ON ALMOST NEARLY CONTINUITY WITH REFERENCE TO MULTIFUNCTIONS IN BITOPOLOGICAL SPACES

Andrzej Rychlewicz ${ }^{11}$

Abstract

An almost nearly continuity and almost nearly quasicontinuity have been investigated in a bitopological case. Several properties of almost upper (lower) nearly quasi-continuous and almost nearly quasi-continuous multifunctions have been obtained.

AMS Mathematics Subject Classification (2000): 54A10, 54C08, 54C60
Key words and phrases: Nearly continuous multifunction, nearly quasicontinuous multifunction, nearly compact space, N-closed set, multifunction, bitopological space

1. Introduction and Preliminaries

A lot of forms of continuity has been investigated by many mathematicians. The term "nearly continuous" was used by Ptak in 1958 (see 7) but an "almost continuity" term one can find in 3. In 2004, the notion of almost nearly continuity of multifunctions was introduced in [2], while the nearly quasi-continuity of multifunctions was introduced by the author in [8].

The purpose of the present paper is to consider almost continuity and almost quasi-continuity for multifunction between topological space (which is domain) and bitopological space. In section 2 are compiled some basic facts connected with almost nearly continuity while almost nearly quasi-continuity has been investigated in section 3 .

In what follows, $\mathrm{cl}_{\tau}(A)$ and $\operatorname{int}_{\tau}(A)$ will represent the closure and interior respectively of a subset A with respect to topology τ.

A set A in a topological space X will be termed semi-open (semi-closed) if $A \subset \operatorname{cl}(\operatorname{int}(A)),(A \subset \operatorname{int}(\operatorname{cl}(A))$. It is known that the arbitrary union of semiopen sets is a semi-open set. The notion of semi-open sets was introduced by N. Levine (see [4]).

A subset of a bitopological space $\left(Y, \tau_{1}, \tau_{2}\right)$ is said to be $\tau_{1} \tau_{2}$-regularly open (closed) if it is the τ_{1}-interior of some τ_{2}-closed set (τ_{1}-closure of some τ_{2}-open set) or equivalently, if it is the τ_{1}-interior of its own τ_{2}-closure (the τ_{1}-closure of its own τ_{2}-interior) (see for instance [9] and [5]).

A bitopological space $\left(Y, \tau_{1}, \tau_{2}\right)$ is said to be $\tau_{1} \tau_{2}$-nearly compact if for any τ_{1}-open cover \mathcal{P} of Y there exists a finite subfamily $\mathcal{R} \subset \mathcal{P}$ such that $Y=$

[^0]$\bigcup_{U \in \mathcal{R}} \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(U)\right)$ or, equivalently, if every cover of the space by $\tau_{1} \tau_{2}$-regularly open sets has a finite subcover (see [5).

In order to localize the concept of nearly-compactness in bitopological space we can define $\tau_{1} \tau_{2}$-N-closed sets.

A subset A of a bitopological space $\left(Y, \tau_{1}, \tau_{2}\right)$ is $\tau_{1} \tau_{2}-N$-closed if for any cover of A by τ_{1}-open sets there exists a finite subcolection the τ_{1}-interiors of the $\tau_{2}{ }^{-}$ closures of which cover A or equivalently if for any cover of A by $\tau_{1} \tau_{2}$-regularly open sets, there exists a finite subcover. Of course, a bitopological space Y is $\tau_{1} \tau_{2}$-nearly compact iff it is $\tau_{1} \tau_{2}$-N-closed.

A notion of N -closed sets (in usual topological space) was introduced by D. Carnahan (see [1]).

Lemma 1.1. Let G be a τ_{1}-open subset of bitopological space $\left(Y, \tau_{1}, \tau_{2}\right)$ such that $Y \backslash G$ is a $\tau_{1} \tau_{2}$ - N-closed set. Then $\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)$ is a $\tau_{1} \tau_{2}$-regularly open set having $\tau_{1} \tau_{2}-N$-closed complement.

Proof. It is evident that $\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)$ is a $\tau_{1} \tau_{2}$-regularly open set. Denote $K=Y \backslash \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)$. Of course, $K \subset Y \backslash G$. Let $\left\{G_{t}\right\}_{t \in T}$ be a τ_{1}-open cover of the set K. Then $\left\{G_{t}\right\}_{t \in T} \cup(Y \backslash K)$ is an open cover of the set $Y \backslash G$. Then there exist indexes t_{1}, \ldots, t_{k} such that

$$
Y \backslash G \subset \bigcup_{i=1}^{k} \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{t_{i}}\right)\right) \cup \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(Y \backslash K)\right)
$$

As $\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(Y \backslash K)\right)=\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)\right)=\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)\right.$ then $K \cap$ $\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(Y \backslash K)\right)=\emptyset$. It was shown that $K \subset \bigcup_{i=1}^{k} \operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{t_{i}}\right)\right)$. The proof of $\tau_{1} \tau_{2}$-N-closedness of the set K is finished.

A multifunction $F: X \rightarrow\left(Y, \tau_{1} \tau_{2}\right)$ is said to be $\tau_{1} \tau_{2}$-lower (upper) almost nearly continuous at a point $x \in X$ if for any set $V \in \tau_{1}$ having $\tau_{1} \tau_{2}$-N-closed complement such that $x \in F^{-}(V)\left(x \in F^{+}(V)\right)$ there exists an open neighbourhood U of x such that $U \subset F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)\right)\left(U \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)\right)\right)$. A multifunction F is $\tau_{1} \tau_{2}$-lower (upper) almost nearly continuous if it is $\tau_{1} \tau_{2}$-lower (upper) almost nearly continuous at any point $x \in X$. A notion of lower (upper) almost nearly continuous multifunction with reference to topological spaces was introduced in [2] and was also investigated by the author in 8 .

We call a multifunction $F: X \rightarrow Y \tau_{1} \tau_{2}$-almost nearly continuous at a point $x \in X$ if for any sets $V_{1}, V_{2} \in \tau_{1}$ having $\tau_{1} \tau_{2}$-N-closed complement such that $x \in F^{+}\left(V_{1}\right)$ and $x \in F^{-}\left(V_{2}\right)$ there exists an open neighbourhood U of x such that $U \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(V_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(V_{2}\right)\right)\right)$. We define a $\tau_{1} \tau_{2}$-almost nearly continuous multifunction at any point $x \in X$ to be $\tau_{1} \tau_{2}$-almost nearly continuous multifunction.

Let us recall the notions of quasi-continuous (lower and upper) and quasicontinuous multifunctions.
F is called upper (lower) quasi-continuous at a point $x \in X$ if for any open subset V of Y such that $x \in F^{+}(V)\left(x \in F^{-}(V)\right)$ and for any open
neighbourhood U of x there exists a nonempty open set $W \subset U$ such that $W \subset F^{+}(V)\left(W \subset F^{-}(V)\right)$ (see [6]). We call F the quasi-continuous at a point $x \in X$ if for any open subsets V_{1} and V_{2} of Y such that $x \in F^{+}\left(V_{1}\right) \cap F^{-}\left(V_{2}\right)$ and for any open neighbourhood U of x there exists a nonempty open set $W \subset U$ such that $U \subset F^{+}\left(V_{1}\right) \cap F^{-}\left(V_{2}\right)$ (see [6]). A multifunction F is said to be quasicontinuous (lower and upper) and quasi-continuous multifunctions if F has this property at any point of X.

Now we are ready to introduce the notions of a $\tau_{1} \tau_{2}$-almost nearly quasicontinuous and upper (lower) almost nearly quasi-continuous multifunction.

A multifunction F is said to be $\tau_{1} \tau_{2}$-upper (lower) almost nearly quasicontinuous at a point $x \in X$ if for any subset $V \in \tau_{1}$ of Y having $\tau_{1} \tau_{2}$ - N closed complement such that $x \in F^{+}(V)\left(x \in F^{-}(V)\right)$ and for any open neighbourhood U of x there exists a nonempty open set $W \subset U$ such that $W \subset$ $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(V)\right)\right)\left(W \subset F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(V)\right)\right)\right)$. We call a multifunction $F \tau_{1} \tau_{2}{ }^{-}$ almost nearly quasi-continuous at a point $x \in X$ if for any subsets $V_{1}, V_{2} \in \tau_{1}$ of Y having $\tau_{1} \tau_{2}-N$-closed complement such that $x \in F^{+}\left(V_{1}\right) \cap F^{-}\left(V_{2}\right)$ and for any open neighbourhood U of x there exists a nonempty open set $W \subset U$ such that $W \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(V_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(V_{2}\right)\right)\right)$. A multifunction F is said to be a $\tau_{1} \tau_{2}$-almost nearly quasi-continuous ($\tau_{1} \tau_{2}$-upper almost nearly quasi-continuous, $\tau_{1} \tau_{2}$-lower almost nearly quasi-continuous) multifunction if F has this property at any point of X.

2. Almost nearly continuity

Theorem 2.1. Let $F: X \rightarrow\left(Y, \tau_{1}, \tau_{2}\right)$ be a multifunction. The following statements are equivalent.
(a) F is $\tau_{1} \tau_{2}$-upper almost nearly continuous.
(b) For any $x \in X$ and for any $\tau_{1} \tau_{2}$-regularly open set G having $\tau_{1} \tau_{2}-N$ closed complement such that $F(x) \subset G$ there exists an open neighbourhood U of x such that $F(U) \subset G$.
(c) For any $x \in X$ and for any τ_{1}-closed $\tau_{1} \tau_{2}$ - N-closed set K such that $x \in F^{+}(Y \backslash K)$ there exists a closed set $H \neq X$ such that $x \in X \backslash H$ and $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right) \subset H$.
(d) $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)\right)$ is an open set for any τ_{1}-open set $V \subset Y$ having $\tau_{1} \tau_{2}-N$-closed complement.
(e) $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right)$ is a closed set for any τ_{1}-closed $\tau_{1} \tau_{2}-N$-closed set K.
(f) $F^{+}(G)$ is an open set for any $\tau_{1} \tau_{2}$-regularly open set G having $\tau_{1} \tau_{2}-N$ closed complement.
(g) $F^{-}(K)$ is a closed set for any $\tau_{1} \tau_{2}$-regularly closed $\tau_{1} \tau_{2}-N$-closed set K.

Proof. (a) \Rightarrow (b). Let $x \in X$ and G be any $\tau_{1} \tau_{2}$-regularly open set having $\tau_{1} \tau_{2}$-N-closed complement such that $F(x) \subset G$. Because F is $\tau_{1} \tau_{2}$-upper almost nearly continuous at x and G is $\tau_{1} \tau_{2}$-regularly open (and τ_{1}-open at the same time) set there exists an open neighbourhood U of x such that $U \subset$ $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)\right)=F^{+}(G)$. This gives an inclusion $F(U) \subset G$.
(b) \Rightarrow (a). Let $x \in X$ and V be a τ_{1}-open set having $\tau_{1} \tau_{2}$-N-closed complement such that $x \in F^{+}(V)$. By Lemma $1.1 \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)$ is a $\tau_{1} \tau_{2^{-}}$ regularly open set having $\tau_{1} \tau_{2}$ - N -closed complement. It is obvious that $F(x) \subset$ $\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)$. Under assumption there exists an open neighbourhood U of x such that $F(U) \subset \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)$. This clearly forces $U \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)\right)$.
(a) $\Rightarrow(\mathrm{c})$. Let $x \in X$ and K be a τ_{1}-closed $\tau_{1} \tau_{2}$ - N -closed set such that $x \in$ $F^{+}(Y \backslash K)$. By the above and assumption there exists an open neighbourhood U of x such that $U \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(Y \backslash K)\right)\right)=F^{+}\left(Y \backslash \operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right)=X \backslash$ $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right)$. Denoting $H=X \backslash U$ we have that $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right) \subset H$. It is evident that H is a closed proper subset of X.
(c) \Rightarrow (a). Let $x \in X$ and V be a τ_{1}-open set having $\tau_{1} \tau_{2}$-N-closed complement such that $x \in F^{+}(V)$. Let us denote $K=Y \backslash V$. It is clear that K is a τ_{1}-closed $\tau_{1} \tau_{2}$ - N-closed set such that $x \in F^{+}(Y \backslash K)$. By the assumption there exists a closed set $H \neq X$ such that $x \in X \backslash H$ and $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right) \subset$ H. An analysis similar to that in the proof of $(a) \Rightarrow(c)$ shows that $U \subset$ $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)\right)$, where $U=X \backslash H$ is an open set containing x.
(a) $\Rightarrow(\mathrm{d})$. Let $V \subset Y$ be a τ_{1}-open set having $\tau_{1} \tau_{2}$-N-closed complement. Let $x \in F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(V)\right)\right)$. Clearly, $\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(V)\right) \in \tau_{1}$ and has $\tau_{1} \tau_{2^{-}}$ N -closed complement. By the definition of $\tau_{1} \tau_{2}$-upper almost nearly continuity at a point x, there exists an open neighbourhood U of x such that $U \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(V)\right)\right)\right)\right)=F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(V)\right)\right)$. Since x was arbitrary chosen, the set $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)\right)$ is an open set.
(d) \Rightarrow (a). Let $x \in X$ and V be a τ_{1}-open set having $\tau_{1} \tau_{2}$-N-closed complement such that $x \in F^{+}(V)$. Under the assumption the set $U=F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(V)\right)\right)$ is an open set containing x.
(d) $\Rightarrow(\mathrm{e})$. Let K be a τ_{1}-closed $\tau_{1} \tau_{2}$-N-closed set. Therefore $Y \backslash K$ is τ_{1}-open and has $\tau_{1} \tau_{2}$-N-closed complement. Let us observe that $U=F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(Y \backslash\right.\right.$ $K))=X \backslash F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right)$. The above equality and openness of the set U imply that the set $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right)$ is closed.
$(\mathrm{e}) \Rightarrow(\mathrm{d})$. The proof is similar to the above.
(d) \Rightarrow (f). Let G be a $\tau_{1} \tau_{2}$-regularly open set having $\tau_{1} \tau_{2}$-N-closed complement. Then $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)\right)=F^{+}(G)$ is an open set.
$(\mathrm{f}) \Rightarrow(\mathrm{d})$. Let V be a τ_{1}-open set having $\tau_{1} \tau_{2}$ - N -closed complement. It is clear that it suffices to observe that the set $\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)$ is $\tau_{1} \tau_{2}$-regularly open set having $\tau_{1} \tau_{2}$-N-closed complement.

The proof of equivalence (e) $\Leftrightarrow(\mathrm{g})$ runs as the proof of $(\mathrm{d}) \Leftrightarrow(\mathrm{f})$

Theorem 2.2. Let $F: X \rightarrow\left(Y, \tau_{1}, \tau_{2}\right)$ be a multifunction. The following statements are equivalent.
(a) F is $\tau_{1} \tau_{2}$-lower almost nearly continuous.
(b) For any $x \in X$ and for any $\tau_{1} \tau_{2}$-regularly open set G having $\tau_{1} \tau_{2}-N$ closed complement such that $F(x) \cap G \neq \emptyset$ there exists an open neighbourhood U of x such that $F(z) \cap G \neq \emptyset$ for any $z \in U$.
(c) For any $x \in X$ and for any τ_{1}-closed $\tau_{1} \tau_{2}$ - N-closed set K such that $x \in F^{-}(Y \backslash K)$ there exists a closed set $H \neq X$ such that $x \in X \backslash H$ and
$F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right) \subset H$.
(d) $F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(V)\right)\right)$ is an open set for any τ_{1}-open set $V \subset Y$ having $\tau_{1} \tau_{2}-N$-closed complement.
(e) $F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right)$ is a closed set for any τ_{1}-closed $\tau_{1} \tau_{2}-N$-closed set K.
(f) $F^{-}(G)$ is an open set for any τ_{1}-open $\tau_{1} \tau_{2}$-regularly open set G having $\tau_{1} \tau_{2}-N$-closed complement.
(g) $F^{+}(K)$ is a closed set for any $\tau_{1} \tau_{2}$-regularly closed $\tau_{1} \tau_{2}-N$-closed set K.

Theorem 2.3. Let $F: X \rightarrow\left(Y, \tau_{1}, \tau_{2}\right)$ be a multifunction. The following statements are equivalent.
(a) F is $\tau_{1} \tau_{2}$-almost nearly continuous.
(b) For any $x \in X$ and for any $\tau_{1} \tau_{2}$-regularly open sets G_{1}, G_{2} having $\tau_{1} \tau_{2}$ -N-closed complement such that $F(x) \subset G_{1}$ and $F(x) \cap G_{2} \neq \emptyset$ there exists an open neighbourhood U of x such that $F(z) \subset G_{1}$ and $F(z) \cap G_{2} \neq \emptyset$ for any $z \in U$.
(c) For any $x \in X$ and for any τ_{1}-closed $\tau_{1} \tau_{2}-N$-closed sets K_{1}, K_{2} such that $x \in F^{+}\left(Y \backslash K_{1}\right) \cap F^{-}\left(Y \backslash K_{2}\right)$ there exists a closed set $H \neq X$ such that $x \in X \backslash H$ and $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{1}\right)\right)\right) \cup F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{2}\right)\right)\right) \subset H$.
(d) $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(V_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(V_{2}\right)\right)\right)$ is an open set for any τ_{1}-open sets $V_{1}, V_{2} \subset Y$ having $\tau_{1} \tau_{2}$ - N-closed complement.
(e) $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{1}\right)\right)\right) \cup F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{2}\right)\right)\right)$ is a closed set for any τ_{1}-closed $\tau_{1} \tau_{2}-N$-closed sets K_{1}, K_{2}.
(f) $F^{+}\left(G_{1}\right) \cup F^{-}\left(G_{2}\right)$ is an open set for any $\tau_{1} \tau_{2}$-regularly open sets G_{1}, G_{2} having closed $\tau_{1} \tau_{2}-N$-closed complement.
(g) $F^{-}\left(K_{1}\right) \cap F^{+}\left(K_{2}\right)$ is a closed set for any $\tau_{1} \tau_{2}$-regularly closed $\tau_{1} \tau_{2}-N$ closed sets K_{1}, K_{2}.
Proof. (a) \Rightarrow (b). Let $x \in X$ and G_{1}, G_{2} be $\tau_{1} \tau_{2}$-regularly open subsets of Y having $\tau_{1} \tau_{2}$-N-closed complement such that $F(x) \subset G_{1}$ and $F(x) \cap G_{2} \neq \emptyset$. By $\tau_{1} \tau_{2}$-almost nearly continuity there exists an open neighbourhood U of x such that $U \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)=F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$.
(b) \Rightarrow (a). It is sufficient to observe that for any $\tau_{1} \tau_{2}$-regularly open sets G_{1}, G_{2} having $\tau_{1} \tau_{2}$-N-closed complement the sets int $\tau_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{1}\right)\right), \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{2}\right)\right)$ are $\tau_{1} \tau_{2}$-regularly open having $\tau_{1} \tau_{2}$ - N -closed complement (see Lemma 1.1).
(a) \Rightarrow (c). Let $x \in X$ and K_{1}, K_{2} be τ_{1}-closed $\tau_{1} \tau_{2}$-N-closed sets such that $x \in F^{+}\left(Y \backslash K_{1}\right) \cap F^{-}\left(Y \backslash K_{2}\right)$. Therefore $Y \backslash K_{1}, Y \backslash K_{2}$ are τ_{1}-open sets having $\tau_{1} \tau_{2}$-N-closed complement. Under assumptions there exists an open neighbourhood U of x such that $U \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(Y \backslash K_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(Y \backslash K_{2}\right)\right)\right)=$ $X \backslash\left[F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{1}\right)\right)\right) \cup F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{2}\right)\right)\right)\right]$. It is clear that $H=X \backslash U$ is closed subset of X and the inclusion $F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{1}\right)\right)\right) \cup F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{2}\right)\right)\right) \subset$ H is satisfied.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. The proof is similar to the proof $(\mathrm{a}) \Rightarrow(\mathrm{c})$.
$(a) \Rightarrow(d)$. The statement is a result of Theorems 2.1d) and 2.2 d$)$.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$. The proof is clear.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$. It is enough to observe that the complement of the set

$$
F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(A)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(B)\right)\right)
$$

is equal to $F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(A)\right)\right) \cup F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(B)\right)\right)$ for any sets $A, B \subset Y$.
$(\mathrm{d}) \Rightarrow(\mathrm{f})$. It is easily seen that the set

$$
F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)=F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)
$$

for any $\tau_{1} \tau_{2}$-regularly open sets G_{1}, G_{2}.
$(\mathrm{f}) \Rightarrow(\mathrm{d})$. The proof is a consequence of Lemma 1.1
(f) \Leftrightarrow (d). The proof is similar to the proof $(\mathrm{d}) \Leftrightarrow(\mathrm{e})$.

3. Almost nearly quasi-continuity

Theorem 3.1. Let $F: X \rightarrow\left(Y, \tau_{1}, \tau_{2}\right)$ be a multifunction. The following statements are equivalent.
(a) F is $\tau_{1} \tau_{2}$-upper almost nearly quasi-continuous.
(b) For any $x \in X$ and for any $\tau_{1} \tau_{2}$-regularly open set $G \subset Y$ having $\tau_{1} \tau_{2}$ -N-closed complement such that $F(x) \subset G$ and for any open neighbourhood U of x there exists a nonempty open set $W \subset U$ such that $F(z) \subset G$ for any $z \in W$.
(c) For any $x \in X$ and for any τ_{1}-closed $\tau_{1} \tau_{2}-N$-closed set $K \subset Y$ such that $x \in F^{+}(Y \backslash K)$ and for any closed set H such that $x \in X \backslash H$ there exists a closed set M such that $H \subset M, M \neq X$ and $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right) \subset M$.
(d) For any $x \in X$ and for any τ_{1}-open set $G \subset Y$ having $\tau_{1} \tau_{2}$ - N-closed complement such that $F(x) \subset G$ there exists a semi-open set A such that $x \in A$ and $A \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)\right)$.
(e) A set $F^{+}(G)$ is semi-open for any $\tau_{1} \tau_{2}$-regularly open set $G \subset Y$ having $\tau_{1} \tau_{2}$ - N-closed complement.
(f) A set $F^{-}(K)$ is semi-closed for any $\tau_{1} \tau_{2}$-regularly closed $\tau_{1} \tau_{2}-N$-closed set $K \subset Y$.

Proof. (a) \Rightarrow (b). Let $x \in X$ and G be a $\tau_{1} \tau_{2}$-regularly open subset of Y having $\tau_{1} \tau_{2}$-N-closed complement such that $F(x) \subset G$ and let U be an open subset of X and $x \in U$. Under the assumptions (F is $\tau_{1} \tau_{2}$-upper almost nearly quasi-continuous) there exits an open nonempty set $W \subset U$ such that $W \subset$ $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)\right)$. As G is $\tau_{1} \tau_{2}$-regularly open we have $G=\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)$ and, consequently $W \subset F^{+}(G)$.
(b) \Rightarrow (a). Let now $x \in X$ and G be a τ_{1}-open set having $\tau_{1} \tau_{2}$-N-closed complement such that $F(x) \subset G$ and let U be an open subset of X such that $x \in U$. By Lemma 1.1 we know that the set $\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)$ is a $\tau_{1} \tau_{2}$-regularly open and $Y \backslash \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)$ is $\tau_{1} \tau_{2}$-N-closed. Because $F(x) \subset \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)$ then there exists an open nonempty set $W \subset U$ such that $W \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)\right)$.
(a) \Rightarrow (c). Let $x \in X$ and K be a τ_{1}-closed $\tau_{1} \tau_{2}$-N-closed subset of Y such that $x \in F^{+}(Y \backslash K)$. It is clear that $Y \backslash K$ is an τ_{1}-open subset of Y having $\tau_{1} \tau_{2}$-N-closed complement. Let H be a closed subset of X such that $x \in X \backslash H$. Then $X \backslash H$ is an open set. According to the definition of $\tau_{1} \tau_{2}$-upper almost nearly continuity, there exists an open nonempty set $W \subset X \backslash H$ such that $W \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(Y \backslash K)\right)\right)$. Let us observe that $\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(Y \backslash K)\right)=\operatorname{int}_{\tau_{1}}(Y \backslash$ $\left.\operatorname{int}_{\tau_{2}}(K)\right)=Y \backslash \operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)$. It follows that $W \subset F^{+}\left(Y \backslash\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right)=\right.$
$X \backslash F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right)$. Let $M=X \backslash W$, then $X \backslash M \subset X \backslash F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right)$ since $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right) \subset M$. It is evident that M is a closed set and $M \neq X$.
(c) \Rightarrow (a). Let $x \in X, G$ be an τ_{1}-open subset of Y having $\tau_{1} \tau_{2}$-N-closed complement such that $F(x) \subset G$. Therefore $K=Y \backslash G$ is τ_{1}-closed $\tau_{1} \tau_{2}$-N-closed subset of Y such that $x \in F^{+}(Y \backslash K)$. Let U be an open neighbourhood of x. Then $H=X \backslash U$ is a closed set such that $x \in X \backslash H$. Under the assumptions there exists a closed set M such that $H \subset M, M \neq X$ and $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right) \subset M\right.$. The last inclusion follows that $X \backslash F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)\right) \subset M=X \backslash W$, where $W=$ $X \backslash M$ is an open nonempty set. It was shown that $W \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)\right)$. It is easy to see that $W \subset U$.
(a) \Rightarrow (d). Let $x \in X$ and G be an τ_{1}-open subset of Y having $\tau_{1} \tau_{2}$-N-closed complement such that $F(x) \subset G$. We know that for any open neighbourhood U of the point x there exists an open nonempty set $W_{U} \subset U$ such that $W_{U} \subset$ $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)\right)$. Let $A=\{x\} \cup \bigcup\left\{W_{U}: U\right.$ is an open neighbourhood of $\left.x\right\}$. Hence $A \subset \operatorname{cl}(\operatorname{int}(A))$ and consequently A is a semi-open set and $x \in A$. Additionally $A \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)\right)$.
(d) \Rightarrow (a). Let $x \in X$ and G be an τ_{1}-open subset of Y having $\tau_{1} \tau_{2}$-Nclosed complement such that $F(x) \subset G$. Let U be an open neighbourhood of x. Under the assumptions there exists a semi-open set A such that $x \in A$ and $A \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)\right)$. Let $W=U \cap \operatorname{int}(A)$. Because $U \cap A \neq \emptyset$ then $W \neq \emptyset$. It is easy to check that $W \subset U$ and $W \subset A$. Therefore $W \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)\right)$.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$. Let G be a $\tau_{1} \tau_{2}$-regularly open subset of Y having $\tau_{1} \tau_{2}$-Nclosed complement and let $x \in F^{+}(G)$. Then $F(x) \subset G$. Under the assumptions there exists a semi-open set A_{x} such that $x \in A_{x}$ and $A_{x} \subset F^{+}(G)=$ $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)\right)$. It is easily seen that the set $A=\bigcup\left\{A_{x}: x \in F^{+}(G)\right\}$ is semi-open and is equal to the set $F^{+}(G)$.
(e) $\Rightarrow(\mathrm{d})$. Let $x \in X$ and G be an τ_{1}-open subset of Y having $\tau_{1} \tau_{2}$-N-closed complement such that $F(x) \subset G$. Then by Lemma $1.1 \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)$ is a $\tau_{1} \tau_{2}-$ regularly open set having $\tau_{1} \tau_{2}$-N-closed complement. Therefore $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}(G)\right)\right)$ is semi-open. Of course $x \in F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)\right)$.
(e) $\Rightarrow(\mathrm{f})$. Let K be a $\tau_{1} \tau_{2}$-regularly closed $\tau_{1} \tau_{2}$-N-closed subset of Y. Then $Y \backslash K$ is a $\tau_{1} \tau_{2}$-regularly open having $\tau_{1} \tau_{2}$-N-closed complement subset of Y. Under the assumptions $F^{+}(Y \backslash K)$ is a semi-open set. From this we see that the set $X \backslash F^{+}(Y \backslash K)=F^{-}(K)$ is semi-closed.
$(\mathrm{f}) \Rightarrow(\mathrm{e})$. The proof is similar to the above.

Theorem 3.2. Let $F: X \rightarrow\left(Y, \tau_{1}, \tau_{2}\right)$ be a multifunction. The following statements are equivalent.
(a) F is $\tau_{1} \tau_{2}$-lower almost nearly quasi-continuous.
(b) For any $x \in X$ and for any $\tau_{1} \tau_{2}$-regularly open set $G \subset Y$ having $\tau_{1} \tau_{2}$ -N-closed complement such that $F(x) \cap G \neq \emptyset$ and for any open neighbourhood U of x there exists a nonempty open set $W \subset U$ such that $F(z) \cap G \neq \emptyset$ for any $z \in W$.
(c) For any $x \in X$ and for any τ_{1}-closed $\tau_{1} \tau_{2}$ - N-closed set $K \subset Y$ such that $x \in F^{-}(Y \backslash K)$ and for any closed set H such that $x \in X \backslash H$ there exists a
closed set M such that $H \subset M, M \neq X$ and $F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}(K)\right)\right) \subset M$.
(d) For any $x \in X$ and for any τ_{1}-open set $G \subset Y$ having $\tau_{1} \tau_{2}$ - N-closed complement such that $F(x) \cap G \neq \emptyset$ there exists a semi-open set A such that $x \in A$ and $A \subset F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}(G)\right)\right)$.
(e) A set $F^{-}(G)$ is semi-open for any $\tau_{1} \tau_{2}$-regularly open set $G \subset Y$ having $\tau_{1} \tau_{2}$ - N-closed complement.
(f) A set $F^{+}(K)$ is semi-closed for any $\tau_{1} \tau_{2}$-regularly closed $\tau_{1} \tau_{2}-N$-closed set $K \subset Y$.

Theorem 3.3. Let $F: X \rightarrow\left(Y, \tau_{1}, \tau_{2}\right)$ be a multifunction. The following statements are equivalent.
(a) F is $\tau_{1} \tau_{2}$-almost nearly quasi-continuous.
(b) For any $x \in X$ and for any $\tau_{1} \tau_{2}$-regularly open sets $G_{1}, G_{2} \subset Y$ having $\tau_{1} \tau_{2}-N$-closed complement such that $F(x) \subset G_{1}$ and $F(x) \cap G_{2} \neq \emptyset$ and for any open neighbourhood U of x there exists a nonempty open set $W \subset U$ such that $F(z) \subset G_{1}$ and $F(z) \cap G_{2} \neq \emptyset$ for any $z \in W$.
(c) For any $x \in X$ and for any τ_{1}-closed $\tau_{1} \tau_{2}$ - N-closed sets $K_{1}, K_{2} \subset Y$ such that $x \in F^{+}\left(Y \backslash K_{1}\right) \cap F^{-}\left(Y \backslash K_{2}\right)$ and for any closed set H such that $x \in X \backslash H$ there exists a closed set M such that $H \subset M, M \neq X$ and $F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{1}\right)\right)\right) \cup$ $F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{2}\right)\right)\right) \subset M$.
(d) For any $x \in X$ and for any τ_{1}-open sets $G_{1}, G_{2} \subset Y$ having $\tau_{1} \tau_{2}$ - N-closed complement such that $F(x) \subset G_{1}$ and $F(x) \cap G_{2} \neq \emptyset$ there exists a semi-open set A such that $x \in A$ and $A \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)$.
(e) A set $F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$ is semi-open for any $\tau_{1} \tau_{2}$-regularly open sets $G_{1}, G_{2} \subset Y$ having $\tau_{1} \tau_{2}$ - N-closed complement.
(f) A set $F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$ is semi-closed for any $\tau_{1} \tau_{2}$-regularly closed $\tau_{1} \tau_{2}$ -N-closed set $K_{1}, K_{2} \subset Y$.

Proof. (a) \Rightarrow (b). Let $x \in X$ and G_{1}, G_{2} be two $\tau_{1} \tau_{2}$-regularly open subsets of Y having $\tau_{1} \tau_{2}$-N-closed complement such that $x \in F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$. Let U be an open subset of X containing x. Under assumption there exists an open nonempty set $W \subset U$ such that $W \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)$. We have $W \subset F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$ because G_{1}, G_{2} are $\tau_{1} \tau_{2}$-regularly open sets.
(b) \Rightarrow (a). Let $x \in X$ and G_{1}, G_{2} be two τ_{1}-open sets having $\tau_{1} \tau_{2}$-N-closed complement such that $x \in F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$. By Lemma 1.1] int $\tau_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{1}\right)\right)$), $\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{2}\right)\right)$) are $\tau_{1} \tau_{2}$-regularly open sets having $\tau_{1} \tau_{2}$-N-closed complement and it is clear that $x \in F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)$. So for any open neighbourhood U of x there exists an open nonempty set $W \subset U$ such that $W \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)$.
(a) \Rightarrow (c). Let $x \in X$ and $K_{1}, K_{2} \subset Y$ be two τ_{1}-closed $\tau_{1} \tau_{2}$-N-closed sets such that $x \in F^{+}\left(Y \backslash K_{1}\right) \cap F^{-}\left(Y \backslash K_{2}\right)$. Let H be a closed subset of X such that $x \in U=X \backslash H$. Under the assumptions there exists an open nonempty set $W \subset U$ such that $W \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(Y \backslash K_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(Y \backslash K_{2}\right)\right)\right)$.

Let us denote $M=X \backslash W$. Then M is a closed set other than X and

$$
\begin{aligned}
& X \backslash\left[F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(Y \backslash K_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(Y \backslash K_{2}\right)\right)\right)\right] \\
= & {\left[X \backslash F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(Y \backslash K_{1}\right)\right)\right)\right] \cup\left[X \backslash F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(Y \backslash K_{2}\right)\right)\right)\right] } \\
= & F^{-}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{1}\right)\right)\right) \cup F^{+}\left(\operatorname{cl}_{\tau_{1}}\left(\operatorname{int}_{\tau_{2}}\left(K_{2}\right)\right)\right) \\
\subset & M .
\end{aligned}
$$

$(\mathrm{c}) \Rightarrow(\mathrm{a})$. The proof is similar to the above.
(a) \Rightarrow (d). Let $x \in X$ and G_{1}, G_{2} be two τ_{1}-open subsets of Y having $\tau_{1} \tau_{2}$-Nclosed complement such that $F(x) \subset G_{1}$ and $F(x) \cap G_{2} \neq \emptyset$. We know that for any open neighbourhood U of x there exists an open nonempty set $W_{U} \subset U$ such that $W \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)$. Let $A=\{x\} \cup \bigcup\left\{W_{U}\right.$: U is an open neighbourhood of $x\}$. It is clear that $A \subset \operatorname{cl}(\operatorname{int}(A))$ and hence semi-open. Of course, $x \in A$ and $A \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)$.
(d) \Rightarrow (a). Let $x \in X$ and G_{1}, G_{2} be two τ_{1}-open subsets of Y having $\tau_{1} \tau_{2}$-N-closed complement such that $x \in F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$. Let U be an open neighbourhood of x. We know that there exists a semi open set $A \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)$ such that $x \in A$. Let W denote the set $U \cap \operatorname{int}(A)$. Because $U \cap A \neq \emptyset$ then $W \neq \emptyset$. Of course $W \subset U$ and $W \subset A$. Therefore $A \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)$.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$. Let G_{1}, G_{2} be two $\tau_{1} \tau_{2}$-regularly open subsets of Y having $\tau_{1} \tau_{2^{-}}$ N-closed complement such that $x \in F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$. Let us denote by A_{x} a semi-open set such that $x \in A_{x} \subset F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)=$ $F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$. Then the set $A=\bigcup_{x \in F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)} A_{x}$ is semi-open and equal to the set $F^{+}\left(G_{1}\right) \cap F^{-}\left(G_{2}\right)$.
(e) $\Rightarrow(\mathrm{d})$. Let $x \in X$ and G_{1}, G_{2} be two τ_{1}-open subsets of Y having $\tau_{1} \tau_{2^{-}}$ N-closed complement such that $F(x) \in G_{1}$ and $F(x) \cap G_{2} \neq \emptyset$. Then by Lemma 1.1 $\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{1}\right)\right)$ and $\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{2}\right)\right)$ are $\tau_{1} \tau_{2}$-regularly open sets having $\tau_{1} \tau_{2}$ -N-closed complement and $F(x) \subset \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{1}\right)\right)$ and $F(x) \cap \operatorname{int}_{\tau_{1}}\left(\mathrm{cl}_{\tau_{2}}\left(G_{2}\right)\right) \neq \emptyset$. Under assumption $F^{+}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{1}\right)\right)\right) \cap F^{-}\left(\operatorname{int}_{\tau_{1}}\left(\operatorname{cl}_{\tau_{2}}\left(G_{2}\right)\right)\right)$ is a semi-open set. According to the above remark, the proof is finished.
(e) \Rightarrow (f). Let K_{1}, K_{2} be two $\tau_{1} \tau_{2}$-regularly closed $\tau_{1} \tau_{2}$-N-closed subsets of Y. Then $F^{+}\left(Y \backslash K_{1}\right) \cap F^{-}\left(Y \backslash K_{2}\right)$ is a a semi-open set. The complement of this set is a semi-closed set and it is equal to the set $X \backslash\left[F^{+}\left(Y \backslash K_{1}\right) \cap F^{-}\left(Y \backslash K_{2}\right)\right]=$ $F^{-}\left(K_{1}\right) \cup F^{+}\left(K_{2}\right)$.
$(\mathrm{f}) \Rightarrow(\mathrm{e})$. The proof is similar to the above.

References

[1] Carnahan, D., Locally nearly compact spaces. BollU̇n. Mat. Ital. (4), 6 (1972), 146-153.
[2] Ekici, E., Almost nearly continuous multifunctions. Acta Math. Univ. Comenianae, Vol. LXXIII 2 (2004), 175-186.
[3] Hussain, T., Almost continuous mappings. Prace Mat. 10 (1966), 1-7.
[4] Levine, N., Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963) 36-43.
[5] Nandi, J. N., Bitopological near compactness. I. Characterizations. Bull. Calcutta Math. Soc. 85 no. 4 (1993), 337-344.
[6] Neubrunn, T., Quasi-cintinuity. Real Analysis Exchange Vol 14 no 2 (1988-89), 259-306.
[7] Ptak, V., Completeness and open mapping theorem. Bull. Soc. Math. France 86 (1958), 41-74.
[8] Rychlewicz, A., On almost nearly continuity with reference to multifunctions. Submitted.
[9] Singal, A. R. Arya On pairwise almost regular spaces. Glasnik Mat. Ser. III 6(26) (1971), 335-343.

Received by the editors March 13, 2007

[^0]: ${ }^{1}$ Faculty of Mathematics and Informatics of Lódź University, Banacha 22; 90-238 Lódź , Poland, e-mail: anrychle@math.uni.lodz.pl

