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DISTRIBUTION SEMIGROUPS ON FUNCTION
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Abstract. We study various classes of distribution semigroups on the
spaces of functions Fr, r ∈ R distinguished by their behavior at the origin.
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0. Introduction

Distribution semigroups of Lions [12] and Arendt’s n-times integrated semi-
groups [1], have been studied by many authors, see e.g. [3], [4], [2], [8], [9] as
well as the references therein. We refer especially to the paper [15], where we
discussed various classes of distribution semigroups, following Kunstmann [11]
(see also Wang [18]). As in [15], we drop Lions’ denseness assumption and we
investigate the condition that prescribes the behavior at the origin and strong
distribution semigroups and distribution semigroups. Note that distribution
semigroups are the same as quasi-distribution semigroups introduced in [18],
[11], whereas strong distribution semigroups are characterized via the value 0
at the origin for their primitive, where the value is understood in the sense of
Lojasiewicz. Moreover, a strong distribution semigroup is always a distribution
semigroup and a distribution semigroup is always a weak distribution semi-
group, but that the converse implications are false in general. For distributions
of local order one, however, all these notions coincide ([15]).

The structural properties for strong distribution semigroups are given in
[15], considering such semigroups on the test function space F0. In this way, it
is shown that the class of strong distribution semigroups contains properly the
class of smooth distribution semigroups introduced by Balabane and Emamirad
[5], [6], [7] whose infinitesimal generators are always densely defined.

Further analysis of semigroups defined on test function spaces, consisting
of functionds with appropriate integrability conditions at zero, is the subject
of this paper. We introduce a scale of Fréchet spaces Fr, r ∈ R and consider
semigroups having extensions on such spaces. In the main assertion of Section 3
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we characterize r−strong distribution semigroups of the form G(t, x)−(tk−rF )(k)

as semigroups over Fr with an additional pointwise structural assumption. We
note that M. Kostić have studied in [10] global version of such spaces with r ≥ 0
and that our paper is related to the local version of semigroups of [10] for r ≥ 0
and moreover, the most interesting case in our paper is r < 0.

1. Integrated, distribution and quasi-distribution semi-
groups

We use the usual notation: E is a Banach space with norm ‖ · ‖, L(E) =
L(E; E) is the space of bounded linear operators from E into E. For a linear
operator A, its domain, range and null space are denoted by D(A), R(A) and
N(A), respectively. We will always assume that A is a closed operator. Schwartz
spaces of test functions on the real line R are denoted by D = C∞0 and E = C∞

([16]). Their strong duals are D′ and E ′, respectively. We denote by D0 the
subspace of D which consists of the elements with supports contained in [0,∞).
Further on, D′(L(E)) = L(D; L(E)) and E ′(L(E)) = L(E ; L(E)) are spaces of
continuous linear functions D → L(E) and E → L(E), respectively, equipped
with the topology of uniform convergence on bounded subsets of D and E ,
respectively; D′+(L(E)) and E ′+(L(E)) are the subspaces of D′(L(E)) consisting
of elements supported in [0,∞) (for E = C we drop (L(E)) in notation). Note
that a distribution F ∈ D′(L(E)) is also a bilinear continuous mapping f :
D × E → E.

Let α ∈ C∞0 ,
∫
R

α = 1. We will use the following nets of smooth functions:

(1) φε(t) =
1
ε
α(

t

ε
), θε(t) =

t∫

−∞
φε(s)ds =

t/ε∫

−∞
α(s)ds , t ∈ R, ε ∈ (0, 1).

Note, (φε)ε is a delta net and (θε)ε is a net converging to the characteristic
function of [0,∞) in the sense of D′(R).

J.L. Lions ([12]) introduced the notion of a distribution semigroup, which
we shall call here a distribution semigroup in the sense of Lions or a DS-L for
short: a G ∈ D′+(L(E)) is a DS-L if it satisfies the properties (d.1), (d.2), (d.3),
(d.4), where:

(d.1)
G(φ ∗ ψ, ·) = G(φ,G(ψ, ·)), φ, ψ ∈ D0,

where φ ∗ ψ =
∫
R

φ(· − t)ψ(t)dt is the usual convolution;

(d.2)
⋂

φ∈D0

N(G(φ, ·)) = {0} ;

(d.3) the linear hull R of
⋃

φ∈D0

R(G(φ, ·)) is dense in E;
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(d.4)
for all x ∈ R there is a continuous function u : [0,∞) → E

satisfying u(0) = x and G(φ, x) =
∞∫
0

φ(t)u(t)dt, φ ∈ D.

In [15] we were interested in dropping the assumption (d.3) and in replacing the
assumption (d.4), which expresses a regularity condition at the origin.

In particular, if (d.1) and (d.2) hold for G, then we can define the generator
A := G(−δ′) of G; it is a linear and closed operator in E.

We are also interested in the following case: Let ψ ∈ D and ψ+ := ψ1[0,∞).
Then ψ+ ∈ E ′+ and the operator G(ψ+, ·) with domain D(G(ψ+)) is given by

x ∈ D(G(ψ+)),G(ψ+, x) = yx :⇐⇒ ∀φ ∈ D0 : G(φ,G(ψ+, x)) = G(φ ∗ ψ+, x).

We have considered in [15] the following conditions:

(d.5) G(ψ, x) = G(ψ+, x), for all ψ ∈ D, x ∈ E;

(d.5)s
There is a dense subspace E0 of E containing R such that

G(φθε, x) → G(φ, x), ε → 0+, for all φ ∈ D, x ∈ E0

and for every (θε)ε of the form (1).

Every DS-L satisfies (d.5)s and (d.1), (d.2) and (d.5)s together imply (d.5)
([15]).

Definition 1. ([15]) Let G ∈ D′+(L(E)). Then:
a) G is called a weak distribution semigroup (or weak DS for short) if (d.1)

and (d.2) hold.
b) G is called a strong distribution semigroup (or strong DS for short) if

(d.1), (d.2) and (d.5)s hold.
c) G is called a distribution semigroup (or DS for short) if (d.1), (d.2) and

(d.5) hold.

We refer to [18] and to [11] for quasi-distribution semigroups, QDS in short
(also called pre-distribution semigroup).

Let G ∈ D′+(L(E)). Then G is said to be of finite order n ∈ N, resp., of local
finite order n, if there exists a strongly continuous function S ∈ C([0,∞), L(E)),
S(0) = 0, resp., S ∈ C([0, a), L(E)), a > 0, S(0) = 0, (so we can put S(t, ·) = 0
for t ≤ 0) such that

(2) G = S(n) in R ( resp., G = S(n) in (−∞, a)).

If G is of finite order, then we add this to the name of the corresponding distri-
bution semigroup (for example, weak DS of finite order).

A densely defined operator A generates a DS-L (or exponentially bounded
DS-L) if and only if A generates a local n-times integrated non-degenerated
semigroup (or exponentially bounded one), see [1], p. 341. In this paper we
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consider the case when A is not necessarily densely defined in E and (S(t))t≥0

might not be exponentially bounded.
In general, a weak DS is not a DS and a weak DS is not a strong DS. Wang

[18] and Kunstmann [11] showed that a QDS is a weak DS. The next theorem
establishes the relation between local integrated semigroups and QDS’s.

Theorem 1. ([18], [11]) Let n ∈ N and let a family (S(t))t≥0 be a local n-
times integrated non-degenerate semigroup. Then its n-th distributional deriva-
tive is a QDS. Conversely, every QDS is n-th distributional derivative of a
corresponding local n-times integrated non-degenerate semigroup on [0, a), for
some n ∈ N and a > 0.

Concerning further relations between the various types of distribution semi-
groups introduced in Definition 1, we have the following proposition which con-
tains assertions from [15].

Proposition 1. ([15]) Let G ∈ D′+(L(E)).
a) Assume (d.1), (d.2) and (d.5). Then G is a QDS. In particular (d.4)

holds.
Moreover, with (d.1) and (d.2), (d.5)s implies (d.5) and

G is strong DS ⇒ G is DS;

G is DS ⇒ G is weak DS.

b) Condition (d.5)s implies that G(−1) has the value 0 at the origin in the
sense of Lojasiewicz on the set E0.

c) Let G be of local order 1 with the corresponding S as in (2) (and n = 1).
Then (d.5)s holds for G with x ∈ E. In particular, (d.5)s implies the equivalence
of the following statements

(i) G is a weak DS. (ii) G is a strong DS. (iii) (S(t))t≥0 is a 1-times local
integrated non-degenerate semigroup.

d) G is a DS if and only if G is a QDS.
e) Let E0 denote the set of all x ∈ E such that

(∃Sx ∈ C(R; E), suppSx ⊂ [0,∞))(∃a > 0)(∃n ∈ N)

G(·, x) = S(n)
x on (−a, a) and ‖Sx(t)‖ = o(tn−1), x ∈ E0, as t → 0.

If E0 is dense in E, then G satisfies (d.5)s.
In particular, G ∈ D′+(L(E)) satisfies (d.5)s if and only if G(−1) has the

value 0 at the origin on a dense set E0 ⊂ E, i.e. G = (tn−1F )(n) on (−a, a),
where F is continuous and supported by [0,∞).

Thus a G ∈ D′+(L(E)) is a strong DS if and only conditions (d.1),( d.2) hold
and G(−1) has the value 0 at the origin on a dense set E0 ⊂ E.

Note ([15]) that a dense distribution semigroup cannot be of the form G(·, x) =
(tkF )(k)(·, x), x ∈ D(A), where F is continuous on (−a, a) (a > 0) and sup-
ported in [0, a) ([15]). Moreover, in [15] we have used the results of Propositions
2 and 3 and obtained a scale of strong DS with respect to their behavior at the
origin.
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2. Generalization of smooth DS’s

Smooth DS’s in the sense of [6]-[7] have been characterized in terms of inte-
grated semigroups in [4]:

Let A be linear closed and densely defined. Then A generates a smooth DS
G, if and only if A generates a DS and there are n ∈ N and C > 0 such
that G = S(n) for an n-times integrated semigroup S(t) = St, t ≥ 0, satisfying
‖St‖ ≤ Ctn, t ≥ 0.

Hence, if A generates a smooth DS, then it generates a strong DS.
Recall ([5], [7]) that the underlying test function space for smooth distribu-

tion semigroups is the space F0 : the completion of D((0,∞)) under the sequence
of seminorms

qj(ψ) = ‖tjψ(j)‖L1((0,∞)), j ∈ N0.

Clearly, ψ+ ∈ F0 for every ψ ∈ D. Hence every smooth semigroup can be
extended on D to become a DS. Now we define a family of test function spaces.

Definition 2. Let r ∈ R. Then Fr is the completion of D((0,∞)) under the
sequence of seminorms

pr,j(ψ) = ‖tj(ψ(t)
tr

)(j)‖L1((0,∞)), j ∈ N0.

Clearly, p0,j = qj , j ∈ N0 and if ψ ∈ Fr, r ≥ 0, has a bounded support, then
ψ ∈ F0. The space D((0,∞)) is dense in all the spaces Fr, r ∈ R. Denote

(d.1− r − smooth) G(φ ∗ ψ, ·) = G(φ,G(ψ, ·)),

for all φ, ψ ∈ Fr;

Put (d.2− smooth) := (d.2).

Definition 3. If (d.1−r−smooth) and (d.2−smooth) hold for G ∈ F ′r(L(E)),
we call G a DS on Fr, r ∈ R.

In the next section we will consider DS on Fr.
The next result for non-densely defined infinitesimal generators is an exten-

sion of Theorem 4 in [6].

Proposition 2. Let G be a DS on F0 of the form G = S(k), where S is con-
tinuous and supported by [0,∞), and let A be the infinitesimal generator of G.
Then for any x ∈ D(Ak), G(·, x) is a continuous function on R supported by
[0,∞) satisfying

(3) ||G(t, x)|| ≤ (||x||+ ||Akx||)(1 + tk), t ∈ R.
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3. DS on Fr, r ∈ R

We introduce one more condition:
(d.6− r − smooth) (∃D ⊂ X, D̄ = X)(∀x ∈ D) (∃gx ∈ Cb(R;X), gx(0) = 0)

(4) G(φ, x) =
∫ ∞

0

φ(t)
gx(t)
tr

dt, x ∈ D, φ ∈ Fr.

Proposition 3. Let A be linear, closed and densely defined on X. The fol-
lowing statements are equivalent.

(i) A generates a DS on Fr satisfying (d.6-r-smooth).
(ii) A generates a strong DS G of the form

G(t, x) = (tk−rF (t, x))(k),

where for every x ∈ X t → F (t, x), t ∈ [0,∞) is a continuous bounded function
with respect to t and F (0, x) = 0 , x ∈ X.

We remark that the regularity at the origin could not be larger than for
smooth DS.

Proof. (i) ⇒ (ii). We follow the proof of Theorem 4.4 in [4] with appropriate
modifications. Note that for every k ∈ N the set of functions

{(φ(t)/tr)(k);φ ∈ D((0,∞))} = {φ(k); φ ∈ D((0,∞))}
is dense in L1(R+, tkdt). So we assume G is of order k and of the form (4). This
implies

G(φ, x) =
∫ ∞

0

(−1)k(
φ(t)
tr

)(k)Hx(t)tkdt, φ ∈ D((0,∞)),

where Hx(t) = 1
tk

∫ t

0
(t−s)k−1

(k−1)! gx(s)ds, t ≥ 0. Thus Hx(0) = 0, |Hx(t)| <

∞, x ∈ D. In the same way as in [4] (proof of Theorem 4.4) we prove that for
every t > 0, x 7→ Hx(t), x ∈ X is a bounded linear operator. Let φ ∈ Fr, x ∈
X. By Leibniz formula it follows

G(φ, x) = −
∫ ∞

0

φ(t)
k∑

i=1

(
k

i

)
(−1)ir(r − 1)...(r − i + 1)

(
tk−r−iHx(t)

)(k−i)
dt.

Integrating i-times the i-th member of the sum, we have

G(φ, x) = 〈(tk−rH(t, x))(k), φ(t)〉 x ∈ X,φ ∈ Fr,

where t 7→ H(t, x) is continuous bounded and H(0, x) = 0, x ∈ X.
Let us show that G satisfies (d.5)s. Let φ ∈ D and θε be defined by (1).

Using the Leibniz formula for (φθε)(k), one can show that the integrals
∫ ∞

0

φ(k−j)(t)α(j−1)
ε (t)tk−rH(t, x)dt
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converge to zero for j = 1, . . . , k, and for k = 0, to
∫ ∞

0

φ(k)(t)tk−rH(t, x)dt.

This proves (d.5)s.
Similarly, G can be extended on 1[0,∞]e

−λt, which implies (as in [4]), for
k ≥ r, k ∈ N, that

(λI −A)−1 = G(1[0,∞]e
−λt) = λk

∫ ∞

0

e−λttk−rH(t, x)dt, x ∈ X,

and that (tk−rH(t, ·))t≥0 are k times integrated semigroups.
(ii)⇒ (i) Define

(−1)kG(φ, x) =
∫ ∞

0

(
φ(t)
tr

)(k)tkH(t, x)dt

−
k∑

j=1

∫ ∞

0

(
k

j

)
(
φ(t)
tr

)(k−j)(tk−r)(j)H(t, x)dt, φ ∈ FR.

One can prove that (d.1-smooth) holds for φ, ψ ∈ Fr. Let us prove (d.6-r-
smooth). Note for x ∈ D(Ak), (tk−1H(t, x))(k)

|t=0 = x and

t(tk−1H(t, x))(k) = tkH(t, Akx) +
tk+1

k!
Ak−1x + · · ·+ tx.

for x ∈ D = D(Ak) (a dense set of X). Let x ∈ D = D(Ak) (a dense set of X).
By partial integration we have

G(φ, x) =
∫ ∞

0

φ(t)
tr

(tk−rH(t, x))(k)dt =
∫ ∞

0

(
φ(t)
tr

)gx(t)dt.

Denoting the infinitesimal generator of G by B, in the same way as in [4] (last
part of the proof of Theorem 4.4), one can prove that B = A.

Remark 1. Note that the homomorphism a : F0 → Fr : φ 7→ a(φ) = trφ, is
an isomorphism on D((0,∞)). For ψ ∈ D((0,∞)) and G ∈ F0, we have

F ′0〈G, a−1ψ〉F0 =F ′0 〈G,
ψ

tr
〉F0 =F ′r 〈

G

tr
, ψ〉Fr .

This implies that every element G̃ ∈ F ′r, restricted on D((0,∞)), is of the form
G̃ = G/tr for some G ∈ F0. Applying this we can obtain another proof of
(i) ⇒ (ii) in Proposition 5.

If G is a strong DS, then it can be extended on Fr to be an element of
F ′r(L(E)) so that conditions (d.1-r-smooth) and (d.2-smooth) hold. This can
be proved by the arguments of previous assertion.
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In general, if G ∈ F ′r, then there exists k ∈ N, k > 1, such that G(·, x) =
(tk−rH(·, x))(k+1) for every x ∈ E, where t 7→ H(t, x) is continuous and sup-
ported by [0,∞). The proof is based on the Hahn-Banach theorem and partial
integration.

Let G be a strong DS. We know,

G(·, x) = (tk−rS(·, x))(k), x ∈ E,

where S has the prescribed properties. Let k ≥ m ≥ r,m ∈ N. Then

L(G)(λ) = λmL(G−m)(λ), <λ > 0,

where G−m = (tk−rS(·, x))(k−m). It is clear that the restriction of G−m on
D(0,∞) can be extended as an element of F0 denoted in the same way. So by
Theorem III 8 in [5], for a given q ∈ N there exist constants C > 0 and r > 0
such that

||(λI −A)−q|| ≤ Cqk|λ|k−m+1|<λ|−k+m−q,<λ > 0.

Moreover, the same proof as for Theorem III 9 in [5] gives

Proposition 4. Let A be a closed linear operator on E. Then the following
is equivalent:

(i) The spectrum of A lies in =λ ≤ 0 and if its resolvent satisfies

||(λI −A)−1|| ≤ C|λ|p−m+1|<λ|−p+m−1,<λ > 0

for some C > 0 and p ≥ m > 0;
(ii) A is the infinitesimal generator of a strong DS.
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