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AN APPLICATION OF HIGHER ORDER FIXED
POINTS OF NORMAL FUNCTIONS

Boris Sobot®

Abstract. We define higher order fixed points of normal functions, de-
scribe them and apply to obtain a constructive proof that, if  is the least
ordinal such that the ultrapower &’ /F is non-trivial, then that ultrapower
has at least ™ elements.
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Let F be a nonprincipal ultrafilter over a set I. By a!/F we denote the

ultrapower [] a/F. The element of of/F which is the equivalence class of a
iel
function f will be denoted by f¥.

It is well known (see [I], page 134) that an ultraproduct of infinite ordinals
modulo ultrafilter F' is well-ordered iff F' is o-complete. Thus throughout this
work we suppose that F' is a fixed o-complete ultrafilter over some I. The
following proposition is easy to prove.

Proposition 1. If a < 3, then of /F is isomorphic to an initial segment of

Bl/F.

Thus we can identify of /F with an initial segment of 3!/F. Therefore for
a € Ord we let, as in [4],

Ao = (o' /P)\ | 45

B<a

Obviously, A, 1 has exactly one element for a € Ord; it is f£, where f, (i) = «
for i € I. Hence we will be interested only in the case when « is a limit ordinal.
Also, the described element fI' is the image of o under the natural elementary
embedding d : 3 — B1/F (see [2]), and thus every 5!/F contains a copy of
(3. The main question we consider here is: how many more elements can 3! /F
have, and on which A, levels?

Definition 1. Let a be a limit ordinal. An ultrafilter F' over I is a-descen-
dingly incomplete if there is a sequence (Xg : § < «) of elements of F' such that
Xp, 2 Xp, for 1 < B2 < a and (g, X = 0; otherwise it is a-descendingly
complete.
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Proposition 2. If « is a limit ordinal, then A, = () iff F' is cf (a)-descendingly
complete.

But it is known (see [1], page 114) that the following proposition holds.

Proposition 3. The least ordinal «, such that F' is a-descendingly incom-
plete, is equal to the least cardinal o such that F is a™-incomplete, and it is a
measurable cardinal.

So the first x such that A, # () must be an uncountable measurable cardinal
(we will need only the fact that  is regular). From this point on, £ will denote
that cardinal. It is easy to prove that, if F' is x-descendingly incomplete, then
|Ax| > k. One can prove (see [3], page 291) the following proposition.

Proposition 4. If F is a nonprincipal s-complete ultrafilter over x, then
|Ag| > 27,

The result we are about to prove is weaker, but the proof gives a better
insight into the structure of elements of A,. We begin with a lemma analogous
to the Cantor Normal Form Theorem and emphasize that all operations that
appear in its formulation are ordinal operations.

Lemma 1. Every nonzero ordinal less than x* can be represented uniquely
in the form
KY By + K B+ -+ K97 B,

where kT > a9 > a1 > - >a, and 0 < B, < k for 0 < k < n.

If £ =kBy+ kP +- -+ k%3, is an ordinal represented as in the lemma
above, with & we shall denote kK 3y + k™ B + - - - + k*»—13,,_1. For every such
¢, we will call the set {£{ + k%3 : 0 < 3 < k} a level (of course, ¢ belongs to
this set). Thus, if £ and 7 are on the same level, then £ = 7 (but the opposite
does not hold).

Definition 2. Let p: ™ — ™ be a normal function. We define the sequence
of functions (pe : € < k™) in this way:

1) po = p;

2) pey1(a) is the a-th fixed point of pe;

3) if £ is a limit ordinal, pe () is the ath ordinal that is fixed for all p,, for
n <E&.

It is easy to prove that all the functions pe for £ < k™ are normal and map
k* to k7. We need some more information, contained in the following lemmas:

Lemma 2. The function pey; can be calculated in the following way:

1) pe+1(0) = sup,,,, O, where 6y =1 and 0,11 = pe(6,) for n < w;

2) pet1(a+1) = sup,,,, 0, where 0y = pey1(a) + 1 and 0,1 = pe(6,) for
n < w;

3) if a is a limit ordinal, then peyi(a) = supg,, pe+1(8)-
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Lemma 3. If § is a limit ordinal, then the function ps can be calculated in
the following way:

1) ps(0) = supg50¢, where 6y = 1, for § < & Og41 = pe(0e), and O =
sup,,¢ Oy for a limit cardinal &;

2) ps(a+1) = supg 5 0¢, where 0y = ps(a) + 1, for § < 0 O¢41 = pe(fe), and
b = sup, ¢ 0y for a limit cardinal § < J;

3) if a is a limit ordinal, then ps(a) = supg., ps(3)-

Before we begin with the proof of the main theorem, let us notice that if
p(0) > 0 then for every ¢ € ran (p) there is the greatest £ < xT such that
¢ € ran (pe). This is beacuse pe11(0) > pe(0) for all & < K+ (easy proof by
induction), so the sequence (p¢(0) : £ < k) is cofinal in x*. Knowing this, let
us call ¢ < kT a fixed point of order ¢ if ¢ belongs to ran (ps) \ ran (ps+1).

In the rest of this article, we will consider the function p : kKT — ™ given
by p(v) = k7. Obviously, it is normal and p(0) > 0, so all the preceding results
apply to it. Let us also introduce the abbreviation €5, = ps(c), and note that
K = e5 o for 6 > 0.

Theorem 1. If k is the least cardinal such that the ultrafilter F' over I is
kt-incomplete, then |A,| > k™.

Proof. We will construct, by recursion on &, a sequence (g : £ < k) of functions
such that Y,e = {i € I : g,,(i) < ge(i)} € F for n < £ < k™, thus obtaining an
ascending sequence <gg : £ < k™) of elements of A,. So let us define for every
¢ <kt an element g¢ € A, such that for all < ¢

(Ine) gn <" ¢
holds. First, let go be such that g{" is the minimal element of A, and for £ > 0:
1° If € = n+ 1, we define g¢(2) = g,(i) + 1.

2° If € =E4k%6, a = a1 +1 and f = 31 + 1, we define Ny = E+ RO+ KM p
for u < . By Proposition [ F' is xk-descendingly incomplete, so there is a
sequence (X, : ¢ < k) of elements of F' such that Xo = I, X, D X, for
G < G < kand ., Xc=0. Now let us define g¢(i) = gy, (i), where
p=min{¢{ < rk:i¢& X}

3° If £ = € + kB and f is a limit ordinal, then we define Ny = € + k% for
p < B and ge(i) = sup, g gn, (7). Since 3 < k and & is regular, we have
9¢(i) < k.

4° If € = £+ K™, o is a limit ordinal not fixed for p and 8 = 31 + 1, then we
define 1, = £+ KBy +K* for u < o, and let g¢ be defined by (Gn, 1< )
in the same way g, was defined by (g, : p < «). (This means that we
look up which of the rules 2° — 7° was used for constructing g, and use it
to construct g¢ too; this depends of the ordinal «. It does not mean that
we have to use all elements of the sequence (g,, : 1 < a).)
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If &€ =¢+ esw3, €5, is a fixed point of order §, where 6 = 6; + 1, § =
B1+1and v = v; + 1, then g¢ is defined in the following way: we set
N =&+ €551 + 0, where 0y = €5, + 1 and 0,41 = ps, (6,,) for n < w;
finally, let ge (i) = sup,, <., gn,, (2)-

If € = £+ e5.,3, es, is a fixed point of order &, where 6 is a limit ordinal,
B =p+1and v =1y +1, g¢ is defined in the following way: we set
Ny = £+ €501+ 0, where 6y = es,, +1, 0,41 = p.(0,) for p < 6 and, if
p < 4 is a limit ordinal, then 6, = sup.,, 0¢. Finally, let g¢ be defined by
the sequence (g, : u < J) in the same way we defined gs by the sequence
(g, : < d). Since es,, is a fixed point of order at least 4, it follows that
6 Z 66,1/ > €§,11 Z d.

If&E=¢€+ es v, es, is a fixed point of order ¢, where v is a limit ordinal
and B =61 +1, let n, = £+ eswB1 + es,p for p < v, and let g¢ be defined
by (gy, : # < v) in the same way as g, by (g, : ¢ < v). Note that
& > es,, > v, because otherwise ps(v) = e5,, = v would imply that es, is
a fixed point of order at least § + 1.

Let us show by induction on & > 0 that the conditions (I, ¢) are satisfied for all
n < &. Let us assume (I¢,) holds for { < n < & We will prove Y, ¢ € F for each
of the cases in the definition:
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Obvious.

Let us first prove that Y, ¢ € F for p < k. If Y = ﬂy<u Yy, n,, since
(I, n,) holds for v < p and F is s-complete, we have Y € F. But
Gn, (1) < gy, (@) for all i € Y and all v < p. It follows from the definition of
ge that Yy ¢ 2 X, NY, hence Y, ¢ € F. But { = sup, ., n,, so for every
n < § there is 7, > n, and by (I,,,,) we have Y;, € F' and therefore,
since Yye 2 Yy, NYy ¢, we conclude Y, € F.

For every p < £ we have (I, ,,.,) and, since g, (i) < g (i) for i € I, it

follows that Y, ¢ € F' as well. Now, as in case 2°, for every n < § we can
find 7, such that n <mn,, thus Y;, € F. This implies Y,¢ € F.

We can prove Y, ¢ € F in the same way we proved Y, € F, depending
of which of the cases of the construction was used in defining g, by g,
(1 < @), and proceed as in 2°.

By Lemma 2 { = sup,, ., 7, S0 the proof is analogous to case 3°.
By Lemma[31§ = sup,, 5 7,, so the proof is analogous to case 4°.

Analogous to 4°, using Lemmas 2] and [3 a

It is easy to see that a similar construction can be done in any Ag for 3 such
that cf(8) = &:
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Corollary. If x is the least ordinal such that the ultrafilter F is x*-incomplete
and cf(3) = k, then |Ag| > kT.

Adding to results from [5], we get another direct corollary:

Corollary. Let s be the least ordinal such that the ultrafilter F is x*-incom-
plete, cf(8) = K, and B = {t¢ : £ < a} be a branch of a tree T'. Then there are
at least k* elements in T?/F greater than all t¢ for ¢ < 3 and (if 3 < «) less
than tg.
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