let S = f(A) and D = f(Z(σ)). Then
clearly (S, D) is a pseudoretract of (A,Z(σ)), but (b1, . . . , bh) ∈ Cenh

S\Z(σ)(D)\
Tσ. ¤

If σ is a central relation with Tσ = ∅ we have the following simpler version
of the above result:

Proposition 3.5. Let σ be a central relation of arity h > 3 such that Tσ =
∅. Then End(6) ⊆ Endσ if and only if for every pseudoretract S of A, if
|S \ Z(σ)| > h and (S,D) is a pseudoretract of (A,Z(σ)) then D ⊆ Z(σ).

Proof. (⇒) Let End(6) ⊆ End σ, let S be a pseudoretract of A such that
|S \ Z(σ)| > h and let (S, D) be a pseudoretract of (A, Z(σ)). Then there is a
monotonous map f such that f(A) = S and f(Z(σ)) = D. Since f ∈ End(6
) ⊆ End σ and |f(A) \ Z(σ)| > h it follows that f(Z(σ)) ⊆ Z(σ). Therefore,
D ⊆ Z(σ).

(⇐) Take any f ∈ End(6), let S = f(A) and D = f(Z(σ)). Then (S, D) is
a pseudoretract of (A,Z(σ)). If |f(A) \ Z(σ)| < h then it is easy to see that f
preserves σ. If, however, |f(A) \ Z(σ)| > h then according to the assumption
D ⊆ Z(σ) since (S, D) is a pseudoretract of (A,Z(σ)). Therefore, f(Z(σ)) ⊆
Z(σ) and consequently f preserves σ. ¤

4. Central relations

In [7] we solved the following special case of the problem of comparing en-
domorphism monoids of central relations:

Proposition 4.1. Let ρ and σ be distinct central relations.

(a) If σ is a unary central relation then End ρ 6⊆ Endσ [7, Lemma 3.2].

(b) Suppose that ar(σ) > 2 and Tρ = ∅. Then End ρ ⊆ End σ if and only if
ar(ρ) < ar(σ), Z(ρ) = Z(σ) and Tσ = ∅ [7, Proposition 4.1].
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This proposition handles the cases where at least one of the central relations
is unary, or Tρ = ∅. In this section we consider the remaining case where
ar(ρ) > 2, ar(σ) > 2 and Tρ 6= ∅.

The main problem in the analysis of central relations comes from the fact
that the tail of a central relation can be arbitrary (actually, any totally sym-
metric irreflexive relation). Hence, if ρ and σ are central relations and End ρ ⊆
Endσ then Tσ should be a sort of an invariant of Tρ, but this does not mean
that Tσ ∈ Inv End Tρ.

The paper [6] raises an intriguing point in the analysis of the structure of
endomorphism monoids of central relations. We are now going to make the
approach of [6] explicite and describe the tools in a fashion of Fräıssé-type
analysis of first-order structures that will enable us to precisely formulate the
feeling that “Tσ is a sort of an invariant of Tρ”.

Let ρ be a k-ary relation and let h > k. We write (a1, . . . , ah)
ρ

↪→ (b1, . . . , bh)
to denote that all a1, . . . , ah are distinct, all b1, . . . , bh are distinct, {a1, . . . , ah,
b1, . . . , bh} ⊆ dom(ρ), and whenever i1, . . . , ik ∈ {1, . . . , h} are k distinct indices
such that (ai1 , . . . , aik

) ∈ ρ, then (bi1 , . . . , bik
) ∈ ρ. We say that σ is a Fräıssé

filter over ρ if

• ar(σ) > ar(ρ), and

• if (a1, . . . , ah) ∈ σ and (a1, . . . , ah)
ρ

↪→ (b1, . . . , bh) ∈ dom(σ)h then
(b1, . . . , bh) ∈ σ.

Recall that a structure is homogeneous if every isomorphism between two
finite substructures extends to an automorphism of the structure. Recently,
P. Cameron and J. Nešetřil introduced a notion of homomorphism-homogeneity
of structures as a straightforward generalization of homogeneity [2]. Let (A, ρ)
be a relational structure. A local homomorphism of (A, ρ) is a homomorphism
f : (S, ρ|S) → (T, ρ|T ), where S, T ⊆ A. We say that the structure (A, ρ) is
homomorphism-homogeneous if every local homorphism extends to an endomor-
phism, that is, if for every homorphism f : (S, ρ|S) → (T, ρ|T ), where S, T ⊆ A,
there is an endomorphism g ∈ End(A, ρ) such that f = g|S . We say that a rela-
tion ρ is homomorphism-homogeneous if (A, ρ) is homomorphism-homogeneous.

Lemma 4.2. Let ρ be a homomorphism-homogeneous relation of arity k > 2
and let σ be a totally reflexive relation of arity h > k with dom(ρ) = dom(σ).
The following are equivalent

(1) End ρ ⊆ End σ,

(2) σ is a Fräıssé filter over ρ,

(3) σirr ∈ Irr End ρ.

Proof. (1) ⇒ (2): Suppose End ρ ⊆ Endσ. Take any (a1, . . . , ah) ∈ σ and
suppose (a1, . . . , ah)

ρ
↪→ (b1, . . . , bh). Let S = {a1, . . . , ah}, T = {b1, . . . , bh}

and f : S → T : ai 7→ bi. Then f is a local homomorphism of (A, ρ), and by
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homomorphism-homogeneity of ρ it extends to an endomorphism g ∈ End ρ.
So, g ∈ Endσ, and consequently (g(a1), . . . , g(ah)) ∈ σ. But g(ai) = f(ai) = bi,
for all i. Therefore, (b1, . . . , bh) ∈ σ.

(2) ⇒ (3): Let σ be a Fräıssé filter over ρ and let us show that every
g ∈ End ρ irreflexively preserves σirr. Take any g ∈ End ρ and any (a1, . . . , ah) ∈
σirr such that the g(ai)’s are all distinct. Since g ∈ End ρ it follows that
(a1, . . . , ah)

ρ
↪→ (g(a1), . . . , g(ah)), whence (g(a1), . . . , g(ah)) ∈ σirr since σ is

a Fräıssé filter over ρ.
(3) ⇒ (1): Assume that σirr ∈ Irr End ρ, take any g ∈ End ρ and let us

show that g ∈ Endσ. Take any (a1, . . . , ah) ∈ σ and let bi = g(ai). If there
are i 6= j such that bi = bj then (b1, . . . , bh) ∈ σ since σ is totally reflexive.
Otherwise, all the bi’s are distinct. Since σirr ∈ Irr End ρ and g ∈ End ρ we
obtain (b1, . . . , bh) ∈ σirr ⊆ σ. Therefore, g ∈ Endσ. ¤

Lemma 4.3. Every central relation is homomorphism-homogeneous.

Proof. Let ρ be a central relation and f : (S, ρ|S) → (T, ρ|T ), where S, T ⊆ A, a
local homomorphism of (A, ρ). Choose an arbitrary central element c of ρ and
define an extension g : A → A of f by

g(x) =

{
f(x), x ∈ S,

c, otherwise.

Then it is easy to see that g preserves ρ. Take any (a1, . . . , ak) ∈ ρ. If f(ai) =
f(aj) for some i 6= j then trivially (f(a1), . . . , f(ak)) ∈ ρ. If all the f(ai)’s are
distinct, then all the ai’s are also distinct. If there is a j such that aj /∈ S, then
f(aj) = c and (f(a1), . . . , f(ak)) ∈ ρ. Finally, if {a1, . . . , ak} ⊆ S then from the
fact that f is a local homomorphism of (A, ρ) it follows that (f(a1), . . . , f(ak)) ∈
ρ. ¤

Corollary 4.4. Let ρ be a central relation of arity k > 2 and let σ be a totally
reflexive relation of arity h. Then End ρ ⊆ End σ if and only if h > k and σ is
a Fräıssé filter over ρ.

Proof. In view of the previous two lemmas it suffices to show that h > k. But
from [4, Proposition 5.3] we know that if ρ and σ are totally reflexive and totally
symmetric distinct relations such that σ contains at least one tuple (b1, . . . , bh)
of distinct elements and σ 6= Ah, where h = ar(σ), then End ρ ⊆ Endσ implies
ar(ρ) < ar(σ). ¤

Although rather general, the above statement can be used to derive certain
information about central relations.

Corollary 4.5. Let ρ and σ be central relations, k = ar(ρ) > 2, h = ar(σ) > 2.
If End ρ ⊆ End σ then h > k and Z(ρ) ⊆ Z(σ).
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Proof. We already know that End ρ ⊆ End σ implies h > k, [4, Proposition
5.3]. Take any c ∈ Z(ρ) and a2, . . . , ah ∈ A. If |{c, a2, . . . , ah}| < h then
(c, a2, . . . , ah) ∈ σ since σ is totally reflexive. If {a2, . . . , ah} ∩ Z(ρ) 6= ∅ then
(c, a2, . . . , ah) ∈ σ since the tuple contains a central element of σ. So, assume
that |{c, a2, . . . , ah}| = h and {a2, . . . , ah}∩Z(ρ) = ∅. Take any d ∈ Z(σ). Then
all d, a2, . . . , ah are distinct and (d, a2, . . . , ah) ∈ σ. Moreover, (d, a2, . . . , ah)

ρ
↪→

(c, a2, . . . , ah) since c is a central element of ρ. Now, from End ρ ⊆ End σ
we get by Corollary 4.4 that σ is a Fräıssé filter over ρ. This together with
(d, a2, . . . , ah) ∈ σ and (d, a2, . . . , ah)

ρ
↪→ (c, a2, . . . , ah) yields (c, a2, . . . , ah) ∈ σ.

¤

Let θ be a k-ary relation and let h > k. We say that d ∈ dom(θ) is an
h-central element for θ if there exists a B ⊆ dom(θ) such that |B| = h − 1,
d /∈ B and {d} × (Bk−1)irr ⊆ θ. We also say that B is a set of witnesses for d.

Proposition 4.6. Let ρ and σ be central relations, k = ar(ρ) > 2, h = ar(σ) >
2, and Tρ 6= ∅. Then End ρ ⊆ End σ if and only if

• Z(ρ) ⊆ Z(σ),
• h > k,
• if d ∈ dom(Tσ) is an h-central element of Tρ witnessed by {b2, . . . , bh} ⊆

dom(Tσ) then (d, b2, . . . , bh) ∈ Tσ, and
• (Cσ ∪ Tσ)|dom(Tρ) is a Fräıssé filter over Tρ.

Proof. (⇒) Suppose End ρ ⊆ End σ. Then Z(ρ) ⊆ Z(σ) and h > k according
to Corollary 4.5.

Let d ∈ dom(Tσ) be an h-central element of Tρ witnessed by {b2, . . . , bh} ⊆
dom(Tσ). Take any c ∈ Z(ρ) ⊆ Z(σ) and consider

f(x) =





d, x = c

x, x ∈ {b2, . . . , bh}
c, otherwise.

Then f ∈ End ρ. Therefore, f ∈ End σ which together with (c, b2, . . . , bh) ∈ σ
yields (d, b2, . . . , bh) ∈ σ. Since d, b2, . . . , bh are distinct noncentral elements,
we obtain (d, b2, . . . , bh) ∈ Tσ.

Take any (a1, . . . , ah) ∈ (Cσ∪Tσ)|dom(Tρ) and let (a1, . . . , ah)
Tρ

↪→ (b1, . . . , bh).
Take any c ∈ Z(ρ) ⊆ Z(σ) and consider

f(x) =

{
bi, x = ai, i ∈ {1, . . . , h}
c, otherwise.

Then f ∈ End ρ. Therefore, f ∈ End σ which together with (a1, . . . , ah) ∈ σ
yields (b1, . . . , bh) ∈ σ. But {b1, . . . , bh} ⊆ dom(Tρ) so (b1, . . . , bh) ∈ (Cσ ∪
Tσ)|dom(Tρ).
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(⇐) Suppose End ρ 6⊆ End σ and let h > k and Z(ρ) ⊆ Z(σ). Take any
f ∈ End ρ\End σ and a tuple (a1, . . . , ah) ∈ σ such that (f(a1), . . . , f(ah)) /∈ σ.
Let bi = f(ai), i = 1, . . . , h. Then {b1, . . . , bh} ∩ Z(σ) = ∅, all the bi’s are
distinct and consequently all the ai’s are distinct.

If there is an i such that ai ∈ Z(ρ), then from f ∈ End ρ it follows that bi is
an h-central element of Tρ witnessed by {b1, . . . , bh} \ {bi}. Since {b1, . . . , bh} ⊆
A \ Z(σ) we get a contradiction with the third requirement.

If {a1, . . . , ah}∩Z(ρ) = ∅, then from f ∈ End ρ it follows that (a1, . . . , ah)
Tρ

↪→
(b1, . . . , bh). Since (a1, . . . , ah) belongs to (Cσ ∪ Tσ)|dom(Tρ) and (b1, . . . , bh)
does not, we have that (Cσ ∪ Tσ)|dom(Tρ) is not a Fräıssé filter over Tρ which
contradicts the fourth requirement. ¤

Corollary 4.7. Let ρ and σ be central relations, k = ar(ρ) > 2, h = ar(σ) > 2,
and Tρ 6= ∅. Additionally, assume Z(ρ) = Z(σ) and let B = dom(Tρ) =
dom(Tσ) = A \ Z(ρ). Then End ρ ⊆ End σ if and only if

• h > k,
• if d ∈ B is an h-central element of Tρ witnessed by {b2, . . . , bh} ⊆ B then

(d, b2, . . . , bh) ∈ Tσ, and
• Tσ is a Fräıssé filter over Tρ.

In case Tσ = ∅ and Z(ρ) = Z(σ) we obtain an even simpler characterization:

Proposition 4.8. Let ρ and σ be central relations, k = ar(ρ) > 2, h = ar(σ) >
2, and let Tσ = ∅ and Z(ρ) = Z(σ). Then End ρ ⊆ Endσ if and only if h > k
and Tρ has no h-central elements.

Proof. (⇐) Assume that End ρ 6⊆ End σ and let h > k. Take any f ∈ End ρ \
End σ and a tuple (a1, . . . , ah) ∈ σ such that (f(a1), . . . , f(ah)) /∈ σ. Let bi =
f(ai), i = 1, . . . , h. Then {b1, . . . , bh} ∩ Z(σ) = ∅, all the bi’s are distinct and
consequently all the ai’s are distinct. Since Tσ = ∅, from the fact that all the ai’s
are distinct it follows that at least one of the ai’s is in Z(σ), say, a1 ∈ Z(σ). But
then from f ∈ End ρ it follows that b1 is an h-central element of Tρ witnessed
by {b2, . . . , bh}

(⇒) Suppose that h > k and that Tρ has an h-central element d wit-
nessed by {b2, . . . , bh}. Then {d, b2, . . . , bh} ⊆ A \ Z(σ) whence follows that
(d, b2, . . . , bh) /∈ σ since Tσ = ∅. Take any c ∈ Z(σ) and consider

f(x) =





d, x = c

x, x ∈ {b2, . . . , bh}
c, otherwise.

Then f ∈ End ρ since d is an h-central element of Tρ witnessed by {b2, . . . , bh},
and f /∈ End σ since (c, b2, . . . , bh) belongs to σ and (d, b2, . . . , bh) does not. ¤

We shall say that a central relation ρ is End-maximal if End ρ 6⊆ Endσ for
every central relation σ 6= ρ.
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Proposition 4.9. A central relation ρ on A is End-maximal if and only if
|A| = ar(ρ) + |Z(ρ)|.
Proof. (⇐) Let ρ be a central relation which is not End-maximal. Then there is
a central relation σ such that End ρ ⊂ Endσ. This further implies ar(ρ) < ar(σ)
and Z(ρ) ⊆ Z(σ). Since σ has at least ar(σ) noncentral elements, we have that
ar(σ) + |Z(σ)| 6 |A|, so ar(ρ) + |Z(ρ)| < ar(σ) + |Z(σ)| 6 |A|.

(⇒) Let ρ be a central relation of arity k such that k + |Z(ρ)| < |A| and let
ρ = Rρ ∪ Cρ ∪ Tρ be the decomposition of ρ into its reflexive part, central part
and the tail. Let h = |A| − |Z(ρ)| and define Rh, Ch and Th as follows:

Rh = {(x1, . . . , xh) ∈ Ah : xi = xj for some i 6= j},
Ch = {(x1, . . . , xh) ∈ (Ah)irr : xi ∈ Z(ρ) for some i},
Th = {(x1, . . . , xh) ∈ (Ah)irr : there is an i such that

(xi, xj2 , . . . , xjk
) ∈ Tρ whenever j2, . . . , jk ∈

{1, . . . , h} \ {i} are k − 1 distinct indices}.

Let us show that σ = Ch∪Rh∪Th is a central relation such that End ρ ⊆ Endσ.
The relation σ is clearly totally reflexive and totally symmetric, and has at

least all of Z(ρ) as its central elements. To show that σ is a central relation, we
have to show that σ 6= Ah. Let A\Z(ρ) = {b1, . . . , bh}. Since each bi is a noncen-
tral element, for every i there exist d2, . . . , dk ∈ A such that (bi, d2, . . . , dk) /∈ ρ.
But then {d2, . . . , dk} ⊆ A \ Z(ρ), so d2 = bj2 , . . . , dk = bjk

for some k − 1
distinct indices j2, . . . , jk ∈ {1, . . . , h} \ {i}. Thus, for every i there exist k − 1
indices j2, . . . , jk ∈ {1, . . . , h} \ {i} such that (bi, bj2 , . . . , bjk

) /∈ Tρ. Therefore,
(b1, . . . , bh) /∈ Th and hence (b1, . . . , bh) /∈ σ.

Clearly, ar(σ) > ar(ρ) and Z(σ) = Z(ρ). Let us show that End ρ ⊆ Endσ.
Take any f ∈ End ρ, (a1, . . . , ah) ∈ σ and let di = f(ai), i ∈ {1, . . . , h}. If
there is an i such that di ∈ Z(σ) or there are i 6= j such that di = dj , then
(d1, . . . , dh) ∈ σ. So, assume now that d1, . . . , dh are distinct noncentral ele-
ments. Then the ai’s are also all distinct.

If there is an i such that ai ∈ Z(ρ) then for every k − 1 distinct indices
j2, . . . , jk ∈ {1, . . . , h} \ {i} we have (ai, aj2 , . . . , ajk

) ∈ ρ. Since f ∈ End ρ,
we get (di, dj2 , . . . , djk

) ∈ ρ. Moreover, (di, dj2 , . . . , djk
) ∈ Tρ since the di’s are

distinct noncentral elements. Therefore, (d1, . . . , dh) ∈ Th ⊆ σ.
If the ai’s are distinct noncentral elements, then (a1, . . . , ah) ∈ Th whence

follows that there is an i such that (ai, aj2 , . . . , ajk
) ∈ Tρ whenever j2, . . . , jk ∈

{1, . . . , h} \ {i} are k − 1 distinct indices. Since f ∈ End ρ, we get
(di, dj2 , . . . , djk

) ∈ ρ. Moreover, (di, dj2 , . . . , djk
) ∈ Tρ since the di’s are dis-

tinct noncentral elements. Therefore, (d1, . . . , dh) ∈ Th ⊆ σ. ¤

There exist pairs (ρ,RΘ) such that ρ is a central relation of arity k > 2, RΘ

is an h-regular relation and End ρ ⊆ End RΘ. First of all, if Θ = {∆A} where
∆A = {(x, x) : x ∈ A} then End RΘ = AA and clearly End ρ ⊆ EndRΘ. In case
Θ 6= {∆A}, we have shown in [7, Propositions 4.6 and 4.7] that End ρ ⊆ EndRΘ



124 D. Mašulović

implies k < h, Θ = {θ}, θ has a single nontrivial block B and Z(ρ) ⊆ B.
Moreover, if Tρ = ∅, we were able to provide a complete characterization [7,
Proposition 4.8]: if Tρ = ∅ and Θ 6= {∆A} then End ρ ⊆ EndRΘ if and only if
k < h, Θ = {θ}, θ has a single nontrivial block B and Z(ρ) = B. Here we shall
deal with the remaining case of Tρ 6= ∅ and thus finish the characterization.

Proposition 4.10. Let ρ be a central relation of arity k > 2 such that Tρ 6= ∅
and let RΘ be an h-regular relation, where Θ 6= {∆A}. Then End ρ ⊆ EndRΘ

if and only if:
(1) k < h;
(2) Θ = {θ}, where A/θ =

{
B, {b2}, . . . , {bh}

}
and |B| > 2, i.e. B is a

single nontrivial block of θ;
(3) Z(ρ) ⊆ B;
(4) if bi is an (h − 1)-central element of Tρ for some i ∈ {2, . . . , h}, then

{b2, . . . , bh} \ {bi} cannot be a set of witnesses; and

(5) for all a2, . . . , ah ∈ dom(Tρ), if (a2, . . . , ah)
Tρ

↪→ (b2, . . . , bh) then
(a2, . . . , ah) is a permutation of (b2, . . . , bh).

Proof. (⇒) Suppose End ρ ⊆ EndRΘ. Then we know from [7, Propositions 4.6
and 4.7] that k < h, Θ = {θ}, θ has a single nontrivial block B and Z(ρ) ⊆ B.

Suppose now that (4) does not hold. Then there is an i ∈ {2, . . . , h} such that
bi is an (h−1)-central element of Tρ with the set of witnesses {b2, . . . , bh}\{bi}.
For the sake of simplicity, let b2 be an (h− 1)-central element of Tρ with the set
of witnesses {b3, . . . , bh}. Take any c ∈ Z(ρ), b1 ∈ B \ {c} and consider

f(x) =





c, x = b1

b2, x = c

x, x ∈ {b3, . . . , bh}
c, otherwise.

Then f ∈ End ρ \ End RΘ which contradicts End ρ ⊆ EndRΘ.
Finally, assume that (5) does not hold. Then there exist a2, . . . , ah ∈

dom(Tρ) such that (a2, . . . , ah)
Tρ

↪→ (b2, . . . , bh) and (a2, . . . , ah) is not a permu-
tation of (b2, . . . , bh). Then {a2, . . . , ah} ∩ B 6= ∅ since all the ai’s are distinct.
If |{a2, . . . , ah} ∩ B| > 2 take an arbitrary a1 ∈ A \ {a2, . . . , ah}. If, however,
|{a2, . . . , ah}∩B| = 1 take an arbitrary a1 ∈ B\{a2, . . . , ah}. Take any c ∈ Z(ρ)
and consider

f(x) =





c, x = a1

bi, x = ai, i ∈ {2, . . . , h}
c, otherwise.

Then f ∈ End ρ \ End RΘ which contradicts End ρ ⊆ EndRΘ.
(⇐) Suppose End ρ 6⊆ EndRΘ, but (1), (2) and (3) are true. Take any

f ∈ End ρ \ End RΘ and any (a1, . . . , ah) ∈ RΘ such that (f(a1), . . . , f(ah)) /∈
RΘ. Then there is a b1 ∈ B such that (f(a1), . . . , f(ah)) is a permutation of
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(b1, . . . , bh). Since relations we are working with are totally symmetric, without
loss of generality we can assume that bi = f(ai), i ∈ {1, . . . , h}. If there is
an i > 2 such that ai ∈ Z(ρ) then bi is an (h − 1)-central element for Tρ

witnessed by {b2, . . . , bh} \ {bi}. If, however, {a2, . . . , ah} ∩Z(ρ) = ∅ then from
(a1, . . . , ah) ∈ RΘ it follows that {a2, . . . , ah} ∩ B 6= ∅, while f ∈ End ρ implies

(a2, . . . , ah)
Tρ

↪→ (b2, . . . , bh). ¤
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