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EXTENSION OF NONADDITIVE MEASURES ON
LOCALLY COMPLETE σ-CONTINUOUS LATTICES

Mona Khare1, Soni Gupta2

Abstract. We introduce the concept of Mσ-approachability for a semi-
continuous function (i.e. a nonadditive measure) on a σ-complete sublat-
tice of a locally complete σ-continuous lattice L and using it we extend a
nonadditive measure from a sublattice of L to a σ-complete sublattice of
L.
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1. Introduction

In measure theory, a basic procedure is that of extending the notion of a
measure on a given class of sets to a larger class of sets. Kelley, Nayak and
Srinivasan [12] proved that a nonnegative real-valued function µ defined on a
lattice L of sets is a premeasure (meaning that it extends to a countably additive
measure on a δ-ring containing L) provided µ is tight and continuous at ∅. The
extension of this theorem to the class of real-valued (not necessarily nonnegative
real-valued) function is dealt in [19]. In 1981, Morales [18] established a quite
general extension theorem for a uniform semigroup valued tight set function λ
on a lattice L of subsets of a set X, the domain of extension being the σ-ring
generated by the lattice L. He also discussed the extension of λ on the σ-algebra
of a locally L-measurable sets.

Riečan [22] proved an extension theorem for a positive real-valued modular
functions defined on a suborthomodular lattice of a σ-continuous, σ-complete
orthomodular lattice. An extension theorem has been proved for measures on
MV-algebra in fuzzy measure theory ([4, 5, 23]; see also [10, 13, 25]). In [2],
Avallone and Simone proved an extension theorem for nonnegative real-valued
modular functions defined on suborthomodular lattices of a σ-continuous, σ-
complete orthomodular lattice, using topological approach. They used the the-
ory of lattice uniformities (i.e. a uniformity which makes the lattice operations
∨ and ∧ uniformly continuous). They further extended the theory in context of
lattice ordered effect algebras in [3].
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A variety of structural characteristics of nonadditive set functions are intro-
duced and discussed by Dobrakov [7, 8], Drewnowski [9], Wang [24], Wang and
Klir [26], Pap [20] and Denneberg [6], and the relevant theories are developed by
them separately. Nonadditive measures appear today in many branches of pure
mathematics with many important applications ([21, 24], see also [14, 15, 16]).

The aim of the present paper is to study an extension problem for nonaddi-
tive measures defined on a sublattice of a locally complete σ-continuous lattice
L. Some basic definitions are collected in Section 2. In Section 3, we introduce
notions of absolute continuity and Mσ-approachability and we extend a semi-
continuous function (i.e. a nonadditive measure, or simply a measure) µ on a
sublattice M of L to a unique Mσ-approachable measure µ̂ on a σ-complete sub-
lattice N containing M under suitable conditions. This goal has been achieved
in three steps: firstly we extend any lsc-measure on M to an lsc-measure on
Mσ. To obtain extension of a measure µ on M to a measure µ̃ on Mσ, we need
a sufficient condition involving the notion of absolute continuity; µ̃ preserves
absolute continuity. Finally, in the third step we prove that µ can uniquely
be extended to µ̂ on N containing Mσ, using Mσ-approachability. Extensions
obtained at each step are uniquely determined. Some basic results on modular
functions are also obtained and we prove that if µ is submodular, then µ̃ is
submodular and consequently µ̂ is submodular.

2. Preliminaries and Basic Results

Let (P,≤) be a poset. An element x ∈ P is called an upper bound of A ⊆ P
if a ≤ x for every a ∈ A; x is called a lower bound of A, if x ≤ a for every a ∈ A.
An element x ∈ L is called the join (or the least upper bound, or the sup) of
A ⊆ L, denoted by

∨
A, if

(i) x is an upper bound of A,
(ii) if y is an upper bound of A, then x ≤ y.
If A is finite, we call

∨
A (if it exists) a finite join. If A contains only two

elements a and b, then we sometimes also write a ∨ b instead of
∨{a, b} for our

convenience; similarly
∨

A = a1∨a2∨. . .∨an where A = {a1, a2, . . . , an}(n ∈ N;
N denotes the set of all natural numbers). A lattice is a poset (L,≤) in which
both join and meet for every finite subset of L exist. For a lattice L, for all
a, b ∈ L, a ≤ b if and only if a∨b = b if and only if a∧b = a. A lattice L = (L,≤)
is called complete if every (possibly empty) subset of L admits an infimum (or
equivalently if every subset of L admits a supremum). The symbol 1 denotes the
top element (or supremum) of L and 0 denotes the bottom element (or infimum)
of L (cf. [17]). A lattice L is said to be σ-complete, if every countable subset of
L has a supremum and an infimum [3].

2.1 [1]. A lattice L is locally complete if it satisfies one of the following
equivalent conditions:

(i) Every nonempty lower bounded subset of L admits an infimum.
(ii) Every nonempty upper bounded subset of L admits a supremum.
(iii) There exists a complete lattice, denoted by L, with the bottom element

0 and top element 1, such that L is a sublattice of L, L = L ∪ {0, 1}, inf L = 0
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and sup L = 1.
It can be observed that every complete lattice is locally complete.

2.2. Let {an} be a sequence in a lattice L = (L,≤). We call an ↑ a, (a ∈ L)
if and only if a1 ≤ a2 ≤ . . . ≤ an ≤ . . .,

∨
an exists and

∨
an = a. In this case

we also write a = limn→∞ an. If an ↑ a, bn ↑ b and an ≤ bn, for alln, then we
may deduce that a ≤ b.

2.3 [2]. A lattice L is said to be σ-continuous if an ↑ a implies an ∧ b ↑ a∧ b
(or equivalently, an ↓ a implies an∨b ↓ a∨b) for every b ∈ L. If L is σ-continuous
then, for the sequences {an} and {bn} in L such that an ↑ a and bn ↑ b, we have
an ∧ bn ↑ a ∧ b (or equivalently, an ↓ a, bn ↓ b implies an ∨ bn ↓ a ∨ b).

Every infinitely distributive lattice [17] L is σ-continuous.
For any set X, (P(X),⊆), (LX ,≤) (where L is locally complete σ-continuous

lattice) and (I,≤) where (I is the closed unit interval [0, 1] of the real line R) are
locally complete σ-continuous lattices. For more examples of locally complete
lattices, we refer to [1].

2.4. A function µ : L → [0,∞) is said to be modular if, for every a, b ∈ L,
µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b). We say that µ is submodular if for every
a, b ∈ L, we have µ(a) + µ(b) ≥ µ(a ∨ b) + µ(a ∧ b).

3. Mσ-Approachability and Extension of Nonadditive Mea-
sures

Let L be a locally complete σ-continuous lattice and let C be a nonempty
subset of L, M be a sublattice of L, and N be a σ-complete sublattice of
L containing M. We denote Mσ = {b ∈ L : there exists a sequence {an} in
M such that an ↑ b}. We may also describe Mσ as the family of all countable
joins of elements from M . Then Mσ is a sublattice of L containing M.

Definition 3.1. A function µ : C → [0,∞) is called a semi-continuous
measure (or nonadditive measure, or simply a measure) on C, if it satisfies the
following conditions:

(i) µ(0) = 0, whenever 0 ∈ C,
(ii) (monotone) if a ≤ b, a, b ∈ C, then µ(a) ≤ µ(b),
(iii) (semi-continuous from below) if an ↑ a, a ∈ C, an ∈ C (n ∈ N), then

limn→∞ µ(an) = µ(a),
(iv) (semi-continuous from above) if an ↓ a, a ∈ C, an ∈ C (n ∈ N), then

limn→∞ µ(an) = µ(a).
The function µ is said to be a lower semi-continuous measure (or lsc-measure)

if it satisfies (i), (ii) and (iii), while µ is said to be an upper semi-continuous
measure (or usc-measure) if it satisfies (i), (ii) and (iv).

Definition 3.2. A nondecreasing function µ : C → [0,∞) is said to be
lower (respectively, upper) consistent on C, if for every b ∈ C, an ∈ C (n ∈ N),
an ↑ a with b ≤ a we have limn→∞ µ(an) ≥ µ(b) (respectively, an ↓ a and a ≤ b
we have limn→∞ µ(an) ≤ µ(b)).



18 M. Khare, S. Gupta

We obtain the following:

Proposition 3.1. Let µ : C → [0,∞) be a monotone function. If C is
closed under the formation of finite meet (respectively, finite join), then µ is
lower (respectively, upper) consistent if and only if µ is semi-continuous from
below (respectively, semi-continuous from above).

Lemma 3.1. Let µ : C → [0,∞) be a monotone and semi-continuous
from below function, where C is closed under the formation of finite meet. For
a, b ∈ L, let an ↑ a, bn ↑ b, an, bn ∈ C (n ∈ N). If a ≤ b, then limn→∞ µ(an) ≤
limn→∞ µ(bn).

Theorem 3.1. If µ is an lsc-measure on M, then µ can be extended uniquely
to an lsc-measure on Mσ.

Proof. For b ∈ Mσ, define µ̃(b) = limn→∞ µ(an) when {an} is a sequence in M
and an ↑ b. In view of Lemma 3.1, µ̃ is well defined.

For monotonicity, suppose that a, b ∈ Mσ and a ≤ b. Then there exist
sequences {an} and {bn} in M such that an ↑ a and bn ↑ b. Since L is σ-
continuous, so an ∧ bn ↑ a ∧ b = a. Now

µ̃(b) = lim
n→∞

µ(bn) ≥ lim
n→∞

µ(an ∧ bn) = µ̃(a).

Next, suppose that {an} is a sequence in Mσ and an ↑ a, a ∈ Mσ. Then there
exists a sequence {ani}∞i=1 in M such that ani ↑ an and µ̃(an) = limi→∞ µ(ani),
(n ∈ N). For i ∈ N, set bi = a1i∨a2i . . .∨aii. Then bi ∈ M, {bi} is an increasing
sequence and bi ≤ ai ≤ a for all i, which yield that b = limi→∞ bi = ∨bi ≤
∨ai = a. It may be noted that b ∈ Mσ.

Also, aki ≤ bi for 1 ≤ k ≤ i. Therefore, ak = limi→∞ aki ≤ limn→∞ bn = b.
It follows that a = ∨ak ≤ b. Thus a = b. Now, from the monotonicity of µ̃,

µ̃(a) = lim
n→∞

µ(bn) = lim
n→∞

µ̃(bn) ≤ lim
n→∞

µ̃(an),

and the result follows. Obviously, the extension µ̃ is unique. 2

Definition 3.3. Let µ and ν be two measures on C. We say that µ is
absolutely continuous with respect to ν (denoted by µ ¿ ν), if for every ε > 0,
there exists δ > 0 such that |µ(c) − µ(b)| < ε, whenever b, c ∈ C and |ν(c) −
ν(b)| < δ. (cf. [11])

Theorem 3.2. Let µ be a measure on M. Then µ can be extended to a
measure µ̃ on Mσ, provided there exists a measure ν on Mσ such that µ ¿ ν on
M. The extension is unique and µ̃ ¿ ν on Mσ.
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Proof. In view of Theorem 3.1, we need only to prove that µ̃ is semi-continuous
from above. For this, let {an} be a sequence in Mσ and an ↓ a0, a0 ∈ Mσ.
Then there exists a sequence {ani}∞i=1 in M such that ani ↑ an (n ∈ N ∪ {0}).
Let ε > 0. Since µ ¿ ν on M there exists δ > 0 such that |µ(c) − µ(b)| < ε/2,
whenever b, c ∈ M and |ν(c)−ν(b)| < δ. Since ν is a measure on Mσ and an ↓ a0

there exists m ∈ N such that

ν(an) < ν(a0) + δ/2, for all n ≥ m.

Since a0i ↑ a0 and ani ↑ an (n ∈ N) and ν is a measure on Mσ, there exists
k ∈ N such that, for all i ≥ k,

ν(a0) < ν(a0i) + δ/2,
ν(an) < ν(ani) + δ

and µ̃(an) < µ(ani) + ε/2,
(by definition of µ̃). So, for n ≥ m, i ≥ k we have

ν(ani) ≤ ν(an) < ν(a0) + δ/2 < ν(a0i) + δ,

and also
ν(a0i) ≤ ν(a0) ≤ ν(an) < ν(ani) + δ,

which yield that |ν(ani)− ν(a0i)| < δ. Since µ ¿ ν, we have |µ(ani)− µ(a0i)| <
ε/2. Therefore, we get (for i ≥ k)

µ̃(an) < µ(ani) + ε/2 < µ(a0i) + ε ≤ µ̃(a0) + ε, for all n ≥ m.

Since a0 ≤ an and µ̃ is monotone, the result follows. Using similar argument
we have µ̃ ¿ ν on Mσ. The uniqueness is proved in Theorem 3.1. ¤

Now to extend a measure from a sublattice M (containing 1, the largest
element of L) to a σ-complete sublattice N, containing M, of a locally complete
σ-continuous lattice L, we introduce a new concept of Mσ-approachability of a
measure on N.

Definition 3.4. A measure µ on N is said to be Mσ-approachable if for
a ∈ N and for ε > 0 there exists b ∈ Mσ such that a ≤ b and µ(b) < µ(a) + ε.

Theorem 3.3. A measure µ on M can be extended to an Mσ-approachable
measure on N, provided there exists an Mσ-approachable measure ν on N such
that µ ¿ ν on M. The extension is unique and it preserves the absolute conti-
nuity with respect to ν.

Proof. From Theorem 3.2, we have µ̃ ¿ ν on Mσ and the extension µ̃ is unique.
We define, for a ∈ N ,

µ̂(a) = inf{µ̃(b) : a ≤ b, b ∈ Mσ}.

Clearly, µ̃(a) = µ̂(a) for a ∈ Mσ, µ̂(0) = 0 if 0 ∈ M , and µ̂ is monotone.
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Now, to prove µ̂ is semi-continuous from below, suppose that {an} is a
sequence N such that an ↑ a0, a0 ∈ N. Let ε > 0. Since µ̃ ¿ ν on Mσ,
there exists δ > 0 such that |µ̃(c) − µ̃(b)| < ε/2 whenever b, c ∈ Mσ and
|ν(c)− ν(b)| < δ. Since ν is a measure on N, there exists m ∈ N such that

ν(a0) < ν(an) + δ/2, for all n ≥ m,

and consequently, we obtain bm ∈ Mσ with am ≤ bm and µ̃(bm) < µ̂(am) + ε/2.
Since ν is Mσ-approachable on N, we get b0 ∈ Mσ with a0 ≤ b0 such that
ν(b0) < ν(a0) + δ/2. Since Mσ is closed under the formation of finite meet, we
may assume that bm ≤ b0 (replace bm by (bm ∧ b0)). Thus

ν(b0) < ν(am) + δ ≤ ν(bm) + δ,

which yields |ν(b0)−ν(bm)| < δ. Since µ̃ ¿ ν on Mσ, we have |µ̃(b0)− µ̃(bm)| <
ε/2. Now, we have

µ̂(a0) ≤ µ̂(b0) = µ̃(b0) < µ̃(bm) + ε/2 < µ̂(am) + ε.

Since an ≤ a0 and µ̂ is monotone, it follows that µ̂ is semi-continuous from
below. Similarly we may prove that µ̂ is semi-continuous from above, and also
that µ̂ ¿ ν on N , and µ̂ is the unique extension. That µ̂ is Mσ-approachable
follows from its definition.

Proposition 3.2. A function µ : M → [0,∞) is modular if and only if

µ(a1) + µ(b1) = µ(a2) + µ(b2) (1)

where a1, b1, a2, b2 ∈ M with a1 ∧ b1 = a2 ∧ b2 and a1 ∨ b1 = a2 ∨ b2.

Proof. Let µ be modular. For a1, b1, a2, b2 ∈ M such that a1 ∧ b1 = a2 ∧ b2 and
a1 ∨ b1 = a2 ∨ b2, we have µ(a1 ∨ b1) = µ(a2 ∨ b2), and so,

µ(a1) + µ(b1)− µ(a1 ∧ b1) = µ(a2) + µ(b2)− µ(a2 ∧ b2).

Since µ(a1∧ b1) = µ(a2∧ b2) we have equation (1). Conversely, let (1) hold. Let
a, b ∈ M. Since ((a ∨ b) ∨ (a ∧ b)) = a ∨ b and ((a ∨ b) ∧ (a ∧ b)) = a ∧ b. Then
from (1), we have

µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b).

Hence µ is modular.

Theorem 3.4. Let µ be an lsc-measure on M (containing 1). Then (i) ⇒
(ii) ⇒ (iii)

(i) µ is submodular.
(ii) µ̃ is submodular.
(iii) µ̂ is submodular.
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Proof. (i)⇒(ii). Let µ be submodular. Let a, b ∈ Mσ. Then there exist sequences
{an} and {bn} in M such that an ↑ a, bn ↑ b, µ̃(a) = limn→∞ µ(an) and µ̃(b) =
limn→∞ µ(bn). Since L is σ-continuous, so an ∧ bn ↑ a ∧ b and also we have
an ∨ bn ↑ a ∨ b. Therefore

µ̃(a) + µ̃(b) = lim
n→∞

µ(an) + lim
n→∞

µ(bn)

= lim
n→∞

(µ(an) + µ(bn))

≥ lim
n→∞

(µ(an ∨ bn) + µ(an ∧ bn))

= lim
n→∞

µ(an ∨ bn) + lim
n→∞

µ(an ∧ bn)

= µ̃(a ∨ b) + µ̃(a ∧ b).

(ii)⇒(iii). Let a, b ∈ N. For ε > 0, we have c, d ∈ Mσ such that a ≤ c, b ≤ d,
µ̂(a) > µ̃(c)− ε/2 and µ̂(b) > µ̃(d)− ε/2. Thus,

µ̂(a) + µ̂(b) + ε > µ̃(c) + µ̃(d)

≥ µ̃(c ∨ d) + µ̃(c ∧ d)

≥ µ̂(a ∨ b) + µ̂(a ∧ b).

Since ε is arbitrary, we have

µ̂(a) + µ̂(b) ≥ µ̂(a ∨ b) + µ̂(a ∧ b). 2

Concluding Remark

If we take M to be a sublattice of L (L being locally complete σ-continuous
lattice) and consider a nonnegative extended real-valued µ, then Lemma 3.1,
Theorem 3.1, Theorem 3.2 remain valid provided ν is a finite measure (obviously
then µ(a1) < ∞ would be needed in Definition 3.1(iv)). However, for the
extension of µ on M to N we need to take the top element 1 in M. In view of
Theorem 3.4, if µ is submodular then µ̃ is submodular.

Since (P(X),⊆), (I,≤) (where I is the closed unit interval [0, 1] of the real
line R), and (LX ,≤) (provided L is a locally complete σ-continuous lattice)
are locally complete σ-continuous lattices, the present study provides a unified
approach for classical theory, popular fuzzy theory and theory of L-fuzzy sets.
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