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ANTIEIGENVECTORS OF THE GENERALIZED
EIGENVALUE PROBLEM AND AN OPERATOR

INEQUALITY COMPLEMENTARY TO SCHWARZ’S
INEQUALITY

Kallol Paul1

Abstract. We study the antieigenvectors of the generalized eigenvalue
problem Af = λBf by using the concept of stationary vectors and then
obtain an operator inequality complementary to Schwarz’s inequality in
Hilbert space.
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1. Introduction

Let A and B be two bounded linear operators on a complex Hilbert space
Gustafson [6] and H. Krein [10] have studied the concept of antieigenvalue for
the eigenvalue problem Af = λf which is denoted as µ1(A) and is defined as
follows :

µ1(A) = min {Re
(Af, f)
‖f‖‖Af‖ : f ∈ H, f 6= 0 }.

Gustafson calls µ1(A) the first antieigenvalue of A and f the corresponding
antieigenvector. Davis [3] and Mirman [11] have also studied µ1(A). In [2]
we studied the structure of the antieigenvectors of a strictly accretive operator
and in [9] we calculated the bounds for total antieigenvalue of a normal oper-
ator. Extending the idea of Krein [10] and Gustafson [6] we here define the
antieigenvalue for the generalized eigenvalue problem Af = λBf assuming

µ1(A,B) = min { Re
(Af, Bf)
‖Bf‖‖Af‖ : f ∈ H, Af 6= 0, Bf 6= 0 },

that inf { Re(Af, Bf) / (‖Af‖ ‖Bf‖) } is attained at a vector f if the space
is infinite dimensional. We call µ1(A,B) the generalized antieigenvalue and f
the generalized antieigenvector.
To study the generalized antieigenvectors we use the concept of stationary vector
studied by Das in [1], the definition of which is given below:
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Definition 1. Stationary vector.
Let φ(f) be a functional of a unit vector f ∈ H. Then φ(f) is said to have a
stationary value at f if the function wg(t) of a real variable t, defined as

wg(t) = φ(
f + tg

‖f + tg‖ )

has a stationary value at t = 0 for any arbitrary but fixed vector g ∈ H. The
vector f is then called a stationary vector.

From now onwards, (A, B) will denote the generalized eigenvalue problem Af =
λBf . So (A∗, B∗) denotes the generalized eigenvalue problem A∗f = λB∗f.

2. Structure of generalized antieigenvectors

We write

Φ(f) = Re
(Af, Bf)
‖Bf‖‖Af‖ ; f ∈ H, Af 6= 0, Bf 6= 0.

and find the necessary and sufficient condition for a unit vector f to be a sta-
tionary vector of Φ(f).
For this we define

wg(t) =
( (A∗B+B∗A)

2 (f + tg), f + tg )
2

‖A(f + tg)‖ 2 ‖B(f + tg)‖ 2

where g is an arbitrary but fixed vector of H.
If f is a stationary vector then we have w′g(0) = 0 and so we get

‖Af‖2‖Bf‖2 · 2(A∗B+B∗A
2 f, f) ·

{
(A∗B+B∗A

2 f, g)

+(A∗B+B∗A
2 g, f)

}
−

(
A∗B+B∗A

2 f, f
)2

·
{
‖Af‖2((Bf, Bg) + (Bg,Bf)) + ‖Bf‖2((Af, Ag) + (Ag, Af))

}
= 0.

As g is arbitrary we get

‖Af‖2 ‖Bf‖2 2( A∗B+B∗A
2 ) f−

( A∗B+B∗A
2 f, f) { ‖Af‖2B∗Bf + ‖Bf‖2A∗Af } = 0.

⇒ ‖Af‖2 ‖Bf‖2 ( A∗B + B∗A ) f−
( A∗B+B∗A

2 f, f) { ‖Af‖2B∗Bf + ‖Bf‖2A∗Af } = 0.

This is the necessary and sufficient condition for Φ(f) to be stationary at a
vector f .
We then prove the following theorem :
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Theorem 1. Suppose A∗B = B∗A and f be a generalized antieigenvector of
(A,B). Then Bf can be expressed as a linear combination of two generalized
eigenvectors of (A∗, B∗).
If further B is invertible then f can be expressed as the linear combination of
two generalized eigenvectors of (A, B).

Proof. As f is a generalized antieigenvector, in particular, a stationary vector
of Φ(f), we have the necessary and sufficient condition for f to be a stationary
vector of Φ(f)

‖Af‖2 ‖Bf‖2 ( A∗B + B∗A ) f−
( A∗B+B∗A

2 f, f) { ‖Af‖2B∗Bf + ‖Bf‖2A∗Af } = 0.

As A∗B = B∗A we get

‖Af‖2 ‖Bf‖2 2 A∗B f − ( A∗B f, f) { ‖Af‖2B∗Bf + ‖Bf‖2A∗Af } = 0.

Let Af = λBf + h where (Bf, h) = 0, then ‖Af‖2 − | (Af, Bf) | 2

(Bf, Bf)
= ‖h‖2.

Now

A∗Af − ‖Af‖2
(A∗Bf, f)

A∗Bf =
‖Af‖2

(A∗Bf, f)
A∗Bf − ‖Af‖2

‖Bf‖2 B∗Bf

⇒ A∗Af − ‖Af‖
‖Bf‖Φ(f)

A∗Bf ± ‖h‖
‖Bf‖Φ(f)

A∗Bf =

± ‖h‖
‖Bf‖Φ(f)

A∗Bf +
‖Af‖

‖Bf‖Φ(f)
A∗Bf − ‖Af‖2

‖Bf‖2 B∗Bf.

⇒ A∗ [ Af − ‖Af‖
‖Bf‖Φ(f)

Bf ± ‖h‖
‖Bf‖Φ(f)

Bf ] =

‖Af‖ ± ‖h‖
Φ(f)‖Bf‖ B∗ [ Af − ‖Af‖

‖Bf‖Φ(f)
Bf ± ‖h‖

‖Bf‖Φ(f)
Bf ].

Let

g1 = Af − ‖Af‖ − ‖h‖
‖Bf‖ Φ(f)

Bf , λ1 =
‖Af‖+ ‖h‖
‖Bf‖ Φ(f)

and

g2 = Af − ‖Af‖+ ‖h‖
‖Bf‖ Φ(f)

Bf , λ2 =
‖Af‖ − ‖h‖
‖Bf‖ Φ(f)

.

Then A∗g1 = λ1B
∗g1 and A∗g2 = λ2B

∗g2 so that g1 and g2 are two eigenvectors
of the equation A∗f = λB∗f with eigenvalues λ1 and λ2 respectively.
Then

Bf =
‖Bf‖ Φ(f)

2 ‖h‖ (g1 − g2) .

If B is invertible then for any g ∈ H we have

(A∗ − λB∗)g = 0 ⇔ (A− λB)B−1g = 0 .
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So
A(B−1g1) = λ1B(B−1g1), A(B−1g2) = λ2B(B−1g2)

and

f =
‖Bf‖Φ(f)

2‖h‖ (B−1g1 −B−1g2) .

This completes the proof of the theorem. 2

3. An inequality complementary to Schwarz’s inequality

Here we develop an inequality complementary to Schwarz’s inequality in
Hilbert space. With Schwarz’s inequality we always have

∀f ∈ H (Af, Af)(Bf,Bf) ≥ | (Af, Bf) |2.
We reverse the sign of inequality and then improve it under some restrictions
on A and B. Assuming A and B to be positive and permutable Greub and
Rheinboldt [5] proved that if 0 < m1I ≤ A ≤ M1I and 0 < m2I ≤ B ≤ M2I
then for all f ∈ H

(I) (Af, Af)(Bf, Bf) ≤ (M1M2 + m1m2)
2

4M1M2m1m2
(Af, Bf)2

With the same assumtions Diaz J.B. and Metcalf F.T. [4] improved on the
inequality to prove that for all f ∈ H,

(II) m1M1(Bf,Bf) + m2M2(Af,Af) ≤ (M1M2 + m1m2)(Af, Bf).

Greub and Rheinboldt [5] also proved the generalized Kantorovich inequality
which states that if C is a positive operator with 0 < mI ≤ C ≤ MI then for
all f ∈ H

(III) (Cf, f)(C−1f, f) ≤ (M + m)2

4mM
(f, f)2

and they also proved that inequalities (I) and (III) are equivalent.
Instead of assuming A and B to be positive and permutable we only assume
here that A∗B is positive and prove that for all f ∈ H

(IV) (Af, Af)(Bf,Bf) ≤ (M + m)2

4mM
(Af, Bf)2

where m and M are the least and greatest generalized eigenvalues of (A∗, B∗).
We then show that inequalities (III) and (IV) are equivalent. We first prove the
following theorem :

Theorem 2. Suppose m and M are the least and greatest generalized eigen-
values of (A∗, B∗).
Then

∀f ∈ H 4mM (Af, Af)(Bf, Bf) ≤ (M + m)2(Af, Bf)2.
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Proof. If f is a generalized antieigenvector then we have by previous theorem
A∗g1 = λ1B

∗g1 and A∗g2 = λ2B
∗g2 where

g1 = Af − ‖Af‖ − ‖h‖
‖Bf‖ Φ(f)

Bf , λ1 =
‖Af‖+ ‖h‖
‖Bf‖ Φ(f)

and

g2 = Af − ‖Af‖+ ‖h‖
‖Bf‖ Φ(f)

Bf , λ2 =
‖Af‖ − ‖h‖
‖Bf‖ Φ(f)

.

So

λ1 + λ2 =
2‖Af‖

Φ(f)‖Bf‖ and
√

λ1λ2 =
(Af, Bf)

Φ(f)‖Bf‖2 .

Also
2
√

λ1λ2

λ1 + λ2
=

(Af, Bf)
‖Af‖‖Bf‖ = Φ(f).

Let
u =

λ1

λ2
, λ1 > λ2.

Then

F (u) =
2
√

λ1λ2

λ1 + λ2

=
2√

λ1
λ2

+
√

λ2
λ1

=
2√

u + 1√
u

is a decreasing function of u so that F (u) attains its minimum at the maxi-
mum value of u. Hence if m and M are the least and the greatest generalized
eigenvalues of (A∗, B∗) then

min
Af,Bf 6=0

(Af, Bf)
‖Af‖‖Bf‖ =

2
√

mM

m + M

⇒ (Af, Bf)2

‖Af‖2‖Bf‖2 ≥ 4mM

(m + M)2
,

where f ∈ H is such that Af 6= 0, Bf 6= 0.
Thus we get

∀f ∈ H 4mM (Af,Af)(Bf, Bf) ≤ (M + m)2(Af,Bf)2.

This completes the proof. 2

Now we show that inequalities (III) and (IV) are equivalent.
Inequality (III) clearly follows from (IV) by taking A = C

1
2 and B = C

−1
2 . For
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the other part we have A∗B > 0 and so B is invertible. Let C = AB−1. Then
C∗ = (B−1)∗A∗ = (B−1)∗(A∗B)B−1 so that C > 0.
As m and M are the least and greatest eigenvalues of (B−1)∗A∗ = C∗ = C so
we get by inequality (III)

(Cf, f)(C−1f, f) ≤ (M + m)2

4mM
(f, f)2 ∀f ∈ H .

Substituting g = C
1
2 h we get

∀h ∈ H (CC
1
2 h,C

1
2 h)(C−1C

1
2 h,C

1
2 h) ≤ (M + m)2

4mM
(C

1
2 h,C

1
2 h)

2
.

So we get

∀h ∈ H (Ch,Ch)(h, h) ≤ (M + m)2

4mM
(Ch, h)2.

Again substituting h = Bg we get

∀g ∈ H (Ag,Ag)(Bg,Bg) ≤ (M + m)2

4mM
(Ag, Bg)2.

Thus the inequalities (III) and (IV) are equivalent.
Also the inequality (I) can be deduced easily from inequality (IV), for if A, B
are selfadjoint with AB = BA, 0 < m1I ≤ A ≤ M1I , 0 < m2I ≤ B ≤ M2I
then m1

M2
and M1

m2
are the least and greatest real eigenvalues of Af = λBf so

that

min
Af,Bf 6=0

(Af,Bf)
‖Af‖‖Bf‖ =

2
√

m1m2M1M2

m1m2 + M1M2
.

Thus we get

∀f ∈ H (Af, Af)(Bf, Bf) ≤ (M1M2 + m1m2)
2

4M1M2m1m2
(Af,Bf)2.

The inequality (II) by Diaz J.B. and Metcalf F.T. stated earlier is better than
our inequality but with more restrictions on operators A and B.
We finally give an easy example of two operators A and B for which inequality
(IV) holds but inequality (I) is not applicable.

Example 1. Let

A =
(

1 0
1 −2

)

and

B =
(

1 1
0 −1

)
.

Then A 6= A∗ and B 6= B∗. Also AB 6= BA. But A∗B > 0 so that inequality
(IV) holds to give

∀f ∈ H (Af, Af)(Bf, Bf) ≤ 2(Af,Bf)2.

Clearly, inequality (I) is not applicable.
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From this example we can conclude that inequality (IV) is applicable to a
larger class of operators than inequality (I).
I thank a referee for pointing out the additional references [7, 8, 12], the first
for history and background on antieigenvalue theory, the second and third also
treating the generalized eigenvalue problem, each with somewhat different per-
spective.
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