ELLIPTIC CURVES, CONICS AND CUBIC CONGRUENCES ASSOCIATED WITH INDEFINITE BINARY QUADRATIC FORMS

Ahmet Tekcan ${ }^{\square}$, Arzu Özkoç ${ }^{1}$, Betül Gezer ${ }^{1}$, Osman Bizim ${ }^{1}$

Abstract

In this paper we consider elliptic curves, conics and cubic congruences over finite fields associated with indefinite binary quadratic forms F_{i} in the proper cycle of $F=(1,7,-6)$. We determine the number of rational points on elliptic curves $E_{F_{i}}: y^{2}=a_{i} x^{3}+b_{i} x^{2}+c_{i} x$ and conics $C_{F_{i}}: a_{i} x^{2}+b_{i} x y+c_{i} y^{2}-N=0$ over \mathbb{F}_{73}, where $N \in \mathbb{F}_{73}^{*}$ and $F_{i}=\left(a_{i}, b_{i}, c_{i}\right)$ be any form in the proper cycle of F. In the last section, we consider the number integer solutions of cubic congruences $C_{F_{i}}^{3}: x^{3}+a_{i} x^{2}+b_{i} x+c_{i} \equiv 0(\bmod 73)$ associated with F_{i}.

AMS Mathematics Subject Classification (2000): 11E04, 11E12, 11E16, 11D25, 11D79
Key words and phrases: Binary quadratic forms, cubic congruences, elliptic curves, conics

1. Preliminaries

A real binary quadratic form (or just a form) F is a polynomial in two variables x and y of the type

$$
F=F(x, y)=a x^{2}+b x y+c y^{2}
$$

with real coefficients a, b, c. We denote F briefly by $F=(a, b, c)$. The discriminant of F is defined by the formula $b^{2}-4 a c$, and is denoted by $\Delta=\Delta(F)$. F is an integral form if and only if $a, b, c \in \mathbb{Z}$ and is indefinite if and only if $\Delta(F)>0$. An indefinite quadratic form $F=(a, b, c)$ of discriminant Δ is said to be reduced if

$$
|\sqrt{\Delta}-2| a|\mid<b<\sqrt{\Delta}
$$

Most properties of quadratic forms can be given with the aid of extended modular group $\bar{\Gamma}$ (see [18]). Gauss defined the group action of $\bar{\Gamma}$ on the set of forms as follows:

$$
\begin{aligned}
g F(x, y)= & \left(a r^{2}+b r s+c s^{2}\right) x^{2}+(2 a r t+b r u+b t s+2 c s u) x y \\
& +\left(a t^{2}+b t u+c u^{2}\right) y^{2}
\end{aligned}
$$

[^0]for $g=\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \bar{\Gamma}$. Hence two forms F and G are called equivalent if and only if there exists a $g \in \bar{\Gamma}$ such that $g F=G$. If $\operatorname{det} g=1$, then F and G are called properly equivalent and if $\operatorname{det} g=-1$, then F and G are called improperly equivalent. If a form F is improperly equivalent to itself, then it is called ambiguous (for further details on binary quadratic forms see [3, 4, 7]).

Let $\rho(F)$ denote the normalization of $(c,-b, a)$. To be more explicit, we set

$$
\rho(F)=\left(c,-b+2 c s, c s^{2}-b s+a\right),
$$

where

$$
r=r(F)= \begin{cases}\operatorname{sign}(c)\left\lfloor\frac{b}{2|c|}\right\rfloor & \text { for }|c| \geq \sqrt{\Delta} \\ \operatorname{sign}(c)\left\lfloor\frac{b+\sqrt{\Delta}}{2|c|}\right\rfloor & \text { for }|c|<\sqrt{\Delta}\end{cases}
$$

If F is reduced, then $\rho(F)$ is also reduced. In fact, ρ is a permutation of the set of all reduced indefinite forms. Now, consider the following transformation

$$
\tau(F)=\tau(a, b, c)=(-a, b,-c)
$$

Then the cycle of F is the sequence $\left((\tau \rho)^{i}(G)\right)$ for $i \in \mathbb{Z}$, where $G=(k, l, m)$ is a reduced form with $k>0$, which is equivalent to F and the proper cycle of F is the sequence $\left(\rho^{i}(G)\right)$ for $i \in \mathbb{Z}$, where G is a reduced form which is properly equivalent to F. The cycle and the proper cycle of F are invariants of the equivalence class of F. We represent the cycle or proper cycle of F by its period $F_{0} \sim F_{1} \sim \cdots \sim F_{l-1}$ of length l. We explain how to compute the cycle and proper cycle of F by the following lemma.

Lemma 1.1. Let $F=(a, b, c)$ be an indefinite reduced quadratic form of the discriminant Δ. Then the cycle of F is $F_{0} \sim F_{1} \sim F_{2} \sim \cdots \sim F_{l-1}$ of length l, where $F_{0}=F=\left(a_{0}, b_{0}, c_{0}\right)$,

$$
\begin{equation*}
s_{i}=\left|s\left(F_{i}\right)\right|=\left\lfloor\frac{b_{i}+\sqrt{\Delta}}{2\left|c_{i}\right|}\right\rfloor \tag{1.1}
\end{equation*}
$$

and
$(1.2) F_{i+1}=\left(a_{i+1}, b_{i+1}, c_{i+1}\right)=\left(\left|c_{i}\right|,-b_{i}+2 s_{i}\left|c_{i}\right|,-\left(a_{i}+b_{i} s_{i}+c_{i} s_{i}^{2}\right)\right)$
for $1 \leq i \leq l-2$. If l is odd, then the proper cycle of F is

$$
\begin{aligned}
& F_{0} \sim \tau\left(F_{1}\right) \sim F_{2} \sim \tau\left(F_{3}\right) \sim \cdots \sim \tau\left(F_{l-2}\right) \sim F_{l-1} \\
& \sim \tau\left(F_{0}\right) \sim F_{1} \sim \tau\left(F_{2}\right) \sim \cdots \sim F_{l-2} \sim \tau\left(F_{l-1}\right)
\end{aligned}
$$

of length $2 l$ and if l is even, then the proper cycle of F is

$$
F_{0} \sim \tau\left(F_{1}\right) \sim F_{2} \sim \tau\left(F_{3}\right) \sim \ldots \sim F_{l-2} \sim \tau\left(F_{l-1}\right)
$$

of length l. In this case the equivalence class of F is the disjoint union of the proper equivalence class of F and the proper equivalence class of $\tau(F)$ [3].

2. Indefinite Binary Quadratic Forms

In this section we will derive the cycle and proper cycle of an indefinite binary quadratic form $F=(1,7,-6)$ of the discriminant $\Delta=73$ which we will need in the later sections.

Theorem 2.1. Let $F=(1,7,-6)$. Then the cycle of F is

$$
\begin{aligned}
& F_{0}=(1,7,-6) \sim F_{1}=(6,5,-2) \sim F_{2}=(2,7,-3) \\
& \sim F_{3}=(3,5,-4) \sim F_{4}=(4,3,-4) \sim F_{5}=(4,5,-3) \\
& \sim F_{6}=(3,7,-2) \sim F_{7}=(2,5,-6) \sim F_{8}=(6,7,-1)
\end{aligned}
$$

of length 9, and the proper cycle of F is

$$
\begin{align*}
& F_{0}=(1,7,-6) \sim F_{1}=(-6,5,2) \sim F_{2}=(2,7,-3) \\
& \sim F_{3}=(-3,5,4) \sim F_{4}=(4,3,-4) \sim F_{5}=(-4,5,3) \\
& \sim F_{6}=(3,7,-2) \sim F_{7}=(-2,5,6) \sim F_{8}=(6,7,-1) \tag{2.1}\\
& \sim F_{9}=(-1,7,6) \sim F_{10}=(6,5,-2) \sim F_{11}=(-2,7,3) \\
& \sim F_{12}=(3,5,-4) \sim F_{13}=(-4,3,4) \sim F_{14}=(4,5,-3) \\
& \sim F_{15}=(-3,7,2) \sim F_{16}=(2,5,-6) \sim F_{17}=(-6,7,1)
\end{align*}
$$

of length 18.
Proof. Let $F=F_{0}=(1,7,-6)$. Then by (1.1), we get $s_{0}=1$ and hence by (1.2), we obtain $F_{1}=(6,5,-2)$. Similarly, we can obtain the following table:

i	1	2	3	4	5	6	7	8	9
a_{i}	1	6	2	3	4	4	3	2	6
b_{i}	7	5	7	5	3	5	7	5	7
c_{i}	-6	-2	-3	-4	-4	-3	-2	-6	-1
s_{i}	1	3	2	1	1	2	3	1	7

Therefore the cycle of F is $F_{0}=(1,7,-6) \sim F_{1}=(6,5,-2) \sim F_{2}=$ $(2,7,-3) \sim F_{3}=(3,5,-4) \sim F_{4}=(4,3,-4) \sim F_{5}=(4,5,-3) \sim F_{6}=$ $(3,7,-2) \sim F_{7}=(2,5,-6) \sim F_{8}=(6,7,-1)$ of length 9 . So by Lemma 1.1, the proper cycle of F is $F_{0}=(1,7,-6) \sim F_{1}=(-6,5,2) \sim F_{2}=(2,7,-3) \sim$ $F_{3}=(-3,5,4) \sim F_{4}=(4,3,-4) \sim F_{5}=(-4,5,3) \sim F_{6}=(3,7,-2) \sim F_{7}=$ $(-2,5,6) \sim F_{8}=(6,7,-1) \sim F_{9}=(-1,7,6) \sim F_{10}=(6,5,-2) \sim F_{11}=$ $(-2,7,3) \sim F_{12}=(3,5,-4) \sim F_{13}=(-4,3,4) \sim F_{14}=(4,5,-3) \sim F_{15}=$ $(-3,7,2) \sim F_{16}=(2,5,-6) \sim F_{17}=(-6,7,1)$ of length 18.

3. Elliptic Curves and Conics

In this section we will consider the number of rational points on the elliptic curves

$$
E_{F_{i}}: y^{2}=a_{i} x^{3}+b_{i} x^{2}+c_{i} x
$$

and conics

$$
C_{F_{i}}: a_{i} x^{2}+b_{i} x y+c_{i} y^{2}-N=0
$$

over \mathbb{F}_{73}, where $N \in \mathbb{F}_{73}^{*}$ and $F_{i}=a_{i} x^{2}+b_{i} x y+c_{i} y^{2}$ are any form in the proper cycle $F_{0} \sim F_{1} \sim \cdots \sim F_{17}$ of F obtained in (2.1).

3.1. Elliptic Curves

The history of elliptic curves is a long one and exciting applications for elliptic curves continue to be discovered. Recently, important and useful applications of elliptic curves have been found for cryptography (see [10, [13, 23]), for factoring large integers (see [11), and for primality proving (see [1]). The mathematical theory of elliptic curves was also crucial in the proof of Fermat's Last Theorem (see [24]). Recall that an equation of the form

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{3.1}
\end{equation*}
$$

is called an elliptic curve, where $a_{1}, a_{2}, a_{3}, a_{4}, a_{6} \in \mathbb{F}_{p}$ for prime p. Set

$$
\begin{aligned}
b_{2} & =a_{1}^{2}+4 a_{2} \\
b_{4} & =2 a_{4}+a_{1} a_{3} \\
b_{6} & =a_{3}^{2}+4 a_{6} \\
b_{8} & =a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2} \\
c_{4} & =b_{2}^{2}-24 b_{4} \\
c_{6} & =-b_{2}^{3}+36 b_{2} b_{4}-216 b_{6} .
\end{aligned}
$$

Then the discriminant of (3.1) is $\Delta=-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6}$. We can transform (3.1) to an elliptic curve (called Weierstrass short form)

$$
\begin{equation*}
E: y^{2}=a x^{3}+b x^{2}+c x \tag{3.2}
\end{equation*}
$$

where $a, b, c \in \mathbb{F}_{p}$. Hence we can view an elliptic curve E as a curve in projective plane \mathbb{P}^{2} with a homogeneous equation $y^{2} z=a x^{3}+b x^{2} z^{2}+c x z^{3}$, and one point at infinity, namely $(0,1,0)$. This point ∞ is the point where all vertical lines meet. We denote this point by O. The set of rational points

$$
E\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}: y^{2}=a x^{3}+b x^{2}+c x\right\} \cup\{O\}
$$

on E is a subgroup of E. The order of $E\left(\mathbb{F}_{p}\right)$ is defined as the number of the points on E and is denoted by $\# E\left(\mathbb{F}_{p}\right)$ (for further details on arithmetic of elliptic curves see [15, 23]).

In [8, 9, 20, 22], we considered the number of rational points on elliptic curves over finite fields. We also obtained some results concerning the sum of x - and
y-coordinates of all points (x, y) on these elliptic curves. In this subsection, we will consider the same problem for the elliptic curves

$$
\begin{equation*}
E_{F_{i}}: y^{2}=a_{i} x^{3}+b_{i} x^{2}+c_{i} x \tag{3.3}
\end{equation*}
$$

over \mathbb{F}_{73}, where F_{i} is any form in the proper cycle of F. Let

$$
E_{F_{i}}\left(\mathbb{F}_{73}\right)=\left\{(x, y) \in \mathbb{F}_{73} \times \mathbb{F}_{73}: y^{2}=a_{i} x^{3}+b_{i} x^{2}+c_{i} x\right\} \cup\{O\} .
$$

Then we can give the following theorem.
Theorem 3.1. Let $E_{F_{i}}$ be an elliptic curve in (3.3). Then

$$
\# E_{F_{i}}\left(\mathbb{F}_{73}\right)= \begin{cases}73 & \text { if } i=4,13 \\ 75 & \text { otherwise } .\end{cases}
$$

Proof. Let $i=4,13$ Consider the elliptic curve $E_{i}: y^{2}=a_{i} x^{3}+b_{i} x^{2}+c_{i} x$ over \mathbb{F}_{73}. If $y=0$, then we have

$$
a_{i} x^{3}+b_{i} x^{2}+c_{i} x \equiv 0(\bmod 73) \Leftrightarrow x\left(a_{i} x^{2}+b_{i} x+c_{i}\right) \equiv 0(\bmod 73) .
$$

So we get

$$
\begin{equation*}
x \equiv 0(\bmod 73) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i} x^{2}+b_{i} x+c_{i} \equiv 0(\bmod 73) . \tag{3.5}
\end{equation*}
$$

Hence it is easily seen that $x=0$ is a solution of (3.4) and

$$
x= \begin{cases}27 & \text { if } i=4 \\ 46 & \text { if } i=13\end{cases}
$$

is a solution of (3.5). Therefore if $i=4$, then there are two rational points $(0,0)$ and $(17,0)$ on $E_{F_{4}}$ and if $i=13$, then there are two rational points $(0,0)$ and $(46,0)$ on $E_{F_{13}}$.

Let Q_{p} denote the set of quadratic residues. Then

$$
\begin{aligned}
Q_{73}= & \{1,2,3,4,6,8,9,12,16,18,19,23,24,25, \mathbf{2 7}, 32,35,36,37, \\
& 38,41, \mathbf{4 6}, 48,49,50,54,55,57,61,64,65,67,69,70,71,72\} .
\end{aligned}
$$

Note that $27,46 \in Q_{73}$. Now let

$$
Q_{73}^{x}=Q_{73}- \begin{cases}\{27\} & \text { if } i=4 \\ \{46\} & \text { if } i=13\end{cases}
$$

Then it is easily seen that every element of Q_{73}^{x} makes $a_{i} x^{3}+b_{i} x^{2}+c_{i} x$ a square (as above we see that $x=27$ and $x=46$ make it zero). Let $a_{i} x^{3}+b_{i} x^{2}+c_{i} x=t^{2}$ for some $t \in Q_{73}^{x}$. Then $y^{2} \equiv t^{2}(\bmod 73) \Leftrightarrow y \equiv \pm t(\bmod 73)$. Hence, there are
two rational points (x, t) and $(x,-t)$ on $E_{F_{i}}$, that is, for each point $x \in Q_{73}^{x}$, there are two points on $E_{F_{i}}$. We know that there are 35 elements in Q_{73}^{x} and each of them makes $a_{i} x^{3}+b_{i} x^{2}+c_{i} x$ a square. Therefore there are $2.35=70$ rational points on $E_{F_{i}}$. Adding the points $(0,0),(x, 0)$ and ∞, we get a total $70+2+1=73$ rational points on $E_{F_{i}}$.

Now let $i \neq 4,13$. If $y=0$, then $x=0$ is a solution of (3.4) and

$$
x= \begin{cases}33 & \text { if } i=0 \\ 43 & \text { if } i=1 \\ 53 & \text { if } i=2 \\ 13 & \text { if } i=3 \\ 28 & \text { if } i=5 \\ 11 & \text { if } i=6 \\ 56 & \text { if } i=7 \\ 42 & \text { if } i=8 \\ 40 & \text { if } i=9 \\ 30 & \text { if } i=10 \\ 20 & \text { if } i=11 \\ 60 & \text { if } i=12 \\ 45 & \text { if } i=14 \\ 62 & \text { if } i=15 \\ 17 & \text { if } i=16 \\ 31 & \text { if } i=17\end{cases}
$$

is a solution of (3.5). Hence there are two types of points, $(0,0)$ and $(x, 0)$ on $E_{F_{i}}$, where x is defined as above. Note that all these values of x are not in Q_{73}. It is easily seen that every element of Q_{73} makes $a_{i} x^{3}+b_{i} x^{2}+c_{i} x$ a square. Let $a_{i} x^{3}+b_{i} x^{2}+c_{i} x=t^{2}$ for some $t \in Q_{73}$. Then $y^{2} \equiv t^{2}(\bmod 73) \Leftrightarrow y \equiv$ $\pm t(\bmod 73)$. Hence there are two rational points (x, t) and $(x,-t)$ on $E_{F_{i}}$, that is, for every point $x \in Q_{73}$, there are two points on $E_{F_{i}}$. We know that there are 36 elements in Q_{73}, and each of them makes $a_{i} x^{3}+b_{i} x^{2}+c_{i} x$ a square. Therefore there are $2.36=72$ rational points on $E_{F_{i}}$. Adding the points $(0,0)$, $(x, 0)$ and ∞, we get total $72+2+1=75$ rational points on $E_{F_{i}}$.

3.2. Conics

A conic is given by an equation

$$
\begin{equation*}
C: a_{11} x^{2}+2 a_{12} x y+a_{22} y^{2}+2 a_{13} x+2 a_{23} y+a_{33}=0 \tag{3.6}
\end{equation*}
$$

for real numbers $a_{i j}$. Let

$$
\delta=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

If $\delta>0$, then C represents an ellipse, if $\delta<0$, then C represents a hyperbola, and if $\delta=0$, then C represents a parabola.

In 21], we considered the number of rational points on the conics $C_{p, k}$: $x^{2}-k y^{2}=1$ over finite fields \mathbb{F}_{p} for $k \in \mathbb{F}_{p}^{*}$. In this subsection we will determine the number of rational points on the conics

$$
\begin{equation*}
C_{F_{i}}: a_{i} x^{2}+b_{i} x y+c_{i} y^{2}-N=0 \tag{3.7}
\end{equation*}
$$

over \mathbb{F}_{73}, where $N \in \mathbb{F}_{73}^{*}$ and F_{i} are any form in the proper cycle of F. Let

$$
C_{F_{i}}\left(\mathbb{F}_{73}\right)=\left\{(x, y) \in \mathbb{F}_{73} \times \mathbb{F}_{73}: C_{F_{i}}: a_{i} x^{2}+b_{i} x y+c_{i} y^{2}-N \equiv 0(\bmod 73)\right\}
$$

Then we have the following result.
Theorem 3.2. Let $C_{F_{i}}$ be the conic in (3.7). Then

$$
\# C_{F_{i}}\left(\mathbb{F}_{73}\right)=\left\{\begin{array}{cl}
2 p & \text { if } N \in Q_{73} \\
0 & \text { if } N \notin Q_{73} .
\end{array}\right.
$$

Proof. We have two cases:
Case 1: Let $N \in Q_{73}$, say $N=t^{2}$ for $t \in \mathbb{F}_{73}^{*}$. If $y=0$, then

$$
\begin{equation*}
a_{i} x^{2} \equiv t^{2}(\bmod 73) \Leftrightarrow x \equiv \pm \frac{t}{\sqrt{a_{i}}}(\bmod 73) \tag{3.8}
\end{equation*}
$$

Let $\frac{t}{\sqrt{a_{i}}} \equiv m(\bmod 73)$. Then there are two integer solutions $(m, 0)$ and $(p-m, 0)$ of (3.8). So there are two rational points $(m, 0),(p-m, 0)$ on $C_{F_{i}}$. If $x=0$, then

$$
\begin{equation*}
c_{i} y^{2} \equiv t^{2}(\bmod 73) \Leftrightarrow y \equiv \pm \frac{t^{2}}{\sqrt{c_{i}}}(\bmod 73) \tag{3.9}
\end{equation*}
$$

Let $\frac{t^{2}}{\sqrt{c_{i}}} \equiv k(\bmod 73)$. Then there are solutions $(0, k)$ and $(0, p-k)$ of (3.9) and hence there are two rational points $(0, k)$ and $(0, p-k)$ on $C_{F_{i}}$. Further, it is easily seen that if $x=h$ for some $h \in \mathbb{F}_{73}^{*}$, then the congruence $a_{i} h^{2}+b_{i} h y+$ $c_{i} y^{2} \equiv t^{2}(\bmod 73)$ has a solution $y=y_{1}$, and if $x=p-h$, then the congruence $a_{i}(p-h)^{2}+b_{i}(p-h) y+c_{i} y^{2} \equiv t^{2}(\bmod 73)$ has a solution $y=y_{2}$. So we have six rational points $(m, 0),(p-m, 0),(0, k),(0, p-k),\left(h, y_{1}\right)$ and $\left(p-h, y_{2}\right)$ on $C_{F_{i}}$. Now set $G_{p}=\mathbb{F}_{p}-\{0, m, h\}$. Then there are $p-3$ points $x \in G_{p}$ such that the congruence $a_{i} x^{2}+b_{i} x y+c_{i} y^{2} \equiv t^{2}(\bmod 73)$ has two solutions. Let $x=u$ be a point in G_{p} such that the congruence $a_{i} u^{2}+b_{i} u y+c_{i} y^{2} \equiv t^{2}(\bmod 73)$ has two solutions $y=y_{3}$ and $y=y_{4}$. Then there are two rational points $\left(u, y_{3}\right)$ and $\left(u, y_{4}\right)$ on $C_{F_{i}}$, that is, for each point x in G_{p}, there are two rational points on $C_{F_{i}}$. Hence there are $2(p-3)=2 p-6$ rational points. We see, as above that there are six rational points $(m, 0),(p-m, 0),(0, k),(0, p-k),\left(h, y_{1}\right)$ and $\left(p-h, y_{2}\right)$ on $C_{F_{i}}$. Consequently, there are a total $2(p-3)+6=2 p$ of rational points on $C_{F_{i}}$.

Case 2: Let $N \notin Q_{73}$. If $y=0$, then $a_{i} x^{2} \equiv N(\bmod 73)$ has no solution since $\frac{N}{a_{i}}$ is not a square $\bmod 73$ and if $x=0$, then $c_{i} y^{2} \equiv N(\bmod 73)$ has no
solution since $\frac{N}{c_{i}}$ is not a square $\bmod 73$. Set $H_{p}=\mathbb{F}_{p}-\{0\}$. Then there is no point x in H_{p} such that the congruence $a_{i} x^{2}+b_{i} x y+c_{i} y^{2} \equiv N(\bmod 73)$ has a solution y. Therefore there are no rational points on $C_{F_{i}}$.

Remark 3.3. Note that in above theorem we only consider the number of rational points on $C_{F_{i}}$ over \mathbb{F}_{73}. When we consider this problem for other primes p, then we can give the following theorem.

Theorem 3.4. Let $C_{F_{i}}$ be the conic in (3.7). Then

$$
\# C_{F_{i}}\left(\mathbb{F}_{p}\right)=\left\{\begin{array}{cc}
2 p & \text { if } N \in Q_{p} \\
0 & \text { if } N \notin Q_{p}
\end{array}\right.
$$

for every prime p such that $p \equiv 1(\bmod 4)$.
Proof. This theorem can be proved the same way as Theorem 3.2.

4. Cubic Congruences

In 1896, Voronoi [17] presented his algorithm for computing a system of fundamental units of a cubic number field. His technique was described in terms of binary quadratic forms. Later his technique was restarted in the language of multiplicative lattices by Delone and Faddeev [5]. In 1985, Buchmann [2] generalized the Voronoi's algorithm. A cubic congruence over a field \mathbb{F}_{p} is

$$
\begin{equation*}
x^{3}+u x^{2}+v x+w \equiv 0(\bmod p) \tag{4.1}
\end{equation*}
$$

where $u, v, w \in \mathbb{F}_{p}$. Solutions of cubic congruence (including cubic residues) considered by many authors. Dietmann [6] considered the small solutions of additive cubic congruences. Manin [12] considered the cubic congruence on prime modules. Mordell [14] considered the cubic congruence in three variables and also the congruence $a x^{3}+b y^{3}+c z^{3}+d x y z \equiv n(\bmod p)$. Williams and Zarnke [25] gave some algorithms for solving the cubic congruence on prime modules. Let $H(\Delta)$ denote the group of classes of primitive, integral binary quadratic forms $F(x, y)=a x^{2}+b x y+c y^{2}$ of discriminant Δ. Let K be a quadratic field $\mathbb{Q}(\sqrt{\Delta})$, let L be the splitting field of $x^{3}+a x^{2}+b x+c$, let $f_{0}=f_{0}(L / K)$ be the part of the conductor of the extension L / K, and let f be a positive integer with $f_{0} \mid f$. In 16, Spearman and Williams considered the cubic congruence $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$ and binary quadratic forms $F(x, y)=a x^{2}+b x y+c y^{2}$. They proved that the cubic congruence $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$ has three solutions if and only if p is represented by a quadratic form F in J, where $J=J(L, K, F)$ is a subgroup of index 3 in $H\left(\Delta(K) f^{2}\right)$.

In [19, 20], we considered the number of integer solutions of cubic congruences $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$ for binary quadratic forms $F(x, y)=$
$a x^{2}+b x y+c y^{2}$. In this section we will consider the same problem for cubic congruences

$$
\begin{equation*}
C_{F_{i}}^{3}: x^{3}+a_{i} x^{2}+b_{i} x+c_{i} \equiv 0(\bmod 73) \tag{4.2}
\end{equation*}
$$

associated with $F_{i}=a_{i} x^{2}+b_{i} x y+c_{i} y^{2}$, which is a form in the proper cycle of F. Let

$$
C_{F_{i}}^{3}\left(\mathbb{F}_{73}\right)=\left\{x \in \mathbb{F}_{73}: x^{3}+a_{i} x^{2}+b_{i} x+c_{i} \equiv 0(\bmod 73)\right\} .
$$

Then we have the following theorem.
Theorem 4.1. Let $C_{F_{i}}^{3}$ be the cubic congruence in (4.2). Then

$$
\# C_{F_{i}}^{3}\left(\mathbb{F}_{73}\right)= \begin{cases}3 & \text { if } i=5,6,8,14,15,17 \\ 1 & \text { if } i=0,4,9,13 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let $i=5$. Then $F_{5}=(-4,5,3)$ by (2.1). It is easily seen that the cubic congruence

$$
C_{F_{5}}^{3}: x^{3}-4 x^{2}+5 x+3 \equiv 0(\bmod 73)
$$

has three solutions $x=32,54,64$. In fact one can obtain the following table:

i	F_{i}	$C_{F_{i}}^{3}$	$C_{F_{i}}^{3}\left(\mathbb{F}_{73}\right)$	$\# C_{F_{i}}^{3}\left(\mathbb{F}_{73}\right)$
0	F_{0}	$x^{3}+x^{2}+7 x-6$	$\{41\}$	1
1	F_{1}	$x^{3}-6 x^{2}+5 x+2$	$\}$	0
2	F_{2}	$x^{3}+2 x^{2}+7 x-3$	$\}$	0
3	F_{3}	$x^{3}-3 x^{2}+5 x+4$	$\}$	0
4	F_{4}	$x^{3}+4 x^{2}+3 x-4$	$\{12\}$	1
5	F_{5}	$x^{3}-4 x^{2}+5 x+3$	$\{32,54,64\}$	3
6	F_{6}	$x^{3}+3 x^{2}+7 x-2$	$\{3,32,35\}$	3
7	F_{7}	$x^{3}-2 x^{2}+5 x+6$	$\}$	0
8	F_{8}	$x^{3}+6 x^{2}+7 x-1$	$\{24,55,61\}$	3
9	F_{9}	$x^{3}-x^{2}+7 x+6$	$\{32\}$	1
10	F_{10}	$x^{3}+6 x^{2}+5 x-2$	$\}$	0
11	F_{11}	$x^{3}-2 x^{2}+7 x+3$	$\}$	0
12	F_{12}	$x^{3}+3 x^{2}+5 x-4$	$\}$	0
13	F_{13}	$x^{3}-4 x^{2}+3 x+4$	$\{61\}$	1
14	F_{14}	$x^{3}+4 x^{2}+5 x-3$	$\{9,19,41\}$	3
15	F_{15}	$x^{3}-3 x^{2}+7 x+2$	$\{38,41,70\}$	3
16	F_{16}	$x^{3}+2 x^{2}+5 x-6$	$\}$	0
17	F_{17}	$x^{3}-6 x^{2}+7 x+1$	$\{12,18,49\}$	3

This completes the proof.

References

[1] Atkin, A. O. L., Moralin, F., Elliptic Curves and Primality Proving. Math. Comp. 61 (2003)(1993), 29-68.
[2] Buchmann, J., A generalization of Voronoi's unit Algorithm I, II. Journal of Number Theory 20(2) (1985), 177-209.
[3] Buchmann, J., Vollmer, U., Binary Quadratic Forms: An Algorithmic Approach. Berlin, Heidelberg: Springer-Verlag, 2007.
[4] Buell, D. A., Binary Quadratic Forms, Clasical Theory and Modern Computations. New York: Springer-Verlag, 1989.
[5] Delone, B. N., Faddeev, K., The Theory of Irrationalities of the Third Degree. Transl. Math. Monographs 10, Amer. Math. Soc., Providence, Rhode Island 28 (1964), 3955.
[6] Dietmann, R., Small Solutions of Additive Cubic Congruences. Archiv der Mathematik 75 (3)(2000), 195-197.
[7] Flath, D. E., Introduction To Number Theory. Wiley, 1989.
[8] Gezer, B., Özden, H., Tekcan, A., Bizim, O., The Number of Rational Points on Elliptic Curves $y^{2}=x^{3}+b^{2}$ over Finite Fields. Int. Jour. of Math. Sci. 1(3)(2007), 178-184.
[9] Gezer, B., Tekcan, A., Bizim, O., The Number of Rational Points on Elliptic Curves and Circles over Finite Fields. Inter. Journal of Maths Sciences 2(2)(2008), 58-63.
[10] Koblitz, N., A Course in Number Theory and Cryptography. Springer-Verlag, 1994.
[11] Lenstra, H. W., Jr., Factoring Integers with Elliptic Curves. Ann. of Math. 3(126) (1987), 649-673.
[12] Manin, Y. I., On a Cubic Congrunce to a Prime Modules. Amer. Math. Soc. Transl. 13 (1960), 1-7.
[13] Mollin, R. A., An Introduction to Cryptography. Chapman\&Hall/CRC, 2001.
[14] Mordell, L. J., On a Cubic Congruence in Three Variables, II. Proc Amer. Math. Soc. 14 (4) (1963), 609-614.
[15] Silverman, J. H., The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
[16] Spearman, B. K., Williams, K., The Cubic Congrunce $x^{3}+A x^{2}+B x+C \equiv$ $0(\bmod p)$ and Binary Quadratic Forms II. Journal of London Math. Soc. 64 (2) (2001), 273-274.
[17] Voronoi, G. F., On a Generalization of the Algorithm of Continued Fractions, (in Russian). PhD Dissertation, Warsaw, 1896.
[18] Tekcan, A., Bizim, O., The Connection Between Quadratic Forms and the Extended Modular Group. Mathematica Bohemica 128 (3)(2003), 225-236.
[19] Tekcan, A., The Cubic Congruence $x^{3}+a x^{2}+b x+c \equiv 0(\bmod p)$ and Binary Quadratic Forms $F(x, y)=a x^{2}+b x y+c y^{2}$. Ars Combinatoria 85(2007), 257269.
[20] Tekcan, A., On Indefinite Binary Quadratic Forms, Cubic Congruence and Elliptic Curves. Int. Journal of Contemporary Math. Sci 2(21)(2007), 1031-1037.
[21] Tekcan, A., The Number of Rational Points on Conics $C_{p, k}: x^{2}-k y^{2}=1$ Over Finite Fields \mathbb{F}_{p}. Int. Jour. of Mathematics Sciences 1 (2) (2007), 150-153.
[22] Tekcan, A., The Elliptic Curves $y^{2}=x^{3}-t^{2} x$ over \mathbb{F}_{p}. Int. Jour. of Mathematics Sciences 1(3)(2007), 165-171.
[23] Washington, L. C., Elliptic Curves, Number Theory and Cryptography. Boca London, New York, Washington DC: Chapman\&Hall/CRC, 2003.
[24] Wiles, A., Modular Elliptic Curves and Fermat's Last Theorem. Ann. of Math. 141(3) (1995), 443-551.
[25] Williams, H. C., Zarnke, C. R., Some Algoritms for Solving a Cubic Congruence modulo p. Utilitas Math. 6 (1974), 285-306.

Received by the editors April 9, 2008

[^0]: ${ }^{1}$ Uludag University, Faculty of Science, Department of Mathematics, Görükle, 16059, Bursa, Turkey
 e-mails: tekcan@uludag.edu.tr, aozkoc@uludag.edu.tr, betulgezer@uludag.edu.tr, obizim@uludag.edu.tr; http://matematik.uludag.edu.tr/AhmetTekcan.htm

