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AN APPLICATION OF HIGHER ORDER FIXED
POINTS OF NORMAL FUNCTIONS

Boris Šobot1

Abstract. We define higher order fixed points of normal functions, de-
scribe them and apply to obtain a constructive proof that, if κ is the least
ordinal such that the ultrapower κI/F is non-trivial, then that ultrapower
has at least κ+ elements.
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Let F be a nonprincipal ultrafilter over a set I. By αI/F we denote the
ultrapower

∏
i∈I

α/F . The element of αI/F which is the equivalence class of a

function f will be denoted by fF .
It is well known (see [1], page 134) that an ultraproduct of infinite ordinals

modulo ultrafilter F is well-ordered iff F is σ-complete. Thus throughout this
work we suppose that F is a fixed σ-complete ultrafilter over some I. The
following proposition is easy to prove.

Proposition 1. If α < β, then αI/F is isomorphic to an initial segment of
βI/F .

Thus we can identify αI/F with an initial segment of βI/F . Therefore for
α ∈ Ord we let, as in [4],

Aα = (αI/F ) \
⋃

β<α

Aβ .

Obviously, Aα+1 has exactly one element for α ∈ Ord; it is fF
α , where fα(i) = α

for i ∈ I. Hence we will be interested only in the case when α is a limit ordinal.
Also, the described element fF

α is the image of α under the natural elementary
embedding d : β → βI/F (see [2]), and thus every βI/F contains a copy of
β. The main question we consider here is: how many more elements can βI/F
have, and on which Aα levels?

Definition 1. Let α be a limit ordinal. An ultrafilter F over I is α-descen-
dingly incomplete if there is a sequence 〈Xβ : β < α〉 of elements of F such that
Xβ1 ⊇ Xβ2 for β1 < β2 < α and

⋂
β<α Xβ = ∅; otherwise it is α-descendingly

complete.
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Proposition 2. If α is a limit ordinal, then Aα = ∅ iff F is cf(α)-descendingly
complete.

But it is known (see [1], page 114) that the following proposition holds.

Proposition 3. The least ordinal α, such that F is α-descendingly incom-
plete, is equal to the least cardinal α such that F is α+-incomplete, and it is a
measurable cardinal.

So the first κ such that Aκ 6= ∅ must be an uncountable measurable cardinal
(we will need only the fact that κ is regular). From this point on, κ will denote
that cardinal. It is easy to prove that, if F is κ-descendingly incomplete, then
|Aκ| ≥ κ. One can prove (see [3], page 291) the following proposition.

Proposition 4. If F is a nonprincipal κ-complete ultrafilter over κ, then
|Aκ| ≥ 2κ.

The result we are about to prove is weaker, but the proof gives a better
insight into the structure of elements of Aκ. We begin with a lemma analogous
to the Cantor Normal Form Theorem and emphasize that all operations that
appear in its formulation are ordinal operations.

Lemma 1. Every nonzero ordinal less than κ+ can be represented uniquely
in the form

κα0β0 + κα1β1 + · · ·+ καnβn,

where κ+ > α0 > α1 > · · · > αn and 0 < βk < κ for 0 ≤ k ≤ n.

If ξ = κα0β0 +κα1β1 + · · ·+καnβn is an ordinal represented as in the lemma
above, with ξ̄ we shall denote κα0β0 + κα1β1 + · · ·+ καn−1βn−1. For every such
ξ, we will call the set {ξ̄ + καnβ : 0 < β < κ} a level (of course, ξ belongs to
this set). Thus, if ξ and η are on the same level, then ξ̄ = η̄ (but the opposite
does not hold).

Definition 2. Let p : κ+ → κ+ be a normal function. We define the sequence
of functions 〈pξ : ξ < κ+〉 in this way:

1) p0 = p;
2) pξ+1(α) is the α-th fixed point of pξ;
3) if ξ is a limit ordinal, pξ(α) is the αth ordinal that is fixed for all pη for

η < ξ.

It is easy to prove that all the functions pξ for ξ < κ+ are normal and map
κ+ to κ+. We need some more information, contained in the following lemmas:

Lemma 2. The function pξ+1 can be calculated in the following way:
1) pξ+1(0) = supn<ω θn, where θ0 = 1 and θn+1 = pξ(θn) for n < ω;
2) pξ+1(α + 1) = supn<ω θn, where θ0 = pξ+1(α) + 1 and θn+1 = pξ(θn) for

n < ω;
3) if α is a limit ordinal, then pξ+1(α) = supβ<α pξ+1(β).
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Lemma 3. If δ is a limit ordinal, then the function pδ can be calculated in
the following way:

1) pδ(0) = supξ<δ θξ, where θ0 = 1, for ξ < δ θξ+1 = pξ(θξ), and θξ =
supη<ξ θη for a limit cardinal ξ;

2) pδ(α + 1) = supξ<δ θξ, where θ0 = pδ(α) + 1, for ξ < δ θξ+1 = pξ(θξ), and
θξ = supη<ξ θη for a limit cardinal ξ < δ;

3) if α is a limit ordinal, then pδ(α) = supβ<α pδ(β).

Before we begin with the proof of the main theorem, let us notice that if
p(0) > 0 then for every ζ ∈ ran (p) there is the greatest ξ < κ+ such that
ζ ∈ ran (pξ). This is beacuse pξ+1(0) > pξ(0) for all ξ < κ+ (easy proof by
induction), so the sequence 〈pξ(0) : ξ < κ+〉 is cofinal in κ+. Knowing this, let
us call ζ < κ+ a fixed point of order δ if ζ belongs to ran (pδ) \ ran (pδ+1).

In the rest of this article, we will consider the function p : κ+ → κ+ given
by p(γ) = κγ . Obviously, it is normal and p(0) > 0, so all the preceding results
apply to it. Let us also introduce the abbreviation eδ,α = pδ(α), and note that
κeδ,α = eδ,α for δ > 0.

Theorem 1. If κ is the least cardinal such that the ultrafilter F over I is
κ+-incomplete, then |Aκ| ≥ κ+.

Proof. We will construct, by recursion on ξ, a sequence 〈gξ : ξ < κ+〉 of functions
such that Yηξ = {i ∈ I : gη(i) < gξ(i)} ∈ F for η < ξ < κ+, thus obtaining an
ascending sequence 〈gF

ξ : ξ < κ+〉 of elements of Aκ. So let us define for every
ξ < κ+ an element gξ ∈ Aκ such that for all η < ξ

(Iη,ξ) gη <∗ gξ

holds. First, let g0 be such that gF
0 is the minimal element of Aκ, and for ξ > 0:

1◦ If ξ = η + 1, we define gξ(i) = gη(i) + 1.

2◦ If ξ = ξ̄ +καβ, α = α1 +1 and β = β1 +1, we define ηµ = ξ̄ +καβ1 +κα1µ
for µ < κ. By Proposition 3 F is κ-descendingly incomplete, so there is a
sequence 〈Xζ : ζ < κ〉 of elements of F such that X0 = I, Xζ1 ⊇ Xζ2 for
ζ1 < ζ2 < κ and

⋂
ζ<κ Xζ = ∅. Now let us define gξ(i) = gηµ(i), where

µ = min{ζ < κ : i 6∈ Xζ}.
3◦ If ξ = ξ̄ + καβ and β is a limit ordinal, then we define ηµ = ξ̄ + καµ for

µ < β and gξ(i) = supµ<β gηµ(i). Since β < κ and κ is regular, we have
gξ(i) < κ.

4◦ If ξ = ξ̄ +καβ, α is a limit ordinal not fixed for p and β = β1 +1, then we
define ηµ = ξ̄+καβ1 +κµ for µ < α, and let gξ be defined by 〈gηµ : µ < α〉
in the same way gα was defined by 〈gµ : µ < α〉. (This means that we
look up which of the rules 2◦− 7◦ was used for constructing gα and use it
to construct gξ too; this depends of the ordinal α. It does not mean that
we have to use all elements of the sequence 〈gηµ : µ < α〉.)
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5◦ If ξ = ξ̄ + eδ,νβ, eδ,ν is a fixed point of order δ, where δ = δ1 + 1, β =
β1 + 1 and ν = ν1 + 1, then gξ is defined in the following way: we set
ηn = ξ̄ + eδ,νβ1 + θn, where θ0 = eδ,ν1 + 1 and θn+1 = pδ1(θn) for n < ω;
finally, let gξ(i) = supn<ω gηn

(i).

6◦ If ξ = ξ̄ + eδ,νβ, eδ,ν is a fixed point of order δ, where δ is a limit ordinal,
β = β1 + 1 and ν = ν1 + 1, gξ is defined in the following way: we set
ηµ = ξ̄ + eδ,νβ1 + θµ, where θ0 = eδ,ν1 + 1, θµ+1 = pµ(θµ) for µ < δ and, if
µ < δ is a limit ordinal, then θµ = supζ<µ θζ . Finally, let gξ be defined by
the sequence 〈gηµ

: µ < δ〉 in the same way we defined gδ by the sequence
〈gµ : µ < δ〉. Since eδ,ν1 is a fixed point of order at least δ, it follows that
ξ ≥ eδ,ν > eδ,ν1 ≥ δ.

7◦ If ξ = ξ̄ + eδ,νβ, eδ,ν is a fixed point of order δ, where ν is a limit ordinal
and β = β1 + 1, let ηµ = ξ̄ + eδ,νβ1 + eδ,µ for µ < ν, and let gξ be defined
by 〈gηµ

: µ < ν〉 in the same way as gν by 〈gµ : µ < ν〉. Note that
ξ ≥ eδ,ν > ν, because otherwise pδ(ν) = eδ,ν = ν would imply that eδ,ν is
a fixed point of order at least δ + 1.

Let us show by induction on ξ > 0 that the conditions (Iη,ξ) are satisfied for all
η < ξ. Let us assume (Iζ,η) holds for ζ < η < ξ. We will prove Yηξ ∈ F for each
of the cases in the definition:

1◦ Obvious.

2◦ Let us first prove that Yηµξ ∈ F for µ < κ. If Y =
⋂

ν<µ Yηνηµ , since
(Iην ,ηµ) holds for ν < µ and F is κ-complete, we have Y ∈ F . But
gην (i) < gηµ(i) for all i ∈ Y and all ν < µ. It follows from the definition of
gξ that Yηµξ ⊇ Xµ ∩ Y , hence Yηµξ ∈ F . But ξ = supµ<κ ηµ, so for every
η < ξ there is ηµ > η, and by (Iη,ηµ) we have Yηηµ ∈ F and therefore,
since Yηξ ⊇ Yηηµ ∩ Yηµξ, we conclude Yηξ ∈ F .

3◦ For every µ < ξ we have (Iηµ,ηµ+1) and, since gηµ+1(i) ≤ gξ(i) for i ∈ I, it
follows that Yηµξ ∈ F as well. Now, as in case 2◦, for every η < ξ we can
find ηµ such that η < ηµ, thus Yηηµ ∈ F . This implies Yηξ ∈ F .

4◦ We can prove Yηµξ ∈ F in the same way we proved Yµα ∈ F , depending
of which of the cases of the construction was used in defining gα by gµ

(µ < α), and proceed as in 2◦.

5◦ By Lemma 2 ξ = supn<ω ηn, so the proof is analogous to case 3◦.

6◦ By Lemma 3 ξ = supµ<δ ηµ, so the proof is analogous to case 4◦.

7◦ Analogous to 4◦, using Lemmas 2 and 3. 2

It is easy to see that a similar construction can be done in any Aβ for β such
that cf(β) = κ:
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Corollary. If κ is the least ordinal such that the ultrafilter F is κ+-incomplete
and cf(β) = κ, then |Aβ | ≥ κ+.

Adding to results from [5], we get another direct corollary:

Corollary. Let κ be the least ordinal such that the ultrafilter F is κ+-incom-
plete, cf(β) = κ, and B = {tξ : ξ < α} be a branch of a tree T . Then there are
at least κ+ elements in T I/F greater than all tξ for ξ < β and (if β < α) less
than tβ .
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