NOVI SAD J. MATH. Vol. 38, No. 2, 2008, 25-31

ANTIEIGENVECTORS OF THE GENERALIZED EIGENVALUE PROBLEM AND AN OPERATOR INEQUALITY COMPLEMENTARY TO SCHWARZ'S INEQUALITY

Kallol Paul¹

Abstract. We study the antieigenvectors of the generalized eigenvalue problem $Af = \lambda Bf$ by using the concept of stationary vectors and then obtain an operator inequality complementary to Schwarz's inequality in Hilbert space.

AMS Mathematics Subject Classification (2000): 47A63,47A75 Key words and phrases: Antieigenvectors

1. Introduction

Let A and B be two bounded linear operators on a complex Hilbert space Gustafson [6] and H. Krein [10] have studied the concept of antieigenvalue for the eigenvalue problem $Af = \lambda f$ which is denoted as $\mu_1(A)$ and is defined as follows :

$$\mu_1(A) = \min \{ Re \ \frac{(Af, f)}{\|f\| \|Af\|} : f \in H, \ f \neq 0 \}.$$

Gustafson calls $\mu_1(A)$ the first antieigenvalue of A and f the corresponding antieigenvector. Davis [3] and Mirman [11] have also studied $\mu_1(A)$. In [2] we studied the structure of the antieigenvectors of a strictly accretive operator and in [9] we calculated the bounds for total antieigenvalue of a normal operator. Extending the idea of Krein [10] and Gustafson [6] we here define the antieigenvalue for the generalized eigenvalue problem $Af = \lambda Bf$ assuming

$$\mu_1(A,B) = \min \{ Re \ \frac{(Af,Bf)}{\|Bf\|\|Af\|} : f \in H, Af \neq 0, Bf \neq 0 \},\$$

that $inf \{ Re(Af, Bf) / (||Af|| ||Bf||) \}$ is attained at a vector f if the space is infinite dimensional. We call $\mu_1(A, B)$ the generalized antieigenvalue and f the generalized antieigenvector.

To study the generalized antieigenvectors we use the concept of stationary vector studied by Das in [1], the definition of which is given below:

 $^{^1 \}rm Reader$ in Mathematics, Department of Mathematics, Jadav
pur University, Kolkata 700032, INDIA, e-mail: kalloldada@yahoo.co.in, kpaul@math.jdvu.ac.in

Definition 1. Stationary vector.

Let $\phi(f)$ be a functional of a unit vector $f \in H$. Then $\phi(f)$ is said to have a stationary value at f if the function $w_g(t)$ of a real variable t, defined as

$$w_g(t) = \phi(\frac{f + tg}{\|f + tg\|})$$

has a stationary value at t = 0 for any arbitrary but fixed vector $g \in H$. The vector f is then called a stationary vector.

From now onwards, (A, B) will denote the generalized eigenvalue problem $Af = \lambda Bf$. So (A^*, B^*) denotes the generalized eigenvalue problem $A^*f = \lambda B^*f$.

2. Structure of generalized antieigenvectors

We write

$$\Phi(f) = Re \ \frac{(Af, Bf)}{\|Bf\| \|Af\|} \ ; \ f \in H, \ Af \neq 0, \ Bf \neq 0.$$

and find the necessary and sufficient condition for a unit vector f to be a stationary vector of $\Phi(f)$.

For this we define

$$w_{g}(t) \; = \; \frac{\left(\begin{array}{c} (A^{*}B+B^{*}A) \\ 2 \end{array} (f+tg), f+tg \end{array} \right)^{2}}{\left\| A(f+tg) \right\|^{2} \ \left\| B(f+tg) \right\|^{2}}$$

where g is an arbitrary but fixed vector of H. If f is a stationary vector then we have $w'_g(0) = 0$ and so we get

$$\begin{split} \|Af\|^2 \|Bf\|^2 \cdot 2(\frac{A^*B+B^*A}{2}f,f) \cdot \left\{ (\frac{A^*B+B^*A}{2}f,g) + (\frac{A^*B+B^*A}{2}g,f) \right\} - \left(\frac{A^*B+B^*A}{2}f,f\right)^2 \cdot \\ \left\{ \|Af\|^2 ((Bf,Bg) + (Bg,Bf)) + \|Bf\|^2 ((Af,Ag) + (Ag,Af)) \right\} = 0. \end{split}$$

As g is arbitrary we get

$$\begin{split} \|Af\|^2 \|Bf\|^2 & 2(\frac{A^*B+B^*A}{2}) f - \\ & (\frac{A^*B+B^*A}{2} - f, f) \{ \|Af\|^2 B^*Bf + \|Bf\|^2 A^*Af \} = 0. \\ & \Rightarrow \|Af\|^2 \|Bf\|^2 (A^*B + B^*A) f - \\ & (\frac{A^*B+B^*A}{2} - f, f) \{ \|Af\|^2 B^*Bf + \|Bf\|^2 A^*Af \} = 0. \end{split}$$

This is the necessary and sufficient condition for $\Phi(f)$ to be stationary at a vector f.

We then prove the following theorem :

Antieigenvectors of the generalized eigenvalue problem ...

Theorem 1. Suppose $A^*B = B^*A$ and f be a generalized antieigenvector of (A, B). Then Bf can be expressed as a linear combination of two generalized eigenvectors of (A^*, B^*) .

If further B is invertible then f can be expressed as the linear combination of two generalized eigenvectors of (A, B).

Proof. As f is a generalized antieigenvector, in particular, a stationary vector of $\Phi(f)$, we have the necessary and sufficient condition for f to be a stationary vector of $\Phi(f)$

$$\|Af\|^{2} \|Bf\|^{2} (A^{*}B + B^{*}A) f - (\frac{A^{*}B + B^{*}A}{2} f, f) \{ \|Af\|^{2}B^{*}Bf + \|Bf\|^{2}A^{*}Af \} = 0$$

As $A^*B = B^*A$ we get

$$\|Af\|^{2} \|Bf\|^{2} 2 A^{*}B f - (A^{*}B f, f) \{ \|Af\|^{2}B^{*}Bf + \|Bf\|^{2}A^{*}Af \} = 0.$$

Let $Af = \lambda Bf + h$ where $(Bf, h) = 0$, then $\|Af\|^{2} - \frac{|(Af, Bf)|^{2}}{(Bf, Bf)} = \|h\|^{2}$.

Now

$$\begin{split} A^*Af \ - \ \frac{\|Af\|^2}{(A^*Bf,f)} \ A^*Bf \ &= \ \frac{\|Af\|^2}{(A^*Bf,f)} \ A^*Bf \ - \ \frac{\|Af\|^2}{\|Bf\|^2} B^*Bf \\ \Rightarrow \ A^*Af \ - \ \frac{\|Af\|}{\|Bf\|\Phi(f)} A^*Bf \pm \ \frac{\|h\|}{\|Bf\|\Phi(f)} A^*Bf = \\ &\pm \frac{\|h\|}{\|Bf\|\Phi(f)} A^*Bf + \frac{\|Af\|}{\|Bf\|\Phi(f)} A^*Bf \ - \ \frac{\|Af\|^2}{\|Bf\|^2} B^*Bf. \\ \Rightarrow \ A^* \ [Af \ - \ \frac{\|Af\|}{\|Bf\|\Phi(f)} Bf \pm \ \frac{\|h\|}{\|Bf\|\Phi(f)} Bf \ = \\ &\frac{\|Af\| \pm \|h\|}{\|Bf\|\Phi(f)} Bf \ \pm \ \frac{\|h\|}{\|Bf\|\Phi(f)} Bf \] = \\ &\frac{\|Af\| \pm \|h\|}{\Phi(f)\|Bf\|} B^* \ [Af \ - \ \frac{\|Af\|}{\|Bf\|\Phi(f)} Bf \ \pm \ \frac{\|h\|}{\|Bf\|\Phi(f)} Bf \ \pm \ \frac{\|h\|}{\|Bf\|\Phi(f)} Bf \]. \end{split}$$

Let

$$g_1 = Af - \frac{\|Af\| - \|h\|}{\|Bf\| \Phi(f)} Bf , \ \lambda_1 = \frac{\|Af\| + \|h\|}{\|Bf\| \Phi(f)}$$

and

$$g_2 = Af - \frac{\|Af\| + \|h\|}{\|Bf\| \Phi(f)} Bf , \quad \lambda_2 = \frac{\|Af\| - \|h\|}{\|Bf\| \Phi(f)}$$

Then $A^*g_1 = \lambda_1 B^*g_1$ and $A^*g_2 = \lambda_2 B^*g_2$ so that g_1 and g_2 are two eigenvectors of the equation $A^*f = \lambda B^*f$ with eigenvalues λ_1 and λ_2 respectively. Then

$$Bf = \frac{\|Bf\| \Phi(f)}{2 \|h\|} (g_1 - g_2) .$$

If B is invertible then for any $g \in H$ we have

$$(A^* - \lambda B^*)g = 0 \iff (A - \lambda B)B^{-1}g = 0$$

 So

28

$$A(B^{-1}g_1) = \lambda_1 B(B^{-1}g_1), \quad A(B^{-1}g_2) = \lambda_2 B(B^{-1}g_2)$$

and

$$f = \frac{\|Bf\|\Phi(f)}{2\|h\|} (B^{-1}g_1 - B^{-1}g_2)$$

This completes the proof of the theorem.

3. An inequality complementary to Schwarz's inequality

Here we develop an inequality complementary to Schwarz's inequality in Hilbert space. With Schwarz's inequality we always have

$$\forall f \in H \ (Af, Af)(Bf, Bf) \ge | \ (Af, Bf) |^2.$$

We reverse the sign of inequality and then improve it under some restrictions on A and B. Assuming A and B to be positive and permutable Greub and Rheinboldt [5] proved that if $0 < m_1 I \le A \le M_1 I$ and $0 < m_2 I \le B \le M_2 I$ then for all $f \in H$

(I)
$$(Af, Af)(Bf, Bf) \le \frac{(M_1M_2 + m_1m_2)^2}{4M_1M_2m_1m_2} (Af, Bf)^2$$

With the same assumptions Diaz J.B. and Metcalf F.T. [4] improved on the inequality to prove that for all $f \in H$,

(II)
$$m_1 M_1(Bf, Bf) + m_2 M_2(Af, Af) \le (M_1 M_2 + m_1 m_2)(Af, Bf).$$

Greub and Rheinboldt [5] also proved the generalized Kantorovich inequality which states that if C is a positive operator with $0 < mI \le C \le MI$ then for all $f \in H$

(III)
$$(Cf, f)(C^{-1}f, f) \le \frac{(M+m)^2}{4mM}(f, f)^2$$

and they also proved that inequalities (I) and (III) are equivalent. Instead of assuming A and B to be positive and permutable we only assume here that A^*B is positive and prove that for all $f \in H$

(IV)
$$(Af, Af)(Bf, Bf) \le \frac{(M+m)^2}{4mM}(Af, Bf)^2$$

where m and M are the least and greatest generalized eigenvalues of (A^*, B^*) . We then show that inequalities (III) and (IV) are equivalent. We first prove the following theorem :

Theorem 2. Suppose m and M are the least and greatest generalized eigenvalues of (A^*, B^*) .

Then

$$\forall f \in H \ 4mM \ (Af, Af)(Bf, Bf) \le (M+m)^2 (Af, Bf)^2.$$

Proof. If f is a generalized antieigenvector then we have by previous theorem $A^*g_1 = \lambda_1 B^*g_1$ and $A^*g_2 = \lambda_2 B^*g_2$ where

$$g_1 = Af - \frac{\|Af\| - \|h\|}{\|Bf\| \Phi(f)} Bf , \quad \lambda_1 = \frac{\|Af\| + \|h\|}{\|Bf\| \Phi(f)}$$

and

$$g_2 = Af - \frac{\|Af\| + \|h\|}{\|Bf\| \Phi(f)} Bf, \quad \lambda_2 = \frac{\|Af\| - \|h\|}{\|Bf\| \Phi(f)}$$

 So

$$\lambda_1 + \lambda_2 = \frac{2\|Af\|}{\Phi(f)\|Bf\|}$$
 and $\sqrt{\lambda_1\lambda_2} = \frac{(Af, Bf)}{\Phi(f)\|Bf\|^2}$.

Also

$$\frac{2\sqrt{\lambda_1\lambda_2}}{\lambda_1+\lambda_2} = \frac{(Af,Bf)}{\|Af\|\|Bf\|} = \Phi(f).$$

Let

$$u = \frac{\lambda_1}{\lambda_2} , \ \lambda_1 > \lambda_2.$$

Then

$$F(u) = \frac{2\sqrt{\lambda_1\lambda_2}}{\lambda_1 + \lambda_2}$$
$$= \frac{2}{\sqrt{\frac{\lambda_1}{\lambda_2} + \sqrt{\frac{\lambda_2}{\lambda_1}}}}$$
$$= \frac{2}{\sqrt{u} + \frac{1}{\sqrt{u}}}$$

is a decreasing function of u so that F(u) attains its minimum at the maximum value of u. Hence if m and M are the least and the greatest generalized eigenvalues of (A^*, B^*) then

$$\min_{Af,Bf\neq 0} \frac{(Af,Bf)}{\|Af\| \|Bf\|} = \frac{2\sqrt{mM}}{m+M} \Rightarrow \frac{(Af,Bf)^2}{\|Af\|^2 \|Bf\|^2} \geq \frac{4mM}{(m+M)^2} ,$$

where $f \in H$ is such that $Af \neq 0$, $Bf \neq 0$. Thus we get

$$\forall f \in H \ 4mM \ (Af, Af)(Bf, Bf) \le (M+m)^2 (Af, Bf)^2.$$

This completes the proof.

Now we show that inequalities (III) and (IV) are equivalent. Inequality (III) clearly follows from (IV) by taking $A = C^{\frac{1}{2}}$ and $B = C^{\frac{-1}{2}}$. For

the other part we have $A^*B > 0$ and so B is invertible. Let $C = AB^{-1}$. Then $C^* = (B^{-1})^*A^* = (B^{-1})^*(A^*B)B^{-1}$ so that C > 0.

As m and M are the least and greatest eigenvalues of $(B^{-1})^* A^* = C^* = C$ so we get by inequality (III)

$$(Cf, f)(C^{-1}f, f) \le \frac{(M+m)^2}{4mM}(f, f)^2 \ \forall f \in H$$
.

Substituting $g = C^{\frac{1}{2}}h$ we get

$$\forall h \in H \ (CC^{\frac{1}{2}}h, C^{\frac{1}{2}}h)(C^{-1}C^{\frac{1}{2}}h, C^{\frac{1}{2}}h) \le \frac{(M+m)^2}{4mM}(C^{\frac{1}{2}}h, C^{\frac{1}{2}}h)^2.$$

So we get

$$\forall h \in H \ (Ch, Ch)(h, h) \leq \frac{(M+m)^2}{4mM} (Ch, h)^2.$$

Again substituting h = Bg we get

$$\forall g \in H \ (Ag, Ag)(Bg, Bg) \le \frac{(M+m)^2}{4mM} (Ag, Bg)^2.$$

Thus the inequalities (III) and (IV) are equivalent.

Also the inequality (I) can be deduced easily from inequality (IV), for if A, B are selfadjoint with AB = BA, $0 < m_1I \le A \le M_1I$, $0 < m_2I \le B \le M_2I$ then $\frac{m_1}{M_2}$ and $\frac{M_1}{m_2}$ are the least and greatest real eigenvalues of $Af = \lambda Bf$ so that

$$\min_{Af,Bf\neq 0} \quad \frac{(Af,Bf)}{\|Af\| \|Bf\|} = \frac{2\sqrt{m_1 m_2 M_1 M_2}}{m_1 m_2 + M_1 M_2}$$

Thus we get

$$\forall f \in H \ (Af, Af)(Bf, Bf) \le \frac{(M_1M_2 + m_1m_2)^2}{4M_1M_2m_1m_2} (Af, Bf)^2.$$

The inequality (II) by Diaz J.B. and Metcalf F.T. stated earlier is better than our inequality but with more restrictions on operators A and B.

We finally give an easy example of two operators A and B for which inequality (IV) holds but inequality (I) is not applicable.

Example 1. Let

$$A = \left(\begin{array}{cc} 1 & 0\\ 1 & -2 \end{array}\right)$$

and

$$B = \left(\begin{array}{cc} 1 & 1\\ 0 & -1 \end{array}\right).$$

Then $A \neq A^*$ and $B \neq B^*$. Also $AB \neq BA$. But $A^*B > 0$ so that inequality (IV) holds to give

$$\forall f \in H \ (Af, Af)(Bf, Bf) \le 2(Af, Bf)^2.$$

Clearly, inequality (I) is not applicable.

From this example we can conclude that inequality (IV) is applicable to a larger class of operators than inequality (I).

I thank a referee for pointing out the additional references [7, 8, 12], the first for history and background on antieigenvalue theory, the second and third also treating the generalized eigenvalue problem, each with somewhat different perspective.

Acknowledgement

The author thanks Professor K.C. Das and Professor T.K. Mukherjee for their invaluable suggestions while preparing this paper. A part of the research work was done by the author during PhD Dissertation.

References

- Das, K. C., Stationary distance vectors and their relation with eigenvectors. Science Academy Medals for Young Scientists-Lectures (1978), 44-52.
- [2] Das, K. C., DasGupta M., Paul, K., Structure of the antieigenvectors of a strictly accretive operator. Internat. J. Math. and Math. Sci. vol. 21 No. 4 (1998), 761-766.
- [3] Davis, Ch., Extending the Kantorovich inequality to normal matrices. Linear Algand its Appl. 31 (1980), 173-177.
- [4] Diaz, J. B., Metcalf, F. T., Complementary inequalities III: Inequalities Complementary to Schwarz's inequality in Hilbert space. Math. Annalen 162 (1965), 120-139.
- [5] Greub, W., Rheinboldt, W., On a generalization of an inequality of L.V. Kantorovich. Proc. Amer. Math. Soc. 10 (1959), 407-415.
- [6] Gustafson, K., Antieigenvalue inequalities in operator theory in inequalities. O. Shisha ed. vol. III, New York: Academic 1972, 115-119.
- [7] Gustafson, K., Rao, D. K. M., Numerical Range. Springer 1997.
- [8] Gustafson, K., Interaction antieigenvalues. J. Math. Anal. Applic. 299 (2004), 174-185.
- [9] Hossein, Sk. M., Das, K.C., Debanth, L., Paul, K., Bounds for total antieigenvalue of a normal operator. Internat. J. Math. and Math. Sci. (2004), 3877-3884.
- [10] Krein, M. G., Angular localization of the spectrum of a multiplicative integral in Hilbert space. Functional Anal. and its Appl. 3 (1969), 73-74.
- [11] Mirman, B., Antieigenvalues: Method of Estimation and calculation. Linear Alg. and its Appl. 49 (1983), 247-255.
- [12] Seddighin, M., On the joint antieigenvalues of operators on normed subalgebras. J. Math. Anal. Applic. 312 (2005), 61-71.

Received by the editors August 14, 2007