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EXTENSION OF NONADDITIVE MEASURES ON
LOCALLY COMPLETE o-CONTINUOUS LATTICES

Mona Khardl, Soni Gupta?

Abstract. We introduce the concept of M,-approachability for a semi-
continuous function (i.e. a nonadditive measure) on a o-complete sublat-
tice of a locally complete o-continuous lattice L and using it we extend a
nonadditive measure from a sublattice of L to a o-complete sublattice of
L.

AMS Mathematics Subject Classification (2000): 28A12, 28C15, 28B10

Key words and phrases: measure, locally complete, o-continuous,
o-complete, absolute continuity, M,-approachability

1. Introduction

In measure theory, a basic procedure is that of extending the notion of a
measure on a given class of sets to a larger class of sets. Kelley, Nayak and
Srinivasan [12] proved that a nonnegative real-valued function p defined on a
lattice L of sets is a premeasure (meaning that it extends to a countably additive
measure on a d-ring containing L) provided p is tight and continuous at (). The
extension of this theorem to the class of real-valued (not necessarily nonnegative
real-valued) function is dealt in [19]. In 1981, Morales [I§] established a quite
general extension theorem for a uniform semigroup valued tight set function A
on a lattice L of subsets of a set X, the domain of extension being the o-ring
generated by the lattice L. He also discussed the extension of A on the o-algebra
of a locally L-measurable sets.

Rie¢an [22] proved an extension theorem for a positive real-valued modular
functions defined on a suborthomodular lattice of a o-continuous, o-complete
orthomodular lattice. An extension theorem has been proved for measures on
MV-algebra in fuzzy measure theory ([4, (Bl 23]; see also [10, 13| 25]). In [2],
Avallone and Simone proved an extension theorem for nonnegative real-valued
modular functions defined on suborthomodular lattices of a o-continuous, o-
complete orthomodular lattice, using topological approach. They used the the-
ory of lattice uniformities (i.e. a uniformity which makes the lattice operations
V and A uniformly continuous). They further extended the theory in context of
lattice ordered effect algebras in [3].
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A variety of structural characteristics of nonadditive set functions are intro-
duced and discussed by Dobrakov [7] 8], Drewnowski [9], Wang [24], Wang and
Klir [26], Pap [20] and Denneberg [6], and the relevant theories are developed by
them separately. Nonadditive measures appear today in many branches of pure
mathematics with many important applications ([211, 24], see also [14], [15] [16]).

The aim of the present paper is to study an extension problem for nonaddi-
tive measures defined on a sublattice of a locally complete o-continuous lattice
L. Some basic definitions are collected in Section 2. In Section 3, we introduce
notions of absolute continuity and M,-approachability and we extend a semi-
continuous function (i.e. a nonadditive measure, or simply a measure) p on a
sublattice M of L to a unique M,-approachable measure fi on a o-complete sub-
lattice N containing M under suitable conditions. This goal has been achieved
in three steps: firstly we extend any Ilsc-measure on M to an lsc-measure on
M, . To obtain extension of a measure u on M to a measure i on M, , we need
a sufficient condition involving the notion of absolute continuity; i preserves
absolute continuity. Finally, in the third step we prove that p can uniquely
be extended to & on N containing M,, using M, -approachability. Extensions
obtained at each step are uniquely determined. Some basic results on modular
functions are also obtained and we prove that if p is submodular, then g is
submodular and consequently fi is submodular.

2. Preliminaries and Basic Results

Let (P, <) be a poset. An element x € P is called an upper bound of A C P
if a < x for every a € A; x is called a lower bound of A, if x < a for every a € A.
An element z € L is called the join (or the least upper bound, or the sup) of
A C L, denoted by \/ A, if

(i) z is an upper bound of A,

(ii) if y is an upper bound of A, then = < y.

If A is finite, we call \/ A (if it exists) a finite join. If A contains only two
elements a and b, then we sometimes also write a V b instead of \/{a, b} for our
convenience; similarly \/ A = a1 VasV...Va, where A = {a1,as,...,a,}(n € N;
N denotes the set of all natural numbers). A lattice is a poset (L, <) in which
both join and meet for every finite subset of L exist. For a lattice L, for all
a,b € L, a <bifand only if aVb = b if and only if aAb = a. A lattice L = (L, <)
is called complete if every (possibly empty) subset of L admits an infimum (or
equivalently if every subset of L admits a supremum). The symbol 1 denotes the
top element (or supremum) of L and 0 denotes the bottom element (or infimum)
of L (cf. [I7]). A lattice L is said to be o-complete, if every countable subset of
L has a supremum and an infimum [3].

2.1 [I]. A lattice L is locally complete if it satisfies one of the following
equivalent conditions:

(i) Every nonempty lower bounded subset of L admits an infimum.

(ii) Every nonempty upper bounded subset of L admits a supremum.

(iii) There exists a complete lattice, denoted by L, with the bottom element
0 and top element 1, such that L is a sublattice of L, L = L U{0,1}, inf L =0
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and sup L = 1.
It can be observed that every complete lattice is locally complete.

2.2. Let {a,} be a sequence in a lattice L = (L, <). We call a,, 1 a,(a € L)
if and only if a; < ay <...<a, < ..., \a, exists and \/ a,, = a. In this case
we also write a = lim,, . an. If a, T a, b, T b and a,, < b,,foralln, then we
may deduce that a < b.

2.3 [2]. A lattice L is said to be o-continuous if a,, T a implies a, Ab T aAb
(or equivalently, a,, | a implies a,, Vb | aVb) for every b € L. If L is o-continuous
then, for the sequences {a,} and {b,} in L such that a,, 1 a and b,, T b, we have
an Nby, T aAb (or equivalently, a,, | a,by, | b implies a,, V b, | a VD).

Every infinitely distributive lattice [I7] L is o-continuous.

For any set X, (P(X), C), (L¥, <) (where L is locally complete o-continuous
lattice) and (I, <) where (I is the closed unit interval [0, 1] of the real line R) are
locally complete o-continuous lattices. For more examples of locally complete
lattices, we refer to [I].

2.4. A function p : L — [0,00) is said to be modular if, for every a,b € L,
wla Vv b) + pla Ab) = p(a) + p(b). We say that p is submodular if for every
a,b € L, we have p(a) + pu(b) > u(aVb) + pla Ab).

3. M,-Approachability and Extension of Nonadditive Mea-
sures

Let L be a locally complete o-continuous lattice and let C' be a nonempty
subset of L, M be a sublattice of L, and N be a o-complete sublattice of
L containing M. We denote M, = {b € L : there existsa sequence {a, } in
M such thata,, T b}. We may also describe M, as the family of all countable
joins of elements from M. Then M, is a sublattice of L containing M.

Definition 3.1. A function p : C — [0,00) is called a semi-continuous
measure (or nonadditive measure, or simply a measure) on C, if it satisfies the
following conditions:

(7) u(0) =0, whenever 0 € C,

(7) (monotone) if a < b, a,b € C, then u(a) < pu(d),

(131) (semi-continuous from below) if a, 1 a, a € C, a, € C(n € N), then
hmn—»oo /J’(G’TL) = /J((L),

() (semi-continuous from above) if an, | a, a € C, a, € C (n € N), then
limy, 00 pt(an) = p(a).

The function p is said to be a lower semi-continuous measure (or lsc-measure)
if it satisfies (i), (i) and (iii), while p is said to be an upper semi-continuous
measure (or usc-measure) if it satisfies (i), (i4) and (iv).

Definition 3.2. A nondecreasing function u : C — [0,00) is said to be
lower (respectively, upper) consistent on C, if for every b € C, a, € C (n € N),
an 1 a with b < a we have lim, o p(a,) > p(b) (respectively, a,, | a and a <b
we have lim,, _, o p(an) < u(b)).
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We obtain the following:

Proposition 3.1. Let p : C — [0,00) be a monotone function. If C is
closed under the formation of finite meet (respectively, finite join), then p is
lower (respectively, upper) consistent if and only if p is semi-continuous from
below (respectively, semi-continuous from above).

Lemma 3.1. Let u : C — [0,00) be a monotone and semi-continuous
from below function, where C is closed under the formation of finite meet. For
a,be L, leta, T a, by Tb, an,b, € C(n €N). If a <b, then lim,,_, p(a,) <
limy, o0 po(bp)-

Theorem 3.1. Ifpu is an lsc-measure on M, then p can be extended uniquely
to an lsc-measure on M,.

Proof. For b € M,, define i(b) = lim,_,o ft(an) when {a,} is a sequence in M
and a, T 0. In view of Lemma 3.1, g is well defined.

For monotonicity, suppose that a,b € M, and a < b. Then there exist
sequences {a,} and {b,} in M such that a, 1 a and b, T b. Since L is o-
continuous, so a, Ab, T a Ab=a. Now

pb) = lim pu(b) > lim p(an Aby) = fifa).

Next, suppose that {a, } is a sequence in M, and a,, | a,a € M,. Then there
exists a sequence {an;}2, in M such that a,; T a, and fi(ay,) = lim;— o p(ani),
(n € N). Fori € N, set b; = aj; Vag;...Va. Then b; € M, {b;} is an increasing
sequence and b; < a; < a for all 4, which yield that b = lim; o b; = Vb; <
Va; = a. It may be noted that b € M, .

Also, ap; < b; for 1 < k < i. Therefore, ar = lim;_, o0 ar; < lim,, o0 by, = b.
It follows that a = Vag < b. Thus a = b. Now, from the monotonicity of 1,

/j(a) = lim :U’(bn) = lim ﬁ(bn) < lim /j(an)v

n—oo n— oo

and the result follows. Obviously, the extension p is unique. O

Definition 3.3. Let p and v be two measures on C. We say that p is
absolutely continuous with respect to v (denoted by u < v), if for every e > 0,
there exists § > 0 such that |u(c) — p(b)| < €, whenever b,c € C' and |v(c) —

v(b)| < 6. (cf. [11)])

Theorem 3.2. Let o be a measure on M. Then p can be extended to a
measure 1 on M, provided there exists a measure v on M, such that p < v on
M. The extension is unique and i <K v on M,.
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Proof. In view of Theorem 3.1, we need only to prove that g is semi-continuous
from above. For this, let {a,} be a sequence in M, and a, | ag, ag € M,.
Then there exists a sequence {an;}$2; in M such that an; T an, (n € NU{0}).
Let e > 0. Since p < v on M there exists 6 > 0 such that |u(c) — u(b)| < /2,
whenever b,c¢ € M and |v(c) —v(b)| < §. Since v is a measure on M, and a,, | ag
there exists m € N such that

v(an) < v(ag) + 6/2, for alln > m.

Since ag; T ap and an; T a, (n € N) and v is a measure on M, there exists
k € N such that, for all 1 > k,

v(ao) < v(ao:) +6/2,
v(an) < v(an;) +9

and Fin) < plans) + /2,
(by definition of ). So, for n > m, i > k we have

v(ani) < v(an) < v(ag) +6/2 < v(ag;) + 9,

and also
(aOz) ( ) < V(an) < V(ani) + 9,

which yield that |v(an;) — V( ;)| < 4. Since u < v, we have |u(an;) — pu(ao:)| <
€/2. Therefore, we get (for ¢ > k)

wlan) < plan:) +¢/2 < plag;) + € < pi(ag) + ¢, for alln > m.

Since ag < a, and g is monotone, the result follows. Using similar argument
we have 1 < v on M,. The uniqueness is proved in Theorem 3.1. [

Now to extend a measure from a sublattice M (containing 1, the largest
element of L) to a o-complete sublattice N, containing M, of a locally complete
o-continuous lattice L, we introduce a new concept of M -approachability of a
measure on V.

Definition 3.4. A measure p on N is said to be M,-approachable if for
a € N and for e > 0 there exists b € M, such that a <b and p(b) < p(a) +¢&

Theorem 3.3. A measure o on M can be extended to an M, -approachable
measure on N, provided there exists an M,-approachable measure v on N such
that w < v on M. The extension is unique and it preserves the absolute conti-
nuity with respect to v.

Proof. From Theorem 3.2, we have i < v on M, and the extension z is unique.
We define, for a € N,

p(a) =inf{n(d) : a < b,b e M,}.

Clearly, ii(a) = i(a) for a € M,, (0) =0 if 0 € M, and p is monotone.
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Now, to prove [i is semi-continuous from below, suppose that {a,} is a
sequence N such that a, T ag, ag € N. Let ¢ > 0. Since p < v on M,,
there exists § > 0 such that |u(c) — p(b)] < /2 whenever b,c € M, and
|v(c) — v(b)] < 6. Since v is a measure on N, there exists m € N such that

v(ag) < v(an) +d/2, for all n > m,

and consequently, we obtain b, € M, with a,, < b, and (b)) < f(am) +¢€/2.
Since v is M,-approachable on N, we get by € M, with ag < by such that
v(by) < v(ag) + /2. Since M, is closed under the formation of finite meet, we
may assume that b, < by (replace by, by (by, Abg)). Thus

v(bo) < v(am)+ 6 < v(by) + 9,

which yields |v(bg) — v(b)| < d. Since & < v on M,,, we have |f(by) — ()| <
€/2. Now, we have

fi(ao) < fibo) = i(bo) < pilbm) + /2 < fi(am) + .

Since a, < ag and g is monotone, it follows that f is semi-continuous from
below. Similarly we may prove that ji is semi-continuous from above, and also
that 1 < v on N, and [z is the unique extension. That  is M,-approachable
follows from its definition.

Proposition 3.2. A function p: M — [0,00) is modular if and only if

plar) + p(br) = plaz) + p(b2) (1)
where a1,b1,as,by € M with a; Aby = as Aby and a1 V by = as V bs.

Proof. Let p be modular. For aq,b1,a2,bs € M such that a; A by = as A bs and
a1 V by = ag V by, we have p(ag V b1) = u(az V be), and so,

p(ar) + p(by) — plar Abr) = p(az) + p(bz) — plaz A b).

Since p(ag Aby) = u(ag Abs) we have equation (1). Conversely, let (1) hold. Let
a,b e M. Since ((aVbd)V (aAb)=aVband ((aVbd)A(aAb) =aAb. Then
from (1), we have

p(aV b) + p(a Ab) = p(a) + p(b).

Hence p is modular.

Theorem 3.4. Let p be an lsc-measure on M (containing 1). Then (i) =
(i3) = (idi)

(1) p is submodular.

(ii) @ is submodular.

(#i1) [ is submodular.
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Proof. (i)=(ii). Let p be submodular. Let a,b € M,. Then there exist sequences
{an} and {b,} in M such that a, 1 a,b, 1 b, p(a) = lim,_,o u(a,) and (b)) =
lim,, o pt(by). Since L is o-continuous, so a, A b, 1 a Ab and also we have
an Vb, T aVb. Therefore

pla) +p(b) = lim p(an) + lim pu(by)

n—oo

= lim (p(an) + 1(by))

n—oo

> lim (p(an V by) + u(an Aby))

n—oo

= lim p(a, Vb,)+ lim p(a, Aby)
n—oo n—oo

= p(a Vb)) + plaAD).

(ii)=-(iii). Let a,b € N. For € > 0, we have ¢,d € M, such that a < ¢,b < d,
f(a) > p(c) —e/2 and fi(b) > f(d) — €/2. Thus,

fila) + i(b) + & > fi(e) + id)

> p(evd)+p(eNd)

> L(aVb)+ (e AD).

Since ¢ is arbitrary, we have

fi(a) + i(b) > ilaV'b) + i(anb). O

Concluding Remark

If we take M to be a sublattice of L (L being locally complete o-continuous
lattice) and consider a nonnegative extended real-valued p, then Lemma 3.1,
Theorem 3.1, Theorem 3.2 remain valid provided v is a finite measure (obviously
then p(a;) < oo would be needed in Definition 3.1(iv)). However, for the
extension of  on M to N we need to take the top element 1 in M. In view of
Theorem 3.4, if u is submodular then g is submodular.

Since (P(X), C), (I, <) (where I is the closed unit interval [0, 1] of the real
line R), and (L%, <) (provided L is a locally complete o-continuous lattice)
are locally complete o-continuous lattices, the present study provides a unified
approach for classical theory, popular fuzzy theory and theory of L-fuzzy sets.
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