ELLIPTIC CURVES, CONICS AND CUBIC CONGRUENCES ASSOCIATED WITH INDEFINITE BINARY QUADRATIC FORMS

Ahmet Tekcan¹, Arzu Özkoç¹, Betül Gezer¹, Osman Bizim¹

Abstract. In this paper we consider elliptic curves, conics and cubic congruences over finite fields associated with indefinite binary quadratic forms F_i in the proper cycle of F = (1, 7, -6). We determine the number of rational points on elliptic curves $E_{F_i} : y^2 = a_i x^3 + b_i x^2 + c_i x$ and conics $C_{F_i} : a_i x^2 + b_i xy + c_i y^2 - N = 0$ over \mathbb{F}_{73} , where $N \in \mathbb{F}_{73}^*$ and $F_i = (a_i, b_i, c_i)$ be any form in the proper cycle of F. In the last section, we consider the number integer solutions of cubic congruences $C_{F_i}^3 : x^3 + a_i x^2 + b_i x + c_i \equiv 0 \pmod{73}$ associated with F_i .

AMS Mathematics Subject Classification (2000): 11E04, 11E12, 11E16, 11D25, 11D79

 $Key\ words\ and\ phrases:$ Binary quadratic forms, cubic congruences, elliptic curves, conics

1. Preliminaries

A real binary quadratic form (or just a form) F is a polynomial in two variables x and y of the type

$$F = F(x, y) = ax^2 + bxy + cy^2$$

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discriminant of F is defined by the formula $b^2 - 4ac$, and is denoted by $\Delta = \Delta(F)$. F is an integral form if and only if $a, b, c \in \mathbb{Z}$ and is indefinite if and only if $\Delta(F) > 0$. An indefinite quadratic form F = (a, b, c) of discriminant Δ is said to be reduced if

$$\left|\sqrt{\Delta} - 2|a|\right| < b < \sqrt{\Delta}.$$

Most properties of quadratic forms can be given with the aid of extended modular group $\overline{\Gamma}$ (see [18]). Gauss defined the group action of $\overline{\Gamma}$ on the set of forms as follows:

$$gF(x,y) = (ar^{2} + brs + cs^{2})x^{2} + (2art + bru + bts + 2csu)xy + (at^{2} + btu + cu^{2})y^{2}$$

 $^{^1 \}mathrm{Uludag}$ University, Faculty of Science, Department of Mathematics, Görükle, 16059, Bursa, Turkey

e-mails: tekcan@uludag.edu.tr, aozkoc@uludag.edu.tr, betulgezer@uludag.edu.tr, obizim@uludag.edu.tr; http://matematik.uludag.edu.tr/AhmetTekcan.htm

for $g = \begin{pmatrix} r & s \\ t & u \end{pmatrix} \in \overline{\Gamma}$. Hence two forms F and G are called equivalent if and only if there exists a $g \in \overline{\Gamma}$ such that gF = G. If det g = 1, then F and G are called properly equivalent and if det g = -1, then F and G are called improperly equivalent. If a form F is improperly equivalent to itself, then it is called ambiguous (for further details on binary quadratic forms see [3, 4, 7]).

Let $\rho(F)$ denote the normalization of (c, -b, a). To be more explicit, we set

$$\rho(F) = (c, -b + 2cs, cs^2 - bs + a),$$

where

$$r = r(F) = \begin{cases} sign(c) \left\lfloor \frac{b}{2|c|} \right\rfloor & \text{ for } |c| \ge \sqrt{\Delta} \\ \\ sign(c) \left\lfloor \frac{b+\sqrt{\Delta}}{2|c|} \right\rfloor & \text{ for } |c| < \sqrt{\Delta}. \end{cases}$$

If F is reduced, then $\rho(F)$ is also reduced. In fact, ρ is a permutation of the set of all reduced indefinite forms. Now, consider the following transformation

$$\tau(F) = \tau(a, b, c) = (-a, b, -c).$$

Then the cycle of F is the sequence $((\tau \rho)^i(G))$ for $i \in \mathbb{Z}$, where G = (k, l, m)is a reduced form with k > 0, which is equivalent to F and the proper cycle of F is the sequence $(\rho^i(G))$ for $i \in \mathbb{Z}$, where G is a reduced form which is properly equivalent to F. The cycle and the proper cycle of F are invariants of the equivalence class of F. We represent the cycle or proper cycle of F by its period $F_0 \sim F_1 \sim \cdots \sim F_{l-1}$ of length l. We explain how to compute the cycle and proper cycle of F by the following lemma.

Lemma 1.1. Let F = (a, b, c) be an indefinite reduced quadratic form of the discriminant Δ . Then the cycle of F is $F_0 \sim F_1 \sim F_2 \sim \cdots \sim F_{l-1}$ of length l, where $F_0 = F = (a_0, b_0, c_0)$,

(1.1)
$$s_i = |s(F_i)| = \left\lfloor \frac{b_i + \sqrt{\Delta}}{2|c_i|} \right\rfloor$$

and

$$(1.2)F_{i+1} = (a_{i+1}, b_{i+1}, c_{i+1}) = (|c_i|, -b_i + 2s_i|c_i|, -(a_i + b_i s_i + c_i s_i^2))$$

for $1 \leq i \leq l-2$. If l is odd, then the proper cycle of F is

$$F_0 \sim \tau(F_1) \sim F_2 \sim \tau(F_3) \sim \cdots \sim \tau(F_{l-2}) \sim F_{l-1}$$

$$\sim \tau(F_0) \sim F_1 \sim \tau(F_2) \sim \cdots \sim F_{l-2} \sim \tau(F_{l-1})$$

of length 2l and if l is even, then the proper cycle of F is

$$F_0 \sim \tau(F_1) \sim F_2 \sim \tau(F_3) \sim \dots \sim F_{l-2} \sim \tau(F_{l-1})$$

of length l. In this case the equivalence class of F is the disjoint union of the proper equivalence class of F and the proper equivalence class of $\tau(F)$ [3].

2. Indefinite Binary Quadratic Forms

In this section we will derive the cycle and proper cycle of an indefinite binary quadratic form F = (1, 7, -6) of the discriminant $\Delta = 73$ which we will need in the later sections.

Theorem 2.1. Let F = (1, 7, -6). Then the cycle of F is

$$F_0 = (1, 7, -6) \sim F_1 = (6, 5, -2) \sim F_2 = (2, 7, -3)$$

$$\sim F_3 = (3, 5, -4) \sim F_4 = (4, 3, -4) \sim F_5 = (4, 5, -3)$$

$$\sim F_6 = (3, 7, -2) \sim F_7 = (2, 5, -6) \sim F_8 = (6, 7, -1)$$

of length 9, and the proper cycle of F is

$$F_{0} = (1, 7, -6) \sim F_{1} = (-6, 5, 2) \sim F_{2} = (2, 7, -3)$$

$$\sim F_{3} = (-3, 5, 4) \sim F_{4} = (4, 3, -4) \sim F_{5} = (-4, 5, 3)$$

$$\sim F_{6} = (3, 7, -2) \sim F_{7} = (-2, 5, 6) \sim F_{8} = (6, 7, -1)$$

$$\sim F_{9} = (-1, 7, 6) \sim F_{10} = (6, 5, -2) \sim F_{11} = (-2, 7, 3)$$

$$\sim F_{12} = (3, 5, -4) \sim F_{13} = (-4, 3, 4) \sim F_{14} = (4, 5, -3)$$

$$\sim F_{15} = (-3, 7, 2) \sim F_{16} = (2, 5, -6) \sim F_{17} = (-6, 7, 1)$$

of length 18.

Proof. Let $F = F_0 = (1, 7, -6)$. Then by (1.1), we get $s_0 = 1$ and hence by (1.2), we obtain $F_1 = (6, 5, -2)$. Similarly, we can obtain the following table:

i	1	2	3	4	5	6	7	8	9
a_i	1	6	2	3	4	4	3	2	6
b_i	7	5	7	5	3	5	7	5	7
c_i	-6	-2	-3	-4	-4	-3	-2	-6	-1
s_i	1	3	2	1	1	2	3	1	7

Therefore the cycle of F is $F_0 = (1,7,-6) \sim F_1 = (6,5,-2) \sim F_2 = (2,7,-3) \sim F_3 = (3,5,-4) \sim F_4 = (4,3,-4) \sim F_5 = (4,5,-3) \sim F_6 = (3,7,-2) \sim F_7 = (2,5,-6) \sim F_8 = (6,7,-1)$ of length 9. So by Lemma 1.1, the proper cycle of F is $F_0 = (1,7,-6) \sim F_1 = (-6,5,2) \sim F_2 = (2,7,-3) \sim F_3 = (-3,5,4) \sim F_4 = (4,3,-4) \sim F_5 = (-4,5,3) \sim F_6 = (3,7,-2) \sim F_7 = (-2,5,6) \sim F_8 = (6,7,-1) \sim F_9 = (-1,7,6) \sim F_{10} = (6,5,-2) \sim F_{11} = (-2,7,3) \sim F_{12} = (3,5,-4) \sim F_{13} = (-4,3,4) \sim F_{14} = (4,5,-3) \sim F_{15} = (-3,7,2) \sim F_{16} = (2,5,-6) \sim F_{17} = (-6,7,1)$ of length 18.

3. Elliptic Curves and Conics

In this section we will consider the number of rational points on the elliptic curves

$$E_{F_i} : y^2 = a_i x^3 + b_i x^2 + c_i x$$

and conics

$$C_{F_i} : a_i x^2 + b_i xy + c_i y^2 - N = 0$$

over \mathbb{F}_{73} , where $N \in \mathbb{F}_{73}^*$ and $F_i = a_i x^2 + b_i xy + c_i y^2$ are any form in the proper cycle $F_0 \sim F_1 \sim \cdots \sim F_{17}$ of F obtained in (2.1).

3.1. Elliptic Curves

The history of elliptic curves is a long one and exciting applications for elliptic curves continue to be discovered. Recently, important and useful applications of elliptic curves have been found for cryptography (see [10, 13, 23]), for factoring large integers (see [11]), and for primality proving (see [1]). The mathematical theory of elliptic curves was also crucial in the proof of Fermat's Last Theorem (see [24]). Recall that an equation of the form

(3.1)
$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

is called an elliptic curve, where $a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}_p$ for prime p. Set

$$b_{2} = a_{1}^{2} + 4a_{2}$$

$$b_{4} = 2a_{4} + a_{1}a_{3}$$

$$b_{6} = a_{3}^{2} + 4a_{6}$$

$$b_{8} = a_{1}^{2}a_{6} + 4a_{2}a_{6} - a_{1}a_{3}a_{4} + a_{2}a_{3}^{2} - a_{4}^{2}$$

$$c_{4} = b_{2}^{2} - 24b_{4}$$

$$c_{6} = -b_{3}^{2} + 36b_{2}b_{4} - 216b_{6}.$$

Then the discriminant of (3.1) is $\Delta = -b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2 b_4 b_6$. We can transform (3.1) to an elliptic curve (called Weierstrass short form)

(3.2)
$$E: y^2 = ax^3 + bx^2 + cx,$$

where $a, b, c \in \mathbb{F}_p$. Hence we can view an elliptic curve E as a curve in projective plane \mathbb{P}^2 with a homogeneous equation $y^2 z = ax^3 + bx^2 z^2 + cxz^3$, and one point at infinity, namely (0, 1, 0). This point ∞ is the point where all vertical lines meet. We denote this point by O. The set of rational points

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : y^2 = ax^3 + bx^2 + cx\} \cup \{O\}$$

on *E* is a subgroup of *E*. The order of $E(\mathbb{F}_p)$ is defined as the number of the points on *E* and is denoted by $\#E(\mathbb{F}_p)$ (for further details on arithmetic of elliptic curves see [15, 23]).

In [8, 9, 20, 22], we considered the number of rational points on elliptic curves over finite fields. We also obtained some results concerning the sum of x- and

74

y-coordinates of all points (x, y) on these elliptic curves. In this subsection, we will consider the same problem for the elliptic curves

(3.3)
$$E_{F_i}: y^2 = a_i x^3 + b_i x^2 + c_i x$$

over \mathbb{F}_{73} , where F_i is any form in the proper cycle of F. Let

$$E_{F_i}(\mathbb{F}_{73}) = \{(x, y) \in \mathbb{F}_{73} \times \mathbb{F}_{73} : y^2 = a_i x^3 + b_i x^2 + c_i x\} \cup \{O\}.$$

Then we can give the following theorem.

Theorem 3.1. Let E_{F_i} be an elliptic curve in (3.3). Then

$$#E_{F_i}(\mathbb{F}_{73}) = \begin{cases} 73 & if \ i = 4, 13\\ 75 & otherwise. \end{cases}$$

Proof. Let i = 4, 13 Consider the elliptic curve $E_i : y^2 = a_i x^3 + b_i x^2 + c_i x$ over \mathbb{F}_{73} . If y = 0, then we have

$$a_i x^3 + b_i x^2 + c_i x \equiv 0 \pmod{73} \Leftrightarrow x(a_i x^2 + b_i x + c_i) \equiv 0 \pmod{73}.$$

So we get

$$(3.4) x \equiv 0 \pmod{73}$$

and

(3.5)
$$a_i x^2 + b_i x + c_i \equiv 0 \pmod{73}.$$

Hence it is easily seen that x = 0 is a solution of (3.4) and

$$x = \begin{cases} 27 & \text{if } i = 4\\ 46 & \text{if } i = 13 \end{cases}$$

is a solution of (3.5). Therefore if i = 4, then there are two rational points (0,0) and (17,0) on E_{F_4} and if i = 13, then there are two rational points (0,0) and (46,0) on $E_{F_{13}}$.

Let Q_p denote the set of quadratic residues. Then

$$Q_{73} = \{1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 19, 23, 24, 25, 27, 32, 35, 36, 37, 38, 41, 46, 48, 49, 50, 54, 55, 57, 61, 64, 65, 67, 69, 70, 71, 72\}.$$

Note that $27, 46 \in Q_{73}$. Now let

$$Q_{73}^x = Q_{73} - \begin{cases} \{27\} & \text{if } i = 4\\ \{46\} & \text{if } i = 13 \end{cases}$$

Then it is easily seen that every element of Q_{73}^x makes $a_i x^3 + b_i x^2 + c_i x$ a square (as above we see that x = 27 and x = 46 make it zero). Let $a_i x^3 + b_i x^2 + c_i x = t^2$ for some $t \in Q_{73}^x$. Then $y^2 \equiv t^2 \pmod{73} \Leftrightarrow y \equiv \pm t \pmod{73}$. Hence, there are

two rational points (x, t) and (x, -t) on E_{F_i} , that is, for each point $x \in Q_{73}^x$, there are two points on E_{F_i} . We know that there are 35 elements in Q_{73}^x and each of them makes $a_i x^3 + b_i x^2 + c_i x$ a square. Therefore there are 2.35 = 70 rational points on E_{F_i} . Adding the points (0,0), (x,0) and ∞ , we get a total 70 + 2 + 1 = 73 rational points on E_{F_i} .

Now let $i \neq 4, 13$. If y = 0, then x = 0 is a solution of (3.4) and

$$x = \begin{cases} 33 & \text{if } i = 0\\ 43 & \text{if } i = 1\\ 53 & \text{if } i = 2\\ 13 & \text{if } i = 3\\ 28 & \text{if } i = 5\\ 11 & \text{if } i = 6\\ 56 & \text{if } i = 7\\ 42 & \text{if } i = 8\\ 40 & \text{if } i = 9\\ 30 & \text{if } i = 10\\ 20 & \text{if } i = 11\\ 60 & \text{if } i = 12\\ 45 & \text{if } i = 14\\ 62 & \text{if } i = 15\\ 17 & \text{if } i = 16\\ 31 & \text{if } i = 17 \end{cases}$$

is a solution of (3.5). Hence there are two types of points, (0,0) and (x,0) on E_{F_i} , where x is defined as above. Note that all these values of x are not in Q_{73} . It is easily seen that every element of Q_{73} makes $a_i x^3 + b_i x^2 + c_i x$ a square. Let $a_i x^3 + b_i x^2 + c_i x = t^2$ for some $t \in Q_{73}$. Then $y^2 \equiv t^2 \pmod{73} \Leftrightarrow y \equiv \pm t \pmod{73}$. Hence there are two rational points (x, t) and (x, -t) on E_{F_i} , that is, for every point $x \in Q_{73}$, there are two points on E_{F_i} . We know that there are 36 elements in Q_{73} , and each of them makes $a_i x^3 + b_i x^2 + c_i x$ a square. Therefore there are 2.36 = 72 rational points on E_{F_i} . Adding the points (0,0), (x,0) and ∞ , we get total 72 + 2 + 1 = 75 rational points on E_{F_i} .

3.2. Conics

A conic is given by an equation

$$(3.6) C: a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0$$

for real numbers a_{ij} . Let

$$\delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

If $\delta > 0$, then C represents an ellipse, if $\delta < 0$, then C represents a hyperbola, and if $\delta = 0$, then C represents a parabola.

In [21], we considered the number of rational points on the conics $C_{p,k}$: $x^2 - ky^2 = 1$ over finite fields \mathbb{F}_p for $k \in \mathbb{F}_p^*$. In this subsection we will determine the number of rational points on the conics

(3.7)
$$C_{F_i}: a_i x^2 + b_i xy + c_i y^2 - N = 0$$

over \mathbb{F}_{73} , where $N \in \mathbb{F}_{73}^*$ and F_i are any form in the proper cycle of F. Let

$$C_{F_i}(\mathbb{F}_{73}) = \{(x, y) \in \mathbb{F}_{73} \times \mathbb{F}_{73} : C_{F_i} : a_i x^2 + b_i xy + c_i y^2 - N \equiv 0 \pmod{73} \}.$$

Then we have the following result.

Theorem 3.2. Let C_{F_i} be the conic in (3.7). Then

$$#C_{F_i}(\mathbb{F}_{73}) = \begin{cases} 2p & \text{if } N \in Q_{73} \\ 0 & \text{if } N \notin Q_{73}. \end{cases}$$

Proof. We have two cases:

Case 1: Let $N \in Q_{73}$, say $N = t^2$ for $t \in \mathbb{F}_{73}^*$. If y = 0, then

(3.8)
$$a_i x^2 \equiv t^2 \pmod{73} \Leftrightarrow x \equiv \pm \frac{t}{\sqrt{a_i}} \pmod{73}.$$

Let $\frac{t}{\sqrt{a_i}} \equiv m \pmod{73}$. Then there are two integer solutions (m, 0) and (p-m, 0) of (3.8). So there are two rational points (m, 0), (p-m, 0) on C_{F_i} . If x = 0, then

(3.9)
$$c_i y^2 \equiv t^2 \pmod{73} \Leftrightarrow y \equiv \pm \frac{t^2}{\sqrt{c_i}} \pmod{73}.$$

Let $\frac{t^2}{\sqrt{c_i}} \equiv k \pmod{73}$. Then there are solutions (0, k) and (0, p - k) of (3.9) and hence there are two rational points (0, k) and (0, p - k) on C_{F_i} . Further, it is easily seen that if x = h for some $h \in \mathbb{F}_{73}^*$, then the congruence $a_ih^2 + b_ihy + c_iy^2 \equiv t^2 \pmod{73}$ has a solution $y = y_1$, and if x = p - h, then the congruence $a_i(p-h)^2 + b_i(p-h)y + c_iy^2 \equiv t^2 \pmod{73}$ has a solution $y = y_2$. So we have six rational points $(m, 0), (p - m, 0), (0, k), (0, p - k), (h, y_1)$ and $(p - h, y_2)$ on C_{F_i} . Now set $G_p = \mathbb{F}_p - \{0, m, h\}$. Then there are p - 3 points $x \in G_p$ such that the congruence $a_ix^2 + b_ixy + c_iy^2 \equiv t^2 \pmod{73}$ has two solutions. Let x = ube a point in G_p such that the congruence $a_iu^2 + b_iuy + c_iy^2 \equiv t^2 \pmod{73}$ has two solutions $y = y_3$ and $y = y_4$. Then there are two rational points (u, y_3) and (u, y_4) on C_{F_i} , that is, for each point x in G_p , there are two rational points on C_{F_i} . Hence there are 2(p - 3) = 2p - 6 rational points. We see, as above that there are six rational points $(m, 0), (p - m, 0), (0, k), (0, p - k), (h, y_1)$ and $(p - h, y_2)$ on C_{F_i} . Consequently, there are a total 2(p - 3) + 6 = 2p of rational points on C_{F_i} .

Case 2: Let $N \notin Q_{73}$. If y = 0, then $a_i x^2 \equiv N \pmod{73}$ has no solution since $\frac{N}{a_i}$ is not a square mod 73 and if x = 0, then $c_i y^2 \equiv N \pmod{73}$ has no

solution since $\frac{N}{c_i}$ is not a square mod 73. Set $H_p = \mathbb{F}_p - \{0\}$. Then there is no point x in H_p such that the congruence $a_i x^2 + b_i xy + c_i y^2 \equiv N \pmod{73}$ has a solution y. Therefore there are no rational points on C_{F_i} .

Remark 3.3. Note that in above theorem we only consider the number of rational points on C_{F_i} over \mathbb{F}_{73} . When we consider this problem for other primes p, then we can give the following theorem.

Theorem 3.4. Let C_{F_i} be the conic in (3.7). Then

$$#C_{F_i}(\mathbb{F}_p) = \begin{cases} 2p & \text{if } N \in Q_p \\ 0 & \text{if } N \notin Q_p \end{cases}$$

for every prime p such that $p \equiv 1 \pmod{4}$.

Proof. This theorem can be proved the same way as Theorem 3.2.

4. Cubic Congruences

In 1896, Voronoi [17] presented his algorithm for computing a system of fundamental units of a cubic number field. His technique was described in terms of binary quadratic forms. Later his technique was restarted in the language of multiplicative lattices by Delone and Faddeev [5]. In 1985, Buchmann [2] generalized the Voronoi's algorithm. A cubic congruence over a field \mathbb{F}_p is

(4.1)
$$x^3 + ux^2 + vx + w \equiv 0 \pmod{p},$$

where $u, v, w \in \mathbb{F}_p$. Solutions of cubic congruence (including cubic residues) considered by many authors. Dietmann [6] considered the small solutions of additive cubic congruences. Manin [12] considered the cubic congruence on prime modules. Mordell [14] considered the cubic congruence in three variables and also the congruence $ax^3 + by^3 + cz^3 + dxyz \equiv n \pmod{p}$. Williams and Zarnke [25] gave some algorithms for solving the cubic congruence on prime modules. Let $H(\Delta)$ denote the group of classes of primitive, integral binary quadratic forms $F(x, y) = ax^2 + bxy + cy^2$ of discriminant Δ . Let K be a quadratic field $\mathbb{Q}(\sqrt{\Delta})$, let L be the splitting field of $x^3 + ax^2 + bx + c$, let $f_0 = f_0(L/K)$ be the part of the conductor of the extension L/K, and let f be a positive integer with $f_0|f$. In [16], Spearman and Williams considered the cubic congruence $x^3 + ax^2 + bx + c \equiv 0 \pmod{p}$ and binary quadratic forms $F(x, y) = ax^2 + bxy + cy^2$. They proved that the cubic congruence $x^3 + ax^2 + bx + c \equiv 0 \pmod{p}$ has three solutions if and only if p is represented by a quadratic form F in J, where J = J(L, K, F) is a subgroup of index 3 in $H(\Delta(K)f^2)$.

In [19, 20], we considered the number of integer solutions of cubic congruences $x^3 + ax^2 + bx + c \equiv 0 \pmod{p}$ for binary quadratic forms F(x, y) =

 $ax^2+bxy+cy^2. \ \, \mbox{In this section we will consider the same problem for cubic congruences}$

(4.2)
$$C_{F_i}^3 : x^3 + a_i x^2 + b_i x + c_i \equiv 0 \pmod{73}$$

associated with $F_i = a_i x^2 + b_i xy + c_i y^2$, which is a form in the proper cycle of F. Let

$$C^3_{F_i}(\mathbb{F}_{73}) = \{ x \in \mathbb{F}_{73} : x^3 + a_i x^2 + b_i x + c_i \equiv 0 \pmod{73} \}.$$

Then we have the following theorem.

Theorem 4.1. Let $C_{F_i}^3$ be the cubic congruence in (4.2). Then

$$\#C^3_{F_i}(\mathbb{F}_{73}) = \begin{cases} 3 & if \ i = 5, 6, 8, 14, 15, 17 \\ 1 & if \ i = 0, 4, 9, 13 \\ 0 & otherwise. \end{cases}$$

Proof. Let i = 5. Then $F_5 = (-4, 5, 3)$ by (2.1). It is easily seen that the cubic congruence

$$C_{F_5}^3: x^3 - 4x^2 + 5x + 3 \equiv 0 \pmod{73}$$

has three solutions x = 32, 54, 64. In fact one can obtain the following table:

i	F_i	$C_{F_i}^3$	$C^3_{F_i}(\mathbb{F}_{73})$	$#C^3_{F_i}(\mathbb{F}_{73})$
0	F_0	$x^3 + x^2 + 7x - 6$	$\{41\}$	1
1	F_1	$x^3 - 6x^2 + 5x + 2$	{}	0
2	F_2	$x^3 + 2x^2 + 7x - 3$	{}	0
3	F_3	$x^3 - 3x^2 + 5x + 4$	{}	0
4	F_4	$x^3 + 4x^2 + 3x - 4$	$\{12\}$	1
5	F_5	$x^3 - 4x^2 + 5x + 3$	$\{32, 54, 64\}$	3
6	F_6	$x^3 + 3x^2 + 7x - 2$	$\{3,32,35\}$	3
7	F_7	$x^3 - 2x^2 + 5x + 6$	{}	0
8	F_8	$x^3 + 6x^2 + 7x - 1$	$\{24, 55, 61\}$	3
9	F_9	$x^3 - x^2 + 7x + 6$	$\{32\}$	1
10	F_{10}	$x^3 + 6x^2 + 5x - 2$	{}	0
11	F_{11}	$x^3 - 2x^2 + 7x + 3$	{}	0
12	F_{12}	$x^3 + 3x^2 + 5x - 4$	{}	0
13	F_{13}	$x^3 - 4x^2 + 3x + 4$	$\{61\}$	1
14	F_{14}	$x^3 + 4x^2 + 5x - 3$	$\{9,19,41\}$	3
15	F_{15}	$x^3 - 3x^2 + 7x + 2$	$\{38,41,70\}$	3
16	F_{16}	$x^3 + 2x^2 + 5x - 6$	{}	0
17	F_{17}	$x^3 - 6x^2 + 7x + 1$	$\{12, 18, 49\}$	3

This completes the proof.

References

- Atkin, A. O. L., Moralin, F., Elliptic Curves and Primality Proving. Math. Comp. 61 (2003)(1993), 29–68.
- [2] Buchmann, J., A generalization of Voronoi's unit Algorithm I, II. Journal of Number Theory 20(2) (1985), 177–209.
- [3] Buchmann, J., Vollmer, U., Binary Quadratic Forms: An Algorithmic Approach. Berlin, Heidelberg: Springer-Verlag, 2007.
- [4] Buell, D. A., Binary Quadratic Forms, Clasical Theory and Modern Computations. New York: Springer-Verlag, 1989.
- [5] Delone, B. N., Faddeev, K., The Theory of Irrationalities of the Third Degree. Transl. Math. Monographs 10, Amer. Math. Soc., Providence, Rhode Island 28 (1964), 3955.
- [6] Dietmann, R., Small Solutions of Additive Cubic Congruences. Archiv der Mathematik 75 (3)(2000), 195–197.
- [7] Flath, D. E., Introduction To Number Theory. Wiley, 1989.
- [8] Gezer, B., Özden, H., Tekcan, A., Bizim, O., The Number of Rational Points on Elliptic Curves $y^2 = x^3 + b^2$ over Finite Fields. Int. Jour. of Math. Sci. 1(3)(2007), 178-184.
- [9] Gezer, B., Tekcan, A., Bizim, O., The Number of Rational Points on Elliptic Curves and Circles over Finite Fields. Inter. Journal of Maths Sciences 2(2)(2008), 58–63.
- [10] Koblitz, N., A Course in Number Theory and Cryptography. Springer-Verlag, 1994.
- [11] Lenstra, H. W., Jr., Factoring Integers with Elliptic Curves. Ann. of Math. 3(126) (1987), 649–673.
- [12] Manin, Y. I., On a Cubic Congrunce to a Prime Modules. Amer. Math. Soc. Transl. 13 (1960), 1–7.
- [13] Mollin, R. A., An Introduction to Cryptography. Chapman&Hall/CRC, 2001.
- [14] Mordell, L. J., On a Cubic Congruence in Three Variables, II. Proc Amer. Math. Soc. 14 (4) (1963), 609–614.
- [15] Silverman, J. H., The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
- [16] Spearman, B. K., Williams, K., The Cubic Congrunce $x^3 + Ax^2 + Bx + C \equiv 0 \pmod{p}$ and Binary Quadratic Forms II. Journal of London Math. Soc. 64 (2) (2001), 273–274.
- [17] Voronoi, G. F., On a Generalization of the Algorithm of Continued Fractions, (in Russian). PhD Dissertation, Warsaw, 1896.
- [18] Tekcan, A., Bizim, O., The Connection Between Quadratic Forms and the Extended Modular Group. Mathematica Bohemica 128 (3)(2003), 225–236.
- [19] Tekcan, A., The Cubic Congruence $x^3 + ax^2 + bx + c \equiv 0 \pmod{p}$ and Binary Quadratic Forms $F(x, y) = ax^2 + bxy + cy^2$. Ars Combinatoria 85(2007), 257–269.
- [20] Tekcan, A., On Indefinite Binary Quadratic Forms, Cubic Congruence and Elliptic Curves. Int. Journal of Contemporary Math. Sci 2(21)(2007), 1031-1037.

- [21] Tekcan, A., The Number of Rational Points on Conics $C_{p,k}: x^2 ky^2 = 1$ Over Finite Fields \mathbb{F}_p . Int. Jour. of Mathematics Sciences 1 (2) (2007), 150-153.
- [22] Tekcan, A., The Elliptic Curves $y^2 = x^3 t^2 x$ over \mathbb{F}_p . Int. Jour. of Mathematics Sciences 1(3)(2007), 165-171.
- [23] Washington, L. C., Elliptic Curves, Number Theory and Cryptography. Boca London, New York, Washington DC: Chapman&Hall/CRC, 2003.
- [24] Wiles, A., Modular Elliptic Curves and Fermat's Last Theorem. Ann. of Math. 141(3) (1995), 443–551.
- [25] Williams, H. C., Zarnke, C. R., Some Algoritms for Solving a Cubic Congruence modulo p. Utilitas Math. 6 (1974), 285–306.

Received by the editors April 9, 2008