Novi Sad J. Math. Vol. 38, No. 1, 2008, 177-181

AN APPLICATION OF HIGHER ORDER FIXED POINTS OF NORMAL FUNCTIONS

Boris Šobot¹

Abstract. We define higher order fixed points of normal functions, describe them and apply to obtain a constructive proof that, if κ is the least ordinal such that the ultrapower κ^I/F is non-trivial, then that ultrapower has at least κ^+ elements.

AMS Mathematics Subject Classification (2000): 03E04, 03E20, 03C20. Key words and phrases: ultrapower, normal function

Let F be a nonprincipal ultrafilter over a set I. By α^I/F we denote the ultrapower $\prod_{i \in I} \alpha/F$. The element of α^I/F which is the equivalence class of a

function f will be denoted by f^F .

It is well known (see [1], page 134) that an ultraproduct of infinite ordinals modulo ultrafilter F is well-ordered iff F is σ -complete. Thus throughout this work we suppose that F is a fixed σ -complete ultrafilter over some I. The following proposition is easy to prove.

Proposition 1. If $\alpha < \beta$, then α^I/F is isomorphic to an initial segment of β^I/F .

Thus we can identify α^{I}/F with an initial segment of β^{I}/F . Therefore for $\alpha \in Ord$ we let, as in [4],

$$A_{\alpha} = (\alpha^{I}/F) \setminus \bigcup_{\beta < \alpha} A_{\beta}.$$

Obviously, $A_{\alpha+1}$ has exactly one element for $\alpha \in Ord$; it is f_{α}^{F} , where $f_{\alpha}(i) = \alpha$ for $i \in I$. Hence we will be interested only in the case when α is a limit ordinal. Also, the described element f_{α}^{F} is the image of α under the natural elementary embedding $d : \beta \to \beta^{I}/F$ (see [2]), and thus every β^{I}/F contains a copy of β . The main question we consider here is: how many more elements can β^{I}/F have, and on which A_{α} levels?

Definition 1. Let α be a limit ordinal. An ultrafilter F over I is α -descendingly incomplete if there is a sequence $\langle X_{\beta} : \beta < \alpha \rangle$ of elements of F such that $X_{\beta_1} \supseteq X_{\beta_2}$ for $\beta_1 < \beta_2 < \alpha$ and $\bigcap_{\beta < \alpha} X_{\beta} = \emptyset$; otherwise it is α -descendingly complete.

 $^{^1 \}rm Department$ of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: sobot@im.ns.ac.yu

Proposition 2. If α is a limit ordinal, then $A_{\alpha} = \emptyset$ iff F is $cf(\alpha)$ -descendingly complete.

But it is known (see [1], page 114) that the following proposition holds.

Proposition 3. The least ordinal α , such that F is α -descendingly incomplete, is equal to the least cardinal α such that F is α^+ -incomplete, and it is a measurable cardinal.

So the first κ such that $A_{\kappa} \neq \emptyset$ must be an uncountable measurable cardinal (we will need only the fact that κ is regular). From this point on, κ will denote that cardinal. It is easy to prove that, if F is κ -descendingly incomplete, then $|A_{\kappa}| \geq \kappa$. One can prove (see [3], page 291) the following proposition.

Proposition 4. If F is a nonprincipal κ -complete ultrafilter over κ , then $|A_{\kappa}| \geq 2^{\kappa}$.

The result we are about to prove is weaker, but the proof gives a better insight into the structure of elements of A_{κ} . We begin with a lemma analogous to the Cantor Normal Form Theorem and emphasize that all operations that appear in its formulation are ordinal operations.

Lemma 1. Every nonzero ordinal less than κ^+ can be represented uniquely in the form

 $\kappa^{\alpha_0}\beta_0 + \kappa^{\alpha_1}\beta_1 + \dots + \kappa^{\alpha_n}\beta_n,$

where $\kappa^+ > \alpha_0 > \alpha_1 > \cdots > \alpha_n$ and $0 < \beta_k < \kappa$ for $0 \le k \le n$.

If $\xi = \kappa^{\alpha_0}\beta_0 + \kappa^{\alpha_1}\beta_1 + \dots + \kappa^{\alpha_n}\beta_n$ is an ordinal represented as in the lemma above, with $\bar{\xi}$ we shall denote $\kappa^{\alpha_0}\beta_0 + \kappa^{\alpha_1}\beta_1 + \dots + \kappa^{\alpha_{n-1}}\beta_{n-1}$. For every such ξ , we will call the set $\{\bar{\xi} + \kappa^{\alpha_n}\beta : 0 < \beta < \kappa\}$ a level (of course, ξ belongs to this set). Thus, if ξ and η are on the same level, then $\bar{\xi} = \bar{\eta}$ (but the opposite does not hold).

Definition 2. Let $p: \kappa^+ \to \kappa^+$ be a normal function. We define the sequence of functions $\langle p_{\xi} : \xi < \kappa^+ \rangle$ in this way:

1) $p_0 = p;$

2) $p_{\xi+1}(\alpha)$ is the α -th fixed point of p_{ξ} ;

3) if ξ is a limit ordinal, $p_{\xi}(\alpha)$ is the α th ordinal that is fixed for all p_{η} for $\eta < \xi$.

It is easy to prove that all the functions p_{ξ} for $\xi < \kappa^+$ are normal and map κ^+ to κ^+ . We need some more information, contained in the following lemmas:

Lemma 2. The function $p_{\xi+1}$ can be calculated in the following way:

1) $p_{\xi+1}(0) = \sup_{n < \omega} \theta_n$, where $\theta_0 = 1$ and $\theta_{n+1} = p_{\xi}(\theta_n)$ for $n < \omega$; 2) $p_{\xi+1}(\alpha+1) = \sup_{n < \omega} \theta_n$, where $\theta_0 = p_{\xi+1}(\alpha) + 1$ and $\theta_{n+1} = p_{\xi}(\theta_n)$ for $n < \omega$;

3) if α is a limit ordinal, then $p_{\xi+1}(\alpha) = \sup_{\beta < \alpha} p_{\xi+1}(\beta)$.

Lemma 3. If δ is a limit ordinal, then the function p_{δ} can be calculated in the following way:

1) $p_{\delta}(0) = \sup_{\xi < \delta} \theta_{\xi}$, where $\theta_0 = 1$, for $\xi < \delta \ \theta_{\xi+1} = p_{\xi}(\theta_{\xi})$, and $\theta_{\xi} = \sup_{\eta < \xi} \theta_{\eta}$ for a limit cardinal ξ ;

2) $p_{\delta}(\alpha + 1) = \sup_{\xi < \delta} \theta_{\xi}$, where $\theta_0 = p_{\delta}(\alpha) + 1$, for $\xi < \delta \ \theta_{\xi+1} = p_{\xi}(\theta_{\xi})$, and $\theta_{\xi} = \sup_{\eta < \xi} \theta_{\eta}$ for a limit cardinal $\xi < \delta$;

3) if α is a limit ordinal, then $p_{\delta}(\alpha) = \sup_{\beta < \alpha} p_{\delta}(\beta)$.

Before we begin with the proof of the main theorem, let us notice that if p(0) > 0 then for every $\zeta \in \operatorname{ran}(p)$ there is the greatest $\xi < \kappa^+$ such that $\zeta \in \operatorname{ran}(p_{\xi})$. This is beacuse $p_{\xi+1}(0) > p_{\xi}(0)$ for all $\xi < \kappa^+$ (easy proof by induction), so the sequence $\langle p_{\xi}(0) : \xi < \kappa^+ \rangle$ is cofinal in κ^+ . Knowing this, let us call $\zeta < \kappa^+$ a fixed point of order δ if ζ belongs to $\operatorname{ran}(p_{\delta}) \setminus \operatorname{ran}(p_{\delta+1})$.

In the rest of this article, we will consider the function $p: \kappa^+ \to \kappa^+$ given by $p(\gamma) = \kappa^{\gamma}$. Obviously, it is normal and p(0) > 0, so all the preceding results apply to it. Let us also introduce the abbreviation $e_{\delta,\alpha} = p_{\delta}(\alpha)$, and note that $\kappa^{e_{\delta,\alpha}} = e_{\delta,\alpha}$ for $\delta > 0$.

Theorem 1. If κ is the least cardinal such that the ultrafilter F over I is κ^+ -incomplete, then $|A_{\kappa}| \geq \kappa^+$.

Proof. We will construct, by recursion on ξ , a sequence $\langle g_{\xi} : \xi < \kappa^+ \rangle$ of functions such that $Y_{\eta\xi} = \{i \in I : g_{\eta}(i) < g_{\xi}(i)\} \in F$ for $\eta < \xi < \kappa^+$, thus obtaining an ascending sequence $\langle g_{\xi}^F : \xi < \kappa^+ \rangle$ of elements of A_{κ} . So let us define for every $\xi < \kappa^+$ an element $g_{\xi} \in A_{\kappa}$ such that for all $\eta < \xi$

$$(\mathbf{I}_{\eta,\xi}) \qquad \qquad g_{\eta} <^* g_{\xi}$$

holds. First, let g_0 be such that g_0^F is the minimal element of A_{κ} , and for $\xi > 0$:

- 1° If $\xi = \eta + 1$, we define $g_{\xi}(i) = g_{\eta}(i) + 1$.
- 2° If $\xi = \bar{\xi} + \kappa^{\alpha}\beta$, $\alpha = \alpha_1 + 1$ and $\beta = \beta_1 + 1$, we define $\eta_{\mu} = \bar{\xi} + \kappa^{\alpha}\beta_1 + \kappa^{\alpha_1}\mu$ for $\mu < \kappa$. By Proposition 3 *F* is κ -descendingly incomplete, so there is a sequence $\langle X_{\zeta} : \zeta < \kappa \rangle$ of elements of *F* such that $X_0 = I$, $X_{\zeta_1} \supseteq X_{\zeta_2}$ for $\zeta_1 < \zeta_2 < \kappa$ and $\bigcap_{\zeta < \kappa} X_{\zeta} = \emptyset$. Now let us define $g_{\xi}(i) = g_{\eta_{\mu}}(i)$, where $\mu = \min\{\zeta < \kappa : i \notin X_{\zeta}\}.$
- 3° If $\xi = \bar{\xi} + \kappa^{\alpha}\beta$ and β is a limit ordinal, then we define $\eta_{\mu} = \bar{\xi} + \kappa^{\alpha}\mu$ for $\mu < \beta$ and $g_{\xi}(i) = \sup_{\mu < \beta} g_{\eta_{\mu}}(i)$. Since $\beta < \kappa$ and κ is regular, we have $g_{\xi}(i) < \kappa$.
- 4° If $\xi = \bar{\xi} + \kappa^{\alpha}\beta$, α is a limit ordinal not fixed for p and $\beta = \beta_1 + 1$, then we define $\eta_{\mu} = \bar{\xi} + \kappa^{\alpha}\beta_1 + \kappa^{\mu}$ for $\mu < \alpha$, and let g_{ξ} be defined by $\langle g_{\eta_{\mu}} : \mu < \alpha \rangle$ in the same way g_{α} was defined by $\langle g_{\mu} : \mu < \alpha \rangle$. (This means that we look up which of the rules 2° 7° was used for constructing g_{α} and use it to construct g_{ξ} too; this depends of the ordinal α . It does not mean that we have to use all elements of the sequence $\langle g_{\eta_{\mu}} : \mu < \alpha \rangle$.)

- 5° If $\xi = \bar{\xi} + e_{\delta,\nu}\beta$, $e_{\delta,\nu}$ is a fixed point of order δ , where $\delta = \delta_1 + 1$, $\beta = \beta_1 + 1$ and $\nu = \nu_1 + 1$, then g_{ξ} is defined in the following way: we set $\eta_n = \bar{\xi} + e_{\delta,\nu}\beta_1 + \theta_n$, where $\theta_0 = e_{\delta,\nu_1} + 1$ and $\theta_{n+1} = p_{\delta_1}(\theta_n)$ for $n < \omega$; finally, let $g_{\xi}(i) = \sup_{n < \omega} g_{\eta_n}(i)$.
- 6° If $\xi = \bar{\xi} + e_{\delta,\nu}\beta$, $e_{\delta,\nu}$ is a fixed point of order δ , where δ is a limit ordinal, $\beta = \beta_1 + 1$ and $\nu = \nu_1 + 1$, g_{ξ} is defined in the following way: we set $\eta_{\mu} = \bar{\xi} + e_{\delta,\nu}\beta_1 + \theta_{\mu}$, where $\theta_0 = e_{\delta,\nu_1} + 1$, $\theta_{\mu+1} = p_{\mu}(\theta_{\mu})$ for $\mu < \delta$ and, if $\mu < \delta$ is a limit ordinal, then $\theta_{\mu} = \sup_{\xi < \mu} \theta_{\xi}$. Finally, let g_{ξ} be defined by the sequence $\langle g_{\eta_{\mu}} : \mu < \delta \rangle$ in the same way we defined g_{δ} by the sequence $\langle g_{\mu} : \mu < \delta \rangle$. Since e_{δ,ν_1} is a fixed point of order at least δ , it follows that $\xi \ge e_{\delta,\nu} > e_{\delta,\nu_1} \ge \delta$.
- 7° If $\xi = \bar{\xi} + e_{\delta,\nu}\beta$, $e_{\delta,\nu}$ is a fixed point of order δ , where ν is a limit ordinal and $\beta = \beta_1 + 1$, let $\eta_{\mu} = \bar{\xi} + e_{\delta,\nu}\beta_1 + e_{\delta,\mu}$ for $\mu < \nu$, and let g_{ξ} be defined by $\langle g_{\eta_{\mu}} : \mu < \nu \rangle$ in the same way as g_{ν} by $\langle g_{\mu} : \mu < \nu \rangle$. Note that $\xi \ge e_{\delta,\nu} > \nu$, because otherwise $p_{\delta}(\nu) = e_{\delta,\nu} = \nu$ would imply that $e_{\delta,\nu}$ is a fixed point of order at least $\delta + 1$.

Let us show by induction on $\xi > 0$ that the conditions $(I_{\eta,\xi})$ are satisfied for all $\eta < \xi$. Let us assume $(I_{\zeta,\eta})$ holds for $\zeta < \eta < \xi$. We will prove $Y_{\eta\xi} \in F$ for each of the cases in the definition:

- 1° Obvious.
- 2° Let us first prove that $Y_{\eta_{\mu}\xi} \in F$ for $\mu < \kappa$. If $Y = \bigcap_{\nu < \mu} Y_{\eta_{\nu}\eta_{\mu}}$, since $(I_{\eta_{\nu},\eta_{\mu}})$ holds for $\nu < \mu$ and F is κ -complete, we have $Y \in F$. But $g_{\eta_{\nu}}(i) < g_{\eta_{\mu}}(i)$ for all $i \in Y$ and all $\nu < \mu$. It follows from the definition of g_{ξ} that $Y_{\eta_{\mu}\xi} \supseteq X_{\mu} \cap Y$, hence $Y_{\eta_{\mu}\xi} \in F$. But $\xi = \sup_{\mu < \kappa} \eta_{\mu}$, so for every $\eta < \xi$ there is $\eta_{\mu} > \eta$, and by $(I_{\eta,\eta_{\mu}})$ we have $Y_{\eta\eta_{\mu}} \in F$ and therefore, since $Y_{\eta\xi} \supseteq Y_{\eta\eta_{\mu}} \cap Y_{\eta_{\mu}\xi}$, we conclude $Y_{\eta\xi} \in F$.
- 3° For every $\mu < \xi$ we have $(I_{\eta_{\mu},\eta_{\mu+1}})$ and, since $g_{\eta_{\mu+1}}(i) \leq g_{\xi}(i)$ for $i \in I$, it follows that $Y_{\eta_{\mu}\xi} \in F$ as well. Now, as in case 2°, for every $\eta < \xi$ we can find η_{μ} such that $\eta < \eta_{\mu}$, thus $Y_{\eta\eta_{\mu}} \in F$. This implies $Y_{\eta\xi} \in F$.
- 4° We can prove $Y_{\eta_{\mu}\xi} \in F$ in the same way we proved $Y_{\mu\alpha} \in F$, depending of which of the cases of the construction was used in defining g_{α} by g_{μ} $(\mu < \alpha)$, and proceed as in 2°.
- 5° By Lemma 2 $\xi = \sup_{n < \omega} \eta_n$, so the proof is analogous to case 3°.
- 6° By Lemma 3 $\xi = \sup_{\mu < \delta} \eta_{\mu}$, so the proof is analogous to case 4°.
- 7° Analogous to 4° , using Lemmas 2 and 3.

It is easy to see that a similar construction can be done in any A_{β} for β such that $cf(\beta) = \kappa$:

Corollary. If κ is the least ordinal such that the ultrafilter F is κ^+ -incomplete and $cf(\beta) = \kappa$, then $|A_{\beta}| \ge \kappa^+$.

Adding to results from [5], we get another direct corollary:

Corollary. Let κ be the least ordinal such that the ultrafilter F is κ^+ -incomplete, $\operatorname{cf}(\beta) = \kappa$, and $B = \{t_{\xi} : \xi < \alpha\}$ be a branch of a tree T. Then there are at least κ^+ elements in T^I/F greater than all t_{ξ} for $\xi < \beta$ and (if $\beta < \alpha$) less than t_{β} .

References

- [1] Bell J. L. Slomson A. B. Models and Ultraproducts: an introduction. North-Holland, Amsterdam, 1969.
- [2] Chang C. C. Keisler H. J. Model Theory. Amsterdam: North-Holland, 1973.
- [3] Jech T. Set Theory, 3rd Edition. Berlin: Springer, 2002.
- [4] Jovanović A. Ultraproducts of Well Orders. Publications de l'Institut Matématique, nouvelle série 27 (1980), 99-102.
- [5] Šobot B. Ultraproducts of trees. In: Extended abstracts of 4th Panhellenic Logic Symposium, Thessaloniki, 2003.

Received by the editors May 15, 2008