NOVI SAD J. MATH. Vol. 38, No. 2, 2008, 47-56

WEAKLY λ -CONTINUOUS FUNCTIONS

E. Ekici¹, S. Jafari², M. Caldas³ and T. Noiri⁴

Abstract. It is the objective of this paper to introduce a new class of generalizations of continuous functions via λ -open sets called weakly λ -continuous functions. Moreover, we study some of its fundamental properties. It turns out that weak λ -continuity is weaker than λ -continuity [1].

AMS Mathematics Subject Classification (2000): 54C10, 54D10

Key words and phrases: $\lambda\text{-}closed$ sets, weak continuity, weakly $\lambda\text{-}continuous$ functions

1. Introduction

Maki [13] offered a new and useful notion in the field of topology which he called a Λ -set. A Λ -set is a set A which is equal to its kernel (= saturated set), i.e. to the intersection of all open supersets of A. Arenas et al. [1] introduced and investigated the notion of λ -closed sets by involving Λ -sets and closed sets. By utilizing λ -closed sets, they introduced and to some extent investigated the notion of λ -closed sets (see for example [2], [3], [4], [10], [5] and [7]).

In this paper, we establish a new class of functions called weakly λ -continuous functions which is weaker than λ -continuous functions. We also investigate some of the fundamental properties of this type of functions.

Throughout the paper a space will always mean a topological space on which no separation axioms are assumed unless explicitly stated.

Definition 1. A subset A of a space (X, τ) is called

(1) a Λ -set [13] if it is equal to its kernel (= saturated set), i.e. to the intersection of all open supersets of A.

(2) λ -closed [1] if $A = B \cap C$, where B is a Λ -set and C is a closed set.

(3) λ -open [2] if $X \setminus A$ is λ -closed.

¹Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, TURKEY, e-mail: eekici@comu.edu.tr

 $^{^2 {\}rm College}$ of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, DENMARK, e-mail: jafari@stofanet.dk

³Departamento de Matemática Aplicada, Universidade Federal Fluminense, Rua Mário Santos Braga, s/n, 24020-140, Niterói, RJ-BRASIL, e-mail: gmamccs@vm.uff.br

 $^{^{4}2949\}text{-}1$ Shiokita-cho, Hinagu, Yatsushiro-shi, Kumomoto-ken, 869-5142 JAPAN, e-mail: t.noiri@nifty.com

The family of all λ -open subsets of a space (X, τ) shall be denoted by $\lambda O(X)$. A point $x \in X$ is called λ -cluster point of a subset $A \subset X$ [2] if for every λ -open set B of X containing $x, A \cap B \neq \emptyset$. The set of all λ -cluster points is called the λ -closure of A [3] and is denoted by $Cl_{\lambda}(A)$. A point $x \in X$ is said to be a λ -interior point of a subset $A \subset X$ [2] if there exists a λ -open set B containing x such that $B \subset A$. The set of all λ -interior points of A is said to be λ -interior of A and is denoted by $Int_{\lambda}(A)$.

Definition 2. A subset A is said to be

(1) preopen [14] if $A \subset Int(Cl(A))$.

(2) semiopen [11] if $A \subset Cl(Int(A))$.

(3) regular open [17] (resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))).

Lemma 1.1. ([2]) Let A be a subset of a space X. Then (1) A is λ -closed in X if and only if $A = Cl_{\lambda}(A)$. (2) $Cl_{\lambda}(X \setminus A) = X \setminus Int_{\lambda}(A)$. (3) $Cl_{\lambda}(A)$ is λ -closed in X.

Definition 3. A function $f : X \to Y$ is said to be λ -continuous [1, 2] if $f^{-1}(A) \in \lambda O(X)$ for each open set A of Y.

Definition 4. A subset A of a space X is called a generalized closed set (briefly g-closed) [12] if $Cl(A) \subset B$ whenever $A \subset B$ and B is open. A is called g-open if its complement is g-closed.

A space X is called locally indiscrete [15] if every open set is closed. Recall that a space is rim-compact if it has a basis of open sets with compact boundaries. The graph of a function $f : X \to Y$, denoted by G(f), is the subset $\{(x, f(x)) : x \in X\}$ of the product space $X \times Y$. A subset A of a space X is said to be N-closed relative to X [6] if for each cover $\{B_i : i \in I\}$ of A by open sets of X, there exists a finite subfamily $I_0 \subset I$ such that $A \subset \bigcup_{i \in I_0} Int(Cl(B_i))$.

2. Weakly λ -continuous functions

Definition 5. A function $f : X \to Y$ is said to be weakly λ -continuous at $x \in X$ if for each open set V of Y containing f(x), there exists a λ -open set U containing x such that $f(U) \subset Cl(V)$. If for each $x \in X$, f is weakly λ -continuous at $x \in X$, f is said to be weakly λ -continuous

Theorem 2.1. For a function $f : X \to Y$, the following are equivalent: (1) f is weakly λ -continuous at $x \in X$,

(2) $x \in Int_{\lambda}(f^{-1}(Cl(U)))$ for each neighborhood U of f(x).

Proof. (1) \Rightarrow (2) : Let U be any neighborhood of f(x). Then there exists a λ -open set G containing x such that $f(G) \subset Cl(U)$. Since $G \subset f^{-1}(Cl(U))$ and G is λ -open, then $x \in G \subset Int_{\lambda}(G)) \subset Int_{\lambda}(f^{-1}(Cl(U)))$.

(2) \Rightarrow (1) : Let $x \in Int_{\lambda}(f^{-1}(Cl(U)))$ for each neighborhood U of f(x). Take $V = Int_{\lambda}(f^{-1}(Cl(U)))$. This implies that $f(V) \subset Cl(U)$ and V is λ -open. Hence, f is weakly λ -continuous at $x \in X$.

Definition 6. A function $f : X \to Y$ is said to be weakly *g*-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a *g*-open set U containing x such that $f(U) \subset Cl(V)$.

Theorem 2.2. For a function $f : X \to Y$ the following are equivalent:

(1) f is weakly continuous,

(2) f is weakly g-continuous and weakly λ -continuous.

Proof. It follows directly from Theorem 2.4 of [1].

Theorem 2.3. For a function $f : X \to Y$, the following are equivalent: (1) f is weakly λ -continuous, (2) $Cl_{\lambda}(f^{-1}(Int(Cl(V)))) \subset f^{-1}(Cl(V))$ for every subset $V \subset Y$,

(2) $Cl_{\lambda}(f^{-1}(Int(Cl(V)))) \subset f^{-1}(F)$ for every regular closed subset $F \subset Y$, (3) $Cl_{\lambda}(f^{-1}(Int(F))) \subset f^{-1}(F)$ for every regular closed subset $F \subset Y$, (4) $Cl_{\lambda}(f^{-1}(U)) \subset f^{-1}(Cl(U))$ for every open subset $U \subset Y$, (5) $f^{-1}(U) \subset Int_{\lambda}(f^{-1}(Cl(U)))$ for every open subset $U \subset Y$, (6) $Cl_{\lambda}(f^{-1}(U)) \subset f^{-1}(Cl(U))$ for each preopen subset $U \subset Y$, (7) $f^{-1}(U) \subset Int_{\lambda}(f^{-1}(Cl(U)))$ for each preopen subset $U \subset Y$.

Proof. (1) ⇒ (2) : Let V ⊂ Y and $x ∈ X \setminus f^{-1}(Cl(V))$. Then $f(x) ∈ Y \setminus Cl(V)$ and there exists an open set U containing f(x) such that $U ∩ V = \emptyset$. We have $Cl(U) ∩ Int(Cl(V)) = \emptyset$. Since f is weakly λ-continuous, then there exists a λ-open set W containing x such that f(W) ⊂ Cl(U). Then W ∩ $f^{-1}(Int(Cl(V))) = \emptyset$ and $x ∈ X \setminus Cl_{\lambda}(f^{-1}(Int(Cl(V))))$. Hence, $Cl_{\lambda}(f^{-1}(Int(Cl(V)))) ⊂ f^{-1}(Cl(V))$.

 $(2) \Rightarrow (3)$: Let F be any regular closed set in Y. Then

 $\begin{aligned} Cl_{\lambda}(f^{-1}(Int(F))) &= Cl_{\lambda}(f^{-1}(Int(Cl(Int(F))))) \subset f^{-1}(Cl(Int(F))) = f^{-1}(F). \\ (3) &\Rightarrow (4) : \text{Let } U \text{ be an open subset of } Y. \text{ Since } Cl(U) \text{ is regular closed in } Y, \text{ then } Cl_{\lambda}(f^{-1}(U)) \subset Cl_{\lambda}(f^{-1}(Int(Cl(U)))) \subset f^{-1}(Cl(U)). \end{aligned}$

 $(4) \Rightarrow (5)$: Let U be any open set of Y. Since $Y \setminus Cl(U)$ is open in Y, then $X \setminus Int_{\lambda}(f^{-1}(Cl(U))) = Cl_{\lambda}(f^{-1}(Y \setminus Cl(U))) \subset f^{-1}(Cl(Y \setminus Cl(U))) \subset X \setminus f^{-1}(U)$. Hence, $f^{-1}(U) \subset Int_{\lambda}(f^{-1}(Cl(U)))$.

 $(5) \Rightarrow (1)$: Let $x \in X$ and U be any open subset of Y containing f(x). Then $x \in f^{-1}(U) \subset Int_{\lambda}(f^{-1}(Cl(U)))$. Take $W = Int_{\lambda}(f^{-1}(Cl(U)))$. Thus $f(W) \subset Cl(U)$ and hence f is weakly λ -continuous at x in X.

 $(1) \Rightarrow (6)$: Let U be any preopen set of Y and $x \in X \setminus f^{-1}(Cl(U))$. There exists an open set G containing f(x) such that $G \cap U = \emptyset$. We have $Cl(G \cap U) = \emptyset$. Since U is preopen, then $U \cap Cl(G) \subset Int(Cl(U)) \cap Cl(G) \subset Cl(Int(Cl(U))) \cap Cl(G) \cap$

 $G) \subset Cl(Int(Cl(U) \cap G)) \subset Cl(Int(Cl(U \cap G))) \subset Cl(U \cap G) = \emptyset$. Since f is weakly λ -continuous and G is an open set containing f(x), there exists a λ -open set W in X containing x such that $f(W) \subset Cl(G)$. Then $f(W) \cap U = \emptyset$ and $W \cap f^{-1}(U) = \emptyset$. This implies that $x \in X \setminus Cl_{\lambda}(f^{-1}(U))$ and then $Cl_{\lambda}(f^{-1}(U)) \subset f^{-1}(Cl(U))$.

 $(6) \Rightarrow (7)$: Let U be any preopen set of Y. Since $Y \setminus Cl(U)$ is open in Y, then $X \setminus Int_{\lambda}(f^{-1}(Cl(U))) = Cl_{\lambda}(f^{-1}(Y \setminus Cl(U))) \subset f^{-1}(Cl(Y \setminus Cl(U))) \subset X \setminus f^{-1}(U)$. This shows that $f^{-1}(U) \subset Int_{\lambda}(f^{-1}(Cl(U)))$.

 $(7) \Rightarrow (1)$: Let $x \in X$ and U any open set of Y containing f(x). We have $x \in f^{-1}(U) \subset Int_{\lambda}(f^{-1}(Cl(U)))$. Take $W = Int_{\lambda}(f^{-1}(Cl(U)))$. Then $f(W) \subset Cl(U)$ and hence f is weakly λ -continuous at x in X.

Theorem 2.4. If $f : X \to Y$ is a weakly λ -continuous function and Y is Hausdorff, then f has λ -closed point inverses.

Proof. Let $y \in Y$ and $x \in \{x \in X : f(x) \neq y\}$. Since $f(x) \neq y$ and Y is Hausdorff, there exist disjoint open sets G_1, G_2 such that $f(x) \in G_1$ and $y \in G_2$. Since $G_1 \cap G_2 = \emptyset$, then $Cl(G_1) \cap G_2 = \emptyset$. We have $y \notin Cl(G_1)$. Since f is weakly λ -continuous, there exists a λ -open set U containing x such that $f(U) \subset Cl(G_1)$. Assume that U is not contained in $\{x \in X : f(x) \neq y\}$. There exists a point $u \in U$ such that f(u) = y. Since $f(U) \subset Cl(G_1)$, we have $y = f(u) \in Cl(G_1)$. This is a contradiction. Hence, $U \subset \{x \in X : f(x) \neq y\}$ and U is λ -open in X. This shows that $\{x \in X : f(x) \neq y\}$ is λ -open in X, equivalently $f^{-1}(y) = \{x \in X : f(x) = y\}$ is λ -closed in X.

Recall that a point $x \in X$ is said to be in the θ -closure [18] of a subset A of X, denoted by θ -Cl(G), if $Cl(G) \cap A \neq \emptyset$ for each open set G of X containing x. A is called θ -closed if $A = \theta$ -Cl(A). The complement of a θ -closed set is called θ -open.

Theorem 2.5. For a function $f : X \to Y$, the following equivalent:

(1) f is weakly λ -continuous,

(2) $f(Cl_{\lambda}(V)) \subset \theta$ -Cl(f(V)) for each subset $V \subset X$,

(3) $Cl_{\lambda}(f^{-1}(G)) \subset f^{-1}(\theta \cdot Cl(G))$ for each subset $G \subset Y$,

(4) $Cl_{\lambda}(f^{-1}(Int(\theta - Cl(G)))) \subset f^{-1}(\theta - Cl(G))$ for every subset $G \subset Y$.

Proof. (1) \Rightarrow (2) : Let $V \subset X$, $x \in Cl_{\lambda}(V)$ and U be any open set of Y containing f(x). There exists a λ -open set W containing x such that $f(W) \subset Cl(U)$. Since $x \in Cl_{\lambda}(V)$, then $W \cap V \neq \emptyset$. This implies that $\emptyset \neq f(W) \cap f(V) \subset Cl(U) \cap f(V)$ and $f(x) \in \theta$ -Cl(f(V)). Hence, $f(Cl_{\lambda}(V)) \subset \theta$ -Cl(f(V)). (2) \Rightarrow (3) : Let $G \subset Y$. Then $f(Cl_{\lambda}(f^{-1}(G))) \subset \theta$ -Cl(G) and hence

 $Cl_{\lambda}(f^{-1}(G)) \subset f^{-1}(\theta - Cl(G)).$

 $\begin{array}{l} (3) \Rightarrow (4): \text{Let } G \subset Y. \text{ Since } \theta\text{-}Cl(G) \text{ is closed in } Y, \text{ then } Cl_{\lambda}(f^{-1}(Int(\theta\text{-}Cl(G)))) \subset f^{-1}(\theta\text{-}Cl(Int(\theta\text{-}Cl(G))))) = f^{-1}(Cl(Int(\theta\text{-}Cl(G))))) \subset f^{-1}(\theta\text{-}Cl(G)). \\ (4) \Rightarrow (1): \text{Let } U \text{ be any open set of } Y. \text{ We have } U \subset Int(Cl(U)) = Int(\theta\text{-}Cl(\theta\text{-}Cl(G))) \\ \end{array}$

Cl(U)). Thus, $Cl_{\lambda}(f^{-1}(U)) \subset Cl_{\lambda}(f^{-1}(Int(\theta - Cl(U)))) \subset f^{-1}(\theta - Cl(U)) =$

 $f^{-1}(Cl(U)).$ This implies from Theorem 2.3 that f is weakly $\lambda\text{-continuous.}$ \Box

Theorem 2.6. If $f^{-1}(\theta - Cl(V))$ is λ -closed in X for every subset $V \subset Y$, then f is weakly λ -continuous.

Proof. Let $V \subset Y$. Since $f^{-1}(\theta - Cl(V))$ is λ -closed in X, then $Cl_{\lambda}(f^{-1}(V)) \subset Cl_{\lambda}(f^{-1}(\theta - Cl(V))) = f^{-1}(\theta - Cl(V))$. This implies from Theorem 2.5 that f is weakly λ -continuous.

Theorem 2.7. Let $f : X \to Y$ be a function. If f is weakly λ -continuous, then $f^{-1}(V)$ is λ -closed in X for every θ -closed subset $V \subset Y$.

Proof. Follows from Theorem 2.5.

Corollary 2.8. Let $f : X \to Y$ be a function. If f is weakly λ -continuous, then $f^{-1}(V)$ is λ -open in X for every θ -open subset $V \subset Y$.

3. The related functions

Definition 7. A function $f : X \to Y$ is said to be almost λ -continuous [10] if for each $x \in X$ and each open set A of Y containing f(x), there exists a λ -open set B containing x such that $f(B) \subset Int(Cl(A))$.

Remark 3.1. Every weakly continuous and almost λ -continuous function is weakly λ -continuous but this implication is not reversible as shown in the following example.

Example 3.2. Let $X = \{a, b, c\}$, $Y = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$, $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ defined by f(a) = a, f(b) = b, f(c) = d is weakly λ -continuous but it is neither weakly continuous nor almost λ -continuous.

Lemma 3.3. ([3]) A space X is locally indiscrete if and only if every λ -open set of X is open in X.

Theorem 3.4. Let $f : X \to Y$ be a function and X is locally indiscrete. Then the following are equivalent:

- (1) f is weakly continuous,
- (2) f is weakly λ -continuous.

Proof. It follows immediately from Lemma 3.3.

Theorem 3.5. Let $f : X \to Y$ be a function with the closed graph and Y be a rim-compact space. Suppose that $\lambda O(X)$ is closed under finite intersections. Then f is weakly λ -continuous if and only if f is λ -continuous.

Proof. It is an immediate consequence of [16].

Definition 8. A function $f: X \to Y$ is said to be

(1) (λ, s) -open if f(A) is semiopen for every λ -open subset $A \subset X$.

(2) neatly weak λ -continuous if for each $x \in X$ and each open set V of X containing f(x), there exists a λ -open set U containing x such that $Int(f(U)) \subset Cl(V)$.

Theorem 3.6. If a function $f : X \to Y$ is neatly weak λ -continuous and (λ, s) -open, then f is weakly λ -continuous.

Proof. Let $x \in X$ and V be an open subset of Y containing f(x). Since f is neatly weak λ -continuous, there exists a λ -open set U of X containing x such that $Int(f(U)) \subset Cl(V)$. Since f is (λ, s) -open, then f(U) is semiopen in Y. Then $f(U) \subset Cl(Int(f(U))) \subset Cl(V)$. Thus, f is weakly λ -continuous. \Box

Theorem 3.7. If $f : X \to Y$ is weakly λ -continuous and Y is Hausdorff, then for each $(x, y) \notin G(f)$, there exist a λ -open set $V \subset X$ and an open set $U \subset Y$ containing x and y, respectively, such that $f(V) \cap Int(Cl(U)) = \emptyset$.

Proof. Let $(x, y) \notin G(f)$. We have $y \neq f(x)$. Since Y is Hausdorff, there exist disjoint open sets U and V containing y and f(x), respectively. We have $Int(Cl(U)) \cap Cl(V) = \emptyset$. Since f is weakly λ -continuous, there exists an λ -open set G containing x such that $f(G) \subset Cl(V)$. Hence, $f(G) \cap Int(Cl(U)) = \emptyset$. \Box

Definition 9. A function $f : X \to Y$ is said to be faintly λ -continuous if for each $x \in X$ and each θ -open set V of Y containing f(x), there exists a λ -open set U containing x such that $f(U) \subset V$.

Theorem 3.8. Let $f : X \to Y$ be a function. The following are equivalent: (1) f is faintly λ -continuous,

(2) $f^{-1}(V)$ is λ -open in X for every θ -open subset $V \subset Y$,

(3) $f^{-1}(V)$ is λ -closed in X for every θ -closed subset $V \subset Y$.

Proof. Obvious.

Theorem 3.9. Let $f : X \to Y$ be a function, where Y is regular. The following are equivalent:

(1) f is λ -continuous,

Weakly λ -continuous functions

(2) $f^{-1}(\theta - Cl(V))$ is λ -closed in X for every subset $V \subset Y$,

(3) f is weakly λ -continuous,

(4) f is faintly λ -continuous.

Proof. (1) \Rightarrow (2) : Let $V \subset Y$. Since θ -Cl(V) is closed, then $f^{-1}(\theta$ -Cl(V)) is λ -closed in X.

 $(2) \Rightarrow (3)$: Follows from Theorem 2.6.

 $(3) \Rightarrow (4)$: Let V be a θ -closed subset of Y. By Theorem 2.5, we have $Cl_{\lambda}(f^{-1}(V)) \subset f^{-1}(\theta - Cl(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is λ -closed and hence f is faintly λ -continuous.

(4) \Rightarrow (1) : Let V be an open subset of Y. Since Y is regular, V is θ -open in Y. Since f is faintly λ -continuous, then $f^{-1}(V)$ is λ -open in X. Thus, f is λ -continuous.

Definition 10. A space X is said to be almost regular [16] if for each point $x \in X$ and each regular closed set $A \subset X$ not containing x, there exist disjoint open sets U and V such that $x \in U$ and $A \subset V$.

Theorem 3.10. If $f : X \to Y$ is a function such that Y is almost regular. Then the following are equivalent:

(1) f is almost λ -continuous,

(2) f is weakly λ -continuous.

Proof. $(1) \Rightarrow (2)$: Obvious.

 $(2) \Rightarrow (1)$: Let V be a regular open set of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. Since Y is almost regular, by Theorem 2.2 of [17], there exists a regular open set W such that $f(x) \in W \subset Cl(W) \subset V$. Since f is weakly λ -continuous, there exists a λ -open set U_x containing x such that $f(U_x) \subset Cl(W)$. We have $x \in U_x \subset f^{-1}(V)$. This shows that $f^{-1}(V)$ is λ -open in X and hence f is almost λ -continuous.

4. Properties

Definition 11. A space X is called λ - T_2 [2] if for $x, y \in X$ such that $x \neq y$ there exist disjoint λ -open sets U and V such that $x \in U$ and $y \in V$.

It should be noticed that Ganster et al. [8] have shown that λ - T_2 is equivalent with T_0 .

Theorem 4.1. If for each pair of distinct points x_1 and x_2 in a space X, there exist a function f of X into (Y, σ) such that Y is Urysohn, $f(x_1) \neq f(x_2)$ and f is weakly λ -continuous at x_1 and x_2 , then X is λ -T₂.

Proof. Let x_1 and x_2 be any distinct points in X. Then there exists a function $f: X \to Y$ such that Y is Urysohn, $f(x_1) \neq f(x_2)$ and f is weakly λ -continuous at x_1 and x_2 . Let $y_i = f(x_i)$ for i = 1, 2. We have $y_1 \neq y_2$. Since Y is Urysohn,

then there exist open sets V_1 and V_2 containing y_1 and y_2 , respectively, such that $Cl(V_1) \cap Cl(V_2) = \emptyset$. Since f is weakly λ -continuous at x_1 and x_2 , then there exist λ -open sets U_i for i = 1, 2 containing x_i such that $f(U_i) \subset Cl(V_i)$. This shows that $U_1 \cap U_2 = \emptyset$ and hence X is λ - T_2 .

Theorem 4.2. If $f : X \to Y$ is weakly λ -continuous and $g : Y \to Z$ is continuous, then the composition $gof : X \to Z$ is weakly λ -continuous.

Proof. Let $x \in X$ and A be an open set of Z containing g(f(x)). We have $g^{-1}(A)$ is an open set of Y containing f(x). Then there exists a λ -open set B containing x such that $f(B) \subset Cl(g^{-1}(A))$. Since g is continuous, then $(gof)(B) \subset g(Cl(g^{-1}(A))) \subset Cl(A)$. Thus, gof is weakly λ -continuous. \Box

Remark 4.3. Here we have an observation concerning λ -connectedness. By definition, if a space X can not be written as the union of two nonempty disjoint λ -open sets, then X is said to be λ -connected. It is obvious that every λ -connected space is indiscrete. Because we know that if a space is not indiscrete, then there is a nontrivial open set. This set and its complement provide a decomposition of the space into nonempty disjoint λ -open sets. Hence every λ -connected space must be indiscrete and therefore the notion is not interesting.

Theorem 4.4. Let $f, g : X \to Y$ be weakly λ -continuous functions and Y be Urysohn. If $\lambda O(X)$ is closed under the finite intersections, then the set $\{x \in X : f(x) = g(x)\}$ is λ -closed in X.

Proof. Obvious.

Theorem 4.5. Let $f : X \to Y$ be a weakly λ -continuous function and K be a θ -closed subset of $X \times Y$. Suppose that $\lambda O(X)$ is closed under the finite intersections. Then $p(K \cap G(f))$ is λ -closed in X, where p is the projection of $X \times Y$ onto X.

Proof. Let $x \in Cl_{\lambda}(p(K \cap G(f)))$, G be an open subset of X containing x and H be an open subset of Y containing f(x). Since f is weakly λ -continuous, then $x \in f^{-1}(H) \subset Int_{\lambda}(f^{-1}(Cl(H)))$. This implies that $x \in G \cap Int_{\lambda}(f^{-1}(Cl(H)))$. Since $x \in Cl_{\lambda}(p(K \cap G(f)))$, then $(G \cap Int_{\lambda}(f^{-1}(Cl(H)))) \cap p(K \cap G(f))$ contains a point $x_0 \in X$. We have $(x_0, f(x_0)) \in K$ and $f(x_0) \in Cl(H)$. Then $\emptyset \neq (G \times Cl(H)) \cap K \subset Cl(G \times H) \cap K$ and $(x, f(x)) \in \theta$ -Cl(K). Since K is θ -closed, $(x, f(x)) \in K \cap G(f)$ and $x \in p(K \cap G(f))$. This shows that $p(K \cap G(f))$ is λ -closed in X.

Corollary 4.6. Let $f : X \to Y$ be a function with the θ -closed graph and $g : X \to Y$ be a weakly λ -continuous function. Suppose that $\lambda O(X)$ is closed

under the finite intersections. Then the set $\{x \in X : f(x) = g(x)\}$ is λ -closed in X.

Proof. Let G(f) be θ -closed. We have $p(G(f) \cap G(g)) = \{x \in X : f(x) = g(x)\}$. By Theorem 4.5, $\{x \in X : f(x) = g(x)\}$ is λ -closed in X. \Box

Theorem 4.7. Let $f : X \to Y$ be a function, where $\lambda O(X)$ is closed under the finite intersections. If for each $(x, y) \notin G(f)$, there exist a λ -open set $U \subset X$ and an open set $V \subset Y$ containing x and y, respectively, such that $f(U) \cap Int(Cl(V)) = \emptyset$, then inverse image of each N-closed set of Y is λ closed in X.

Proof. Suppose that there exists an N-closed set $W \subset Y$ such that $f^{-1}(W)$ is not λ -closed in X. We have a point $x \in Cl_{\lambda}(f^{-1}(W)) \setminus f^{-1}(W)$. Since $x \notin f^{-1}(W)$, then $(x, y) \notin G(f)$ for each $y \in W$. There exist λ -open sets $U_y(x) \subset X$ and an open set $V(y) \subset Y$ containing x and y, respectively, such that $f(U_y(x)) \cap Int(Cl(V(y))) = \emptyset$. The family $\{V(y) : y \in W\}$ is a cover of W by open sets of Y. Since W is N-closed, there exit a finite number of points $y_1, y_2, ..., y_n$ in W such that $W \subset \bigcup_{i=1}^n Int(Cl(V(y_i)))$. Take $U = \bigcap_{i=1}^n U_{y_i}(x)$. We have $f(U) \cap W = \emptyset$. Since $x \in Cl_{\lambda}(f^{-1}(W))$, then $f(U) \cap W \neq \emptyset$. This is a contradiction. \Box

For a function $f: X \to Y$, the graph function $g: X \to X \times Y$ of f is defined by g(x) = (x, f(x)) for each $x \in X$.

Theorem 4.8. If the graph function g of a function $f : X \to Y$ is weakly λ -continuous, then f is weakly λ -continuous.

Proof. Let g be weakly λ -continuous and $x \in X$ and U be an open set of Y containing f(x). Then $X \times U$ is an open set containing g(x). There exists a λ -open set V containing x such that $g(V) \subset Cl(X \times U) = X \times Cl(U)$. This implies that $f(V) \subset Cl(U)$ and hence f is weakly λ -continuous.

References

- Arenas, F. G., Dontchev, J., Ganster, M., On λ-sets and dual of generalized continuity. Questions Answers Gen. Topology 15 (1997), 3-13.
- [2] Caldas, M., Jafari, S., On some low separation axioms via λ-open and λ-closure operator. Rend. Circ. Mat. Palermo 54 (2005), 195-208.
- [3] Caldas, M., Jafari, S., Navalagi, G., More on λ-closed sets in topological spaces. Revista Colombiana (to appear)
- [4] Caldas, M., Ekici, E., Jafari, S., Noiri, T., On the class of contra λ -continuous functions. Ann. Univ. Sci. Budapest Sec. Math. 49 (2006), 75-86.
- [5] Caldas, M., Hatir, E., Jafari, S., Noiri, T., A new Kupka type continuity, λ compactness and multifunctions (submitted)

- [6] Carnahan, D., Locally nearly compact spaces. Boll. Un. Mat. Ital. (4) 6 (1972), 146-153.
- [7] Ganster, M., Jafari, S., Steiner, M., On some very strong compactness conditions (submitted)
- [8] Ganster, M., Jafari, S., Steiner, M., Some observations on λ -closed sets (submitted)
- [9] Isbell, J. R., Uniform spaces. Amer. Math. Soc. Math. Surveys No. 12 (1962).
- [10] Jafari, S., Moshokoa, S. P., Nailana, K. R., Noiri, T., On almost $\lambda\text{-continuous functions (submitted)}.$
- [11] Levine, N., Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963), 36-41.
- [12] Levine, N., Generalized closed sets in topology. Rend. Circ. Mat. Palermo (2) 19(1970), 89-96.
- [13] Maki, H., Generalized λ -sets and the associated closure operator. The Special Issue in Commemoration of Prof. Kazusada IKEDA' Retirement, 1. Oct. 1986, 139-146.
- [14] Mashhour, A. S., Abd El-Monsef, M. E., El-Deeb, S. N., On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [15] Nieminen, T., On ultrapseudocompact and related topics. Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), 185-205.
- [16] Noiri, T., Weak continuity and closed graphs. Casopis. Pest. Mat. 101 (1976), 379-382.
- [17] Singal, M. K., Arya, S. P., On almost regular spaces. Glasnik Mat. Ser. III 4 (24) (1969), 89-99.
- [18] Stone, M. H., Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 41 (1937), 375-381.
- [19] Veličko, N. V., H-closed topological spaces. Amer. Math. Soc. Transl. 78 (1968), 102-118.

Received by the editors November 7, 2007

56