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ELLIPTIC CURVES, CONICS AND CUBIC
CONGRUENCES ASSOCIATED WITH INDEFINITE

BINARY QUADRATIC FORMS
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Abstract. In this paper we consider elliptic curves, conics and cubic
congruences over finite fields associated with indefinite binary quadratic
forms Fi in the proper cycle of F = (1, 7,−6). We determine the num-
ber of rational points on elliptic curves EFi : y2 = aix

3 + bix
2 + cix

and conics CFi : aix
2 + bixy + ciy

2 − N = 0 over F73, where N ∈ F∗73
and Fi = (ai, bi, ci) be any form in the proper cycle of F . In the last
section, we consider the number integer solutions of cubic congruences
C3

Fi
: x3 + aix

2 + bix + ci ≡ 0(mod 73) associated with Fi.
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1. Preliminaries

A real binary quadratic form (or just a form) F is a polynomial in two
variables x and y of the type

F = F (x, y) = ax2 + bxy + cy2

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The discrim-
inant of F is defined by the formula b2 − 4ac, and is denoted by ∆ = ∆(F ).
F is an integral form if and only if a, b, c ∈ Z and is indefinite if and only if
∆(F ) > 0. An indefinite quadratic form F = (a, b, c) of discriminant ∆ is said
to be reduced if ∣∣∣

√
∆− 2|a|

∣∣∣ < b <
√

∆.

Most properties of quadratic forms can be given with the aid of extended
modular group Γ (see [18]). Gauss defined the group action of Γ on the set of
forms as follows:

gF (x, y) =
(
ar2 + brs + cs2

)
x2 + (2art + bru + bts + 2csu)xy

+
(
at2 + btu + cu2

)
y2
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for g =
(

r s
t u

)
∈ Γ. Hence two forms F and G are called equivalent if and

only if there exists a g ∈ Γ such that gF = G. If det g = 1, then F and
G are called properly equivalent and if det g = −1, then F and G are called
improperly equivalent. If a form F is improperly equivalent to itself, then it is
called ambiguous (for further details on binary quadratic forms see [3, 4, 7]).

Let ρ(F ) denote the normalization of (c,−b, a). To be more explicit, we set

ρ(F ) = (c,−b + 2cs, cs2 − bs + a),

where

r = r(F ) =





sign(c)
⌊

b
2|c|

⌋
for |c| ≥ √

∆

sign(c)
⌊

b+
√

∆
2|c|

⌋
for |c| < √

∆.

If F is reduced, then ρ(F ) is also reduced. In fact, ρ is a permutation of the set
of all reduced indefinite forms. Now, consider the following transformation

τ(F ) = τ(a, b, c) = (−a, b,−c).

Then the cycle of F is the sequence ((τρ)i(G)) for i ∈ Z, where G = (k, l, m)
is a reduced form with k > 0, which is equivalent to F and the proper cycle
of F is the sequence (ρi(G)) for i ∈ Z, where G is a reduced form which is
properly equivalent to F . The cycle and the proper cycle of F are invariants of
the equivalence class of F . We represent the cycle or proper cycle of F by its
period F0 ∼ F1 ∼ · · · ∼ Fl−1 of length l. We explain how to compute the cycle
and proper cycle of F by the following lemma.

Lemma 1.1. Let F = (a, b, c) be an indefinite reduced quadratic form of the
discriminant ∆. Then the cycle of F is F0 ∼ F1 ∼ F2 ∼ · · · ∼ Fl−1 of length l,
where F0 = F = (a0, b0, c0),

(1.1) si = |s(Fi)| =
⌊

bi +
√

∆
2|ci|

⌋

and

Fi+1 = (ai+1, bi+1, ci+1) =
(|ci|, −bi + 2si|ci|, −(ai + bisi + cis

2
i )

)
(1.2)

for 1 ≤ i ≤ l − 2. If l is odd, then the proper cycle of F is

F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ · · · ∼ τ(Fl−2) ∼ Fl−1

∼ τ(F0) ∼ F1 ∼ τ(F2) ∼ · · · ∼ Fl−2 ∼ τ(Fl−1)

of length 2l and if l is even, then the proper cycle of F is

F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ ... ∼ Fl−2 ∼ τ(Fl−1)

of length l. In this case the equivalence class of F is the disjoint union of the
proper equivalence class of F and the proper equivalence class of τ(F ) [3].
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2. Indefinite Binary Quadratic Forms

In this section we will derive the cycle and proper cycle of an indefinite
binary quadratic form F = (1, 7,−6) of the discriminant ∆ = 73 which we will
need in the later sections.

Theorem 2.1. Let F = (1, 7,−6). Then the cycle of F is

F0 = (1, 7,−6) ∼ F1 = (6, 5,−2) ∼ F2 = (2, 7,−3)
∼ F3 = (3, 5,−4) ∼ F4 = (4, 3,−4) ∼ F5 = (4, 5,−3)
∼ F6 = (3, 7,−2) ∼ F7 = (2, 5,−6) ∼ F8 = (6, 7,−1)

of length 9, and the proper cycle of F is

F0 = (1, 7,−6) ∼ F1 = (−6, 5, 2) ∼ F2 = (2, 7,−3)
∼ F3 = (−3, 5, 4) ∼ F4 = (4, 3,−4) ∼ F5 = (−4, 5, 3)
∼ F6 = (3, 7,−2) ∼ F7 = (−2, 5, 6) ∼ F8 = (6, 7,−1)(2.1)
∼ F9 = (−1, 7, 6) ∼ F10 = (6, 5,−2) ∼ F11 = (−2, 7, 3)
∼ F12 = (3, 5,−4) ∼ F13 = (−4, 3, 4) ∼ F14 = (4, 5,−3)
∼ F15 = (−3, 7, 2) ∼ F16 = (2, 5,−6) ∼ F17 = (−6, 7, 1)

of length 18.

Proof. Let F = F0 = (1, 7,−6). Then by (1.1), we get s0 = 1 and hence by
(1.2), we obtain F1 = (6, 5,−2). Similarly, we can obtain the following table:

i 1 2 3 4 5 6 7 8 9

ai 1 6 2 3 4 4 3 2 6
bi 7 5 7 5 3 5 7 5 7
ci −6 −2 −3 −4 −4 −3 −2 −6 −1
si 1 3 2 1 1 2 3 1 7

Therefore the cycle of F is F0 = (1, 7,−6) ∼ F1 = (6, 5,−2) ∼ F2 =
(2, 7,−3) ∼ F3 = (3, 5,−4) ∼ F4 = (4, 3,−4) ∼ F5 = (4, 5,−3) ∼ F6 =
(3, 7,−2) ∼ F7 = (2, 5,−6) ∼ F8 = (6, 7,−1) of length 9. So by Lemma 1.1,
the proper cycle of F is F0 = (1, 7,−6) ∼ F1 = (−6, 5, 2) ∼ F2 = (2, 7,−3) ∼
F3 = (−3, 5, 4) ∼ F4 = (4, 3,−4) ∼ F5 = (−4, 5, 3) ∼ F6 = (3, 7,−2) ∼ F7 =
(−2, 5, 6) ∼ F8 = (6, 7,−1) ∼ F9 = (−1, 7, 6) ∼ F10 = (6, 5,−2) ∼ F11 =
(−2, 7, 3) ∼ F12 = (3, 5,−4) ∼ F13 = (−4, 3, 4) ∼ F14 = (4, 5,−3) ∼ F15 =
(−3, 7, 2) ∼ F16 = (2, 5,−6) ∼ F17 = (−6, 7, 1) of length 18. 2
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3. Elliptic Curves and Conics

In this section we will consider the number of rational points on the elliptic
curves

EFi : y2 = aix
3 + bix

2 + cix

and conics
CFi

: aix
2 + bixy + ciy

2 −N = 0

over F73, where N ∈ F∗73 and Fi = aix
2 + bixy + ciy

2 are any form in the proper
cycle F0 ∼ F1 ∼ · · · ∼ F17 of F obtained in (2.1).

3.1. Elliptic Curves

The history of elliptic curves is a long one and exciting applications for
elliptic curves continue to be discovered. Recently, important and useful appli-
cations of elliptic curves have been found for cryptography (see [10, 13, 23]),
for factoring large integers (see [11]), and for primality proving (see [1]). The
mathematical theory of elliptic curves was also crucial in the proof of Fermat’s
Last Theorem (see [24]). Recall that an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6(3.1)

is called an elliptic curve, where a1, a2, a3, a4, a6 ∈ Fp for prime p. Set

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4

c6 = −b3
2 + 36b2b4 − 216b6.

Then the discriminant of (3.1) is ∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6. We can

transform (3.1) to an elliptic curve (called Weierstrass short form)

(3.2) E : y2 = ax3 + bx2 + cx,

where a, b, c ∈ Fp. Hence we can view an elliptic curve E as a curve in projective
plane P2 with a homogeneous equation y2z = ax3 + bx2z2 + cxz3, and one point
at infinity, namely (0, 1, 0). This point ∞ is the point where all vertical lines
meet. We denote this point by O. The set of rational points

E(Fp) = {(x, y) ∈ Fp × Fp : y2 = ax3 + bx2 + cx} ∪ {O}
on E is a subgroup of E. The order of E(Fp) is defined as the number of the
points on E and is denoted by #E(Fp) (for further details on arithmetic of
elliptic curves see [15, 23]).

In [8, 9, 20, 22], we considered the number of rational points on elliptic curves
over finite fields. We also obtained some results concerning the sum of x- and
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y-coordinates of all points (x, y) on these elliptic curves. In this subsection, we
will consider the same problem for the elliptic curves

EFi
: y2 = aix

3 + bix
2 + cix(3.3)

over F73, where Fi is any form in the proper cycle of F . Let

EFi(F73) = {(x, y) ∈ F73 × F73 : y2 = aix
3 + bix

2 + cix} ∪ {O}.
Then we can give the following theorem.

Theorem 3.1. Let EFi
be an elliptic curve in (3.3). Then

#EFi(F73) =
{

73 if i = 4, 13
75 otherwise.

Proof. Let i = 4, 13 Consider the elliptic curve Ei : y2 = aix
3 + bix

2 + cix over
F73. If y = 0, then we have

aix
3 + bix

2 + cix ≡ 0(mod 73) ⇔ x(aix
2 + bix + ci) ≡ 0(mod 73).

So we get

x ≡ 0(mod 73)(3.4)

and

aix
2 + bix + ci ≡ 0(mod 73).(3.5)

Hence it is easily seen that x = 0 is a solution of (3.4) and

x =
{

27 if i = 4
46 if i = 13

is a solution of (3.5). Therefore if i = 4, then there are two rational points (0, 0)
and (17, 0) on EF4 and if i = 13, then there are two rational points (0, 0) and
(46, 0) on EF13 .

Let Qp denote the set of quadratic residues. Then

Q73 = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 19, 23, 24, 25,27, 32, 35, 36, 37,

38, 41,46, 48, 49, 50, 54, 55, 57, 61, 64, 65, 67, 69, 70, 71, 72}.
Note that 27, 46 ∈ Q73. Now let

Qx
73 = Q73 −

{ {27} if i = 4
{46} if i = 13.

Then it is easily seen that every element of Qx
73 makes aix

3 +bix
2 +cix a square

(as above we see that x = 27 and x = 46 make it zero). Let aix
3+bix

2+cix = t2

for some t ∈ Qx
73. Then y2 ≡ t2(mod 73) ⇔ y ≡ ±t(mod 73). Hence, there are
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two rational points (x, t) and (x,−t) on EFi
, that is, for each point x ∈ Qx

73,
there are two points on EFi . We know that there are 35 elements in Qx

73 and
each of them makes aix

3 + bix
2 + cix a square. Therefore there are 2.35 = 70

rational points on EFi
. Adding the points (0, 0), (x, 0) and ∞, we get a total

70 + 2 + 1 = 73 rational points on EFi .
Now let i 6= 4, 13. If y = 0, then x = 0 is a solution of (3.4) and

x =





33 if i = 0
43 if i = 1
53 if i = 2
13 if i = 3
28 if i = 5
11 if i = 6
56 if i = 7
42 if i = 8
40 if i = 9
30 if i = 10
20 if i = 11
60 if i = 12
45 if i = 14
62 if i = 15
17 if i = 16
31 if i = 17

is a solution of (3.5). Hence there are two types of points, (0, 0) and (x, 0) on
EFi , where x is defined as above. Note that all these values of x are not in Q73.
It is easily seen that every element of Q73 makes aix

3 + bix
2 + cix a square.

Let aix
3 + bix

2 + cix = t2 for some t ∈ Q73. Then y2 ≡ t2(mod 73) ⇔ y ≡
±t(mod 73). Hence there are two rational points (x, t) and (x,−t) on EFi , that
is, for every point x ∈ Q73, there are two points on EFi . We know that there
are 36 elements in Q73, and each of them makes aix

3 + bix
2 + cix a square.

Therefore there are 2.36 = 72 rational points on EFi . Adding the points (0, 0),
(x, 0) and ∞, we get total 72 + 2 + 1 = 75 rational points on EFi . 2

3.2. Conics

A conic is given by an equation

(3.6) C : a11x
2 + 2a12xy + a22y

2 + 2a13x + 2a23y + a33 = 0

for real numbers aij . Let

δ =
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ .

If δ > 0, then C represents an ellipse, if δ < 0, then C represents a hyperbola,
and if δ = 0, then C represents a parabola.



Elliptic curves, conics and cubic congruences ... 77

In [21], we considered the number of rational points on the conics Cp,k :
x2−ky2 = 1 over finite fields Fp for k ∈ F∗p. In this subsection we will determine
the number of rational points on the conics

CFi : aix
2 + bixy + ciy

2 −N = 0(3.7)

over F73, where N ∈ F∗73 and Fi are any form in the proper cycle of F . Let

CFi(F73) = {(x, y) ∈ F73 × F73 : CFi : aix
2 + bixy + ciy

2 −N ≡ 0(mod 73)}.

Then we have the following result.

Theorem 3.2. Let CFi
be the conic in (3.7). Then

#CFi
(F73) =

{
2p if N ∈ Q73

0 if N /∈ Q73.

Proof. We have two cases:
Case 1: Let N ∈ Q73, say N = t2 for t ∈ F∗73. If y = 0, then

(3.8) aix
2 ≡ t2(mod 73) ⇔ x ≡ ± t√

ai
(mod 73).

Let t√
ai
≡ m(mod 73). Then there are two integer solutions (m, 0) and (p−m, 0)

of (3.8). So there are two rational points (m, 0), (p − m, 0) on CFi . If x = 0,
then

(3.9) ciy
2 ≡ t2(mod 73) ⇔ y ≡ ± t2√

ci
(mod 73).

Let t2√
ci
≡ k(mod 73). Then there are solutions (0, k) and (0, p− k) of (3.9) and

hence there are two rational points (0, k) and (0, p − k) on CFi . Further, it is
easily seen that if x = h for some h ∈ F∗73, then the congruence aih

2 + bihy +
ciy

2 ≡ t2(mod 73) has a solution y = y1, and if x = p− h, then the congruence
ai(p−h)2 +bi(p−h)y+ciy

2 ≡ t2(mod 73) has a solution y = y2. So we have six
rational points (m, 0), (p−m, 0), (0, k), (0, p− k), (h, y1) and (p− h, y2) on CFi .
Now set Gp = Fp − {0,m, h}. Then there are p − 3 points x ∈ Gp such that
the congruence aix

2 + bixy + ciy
2 ≡ t2(mod 73) has two solutions. Let x = u

be a point in Gp such that the congruence aiu
2 + biuy + ciy

2 ≡ t2(mod 73) has
two solutions y = y3 and y = y4. Then there are two rational points (u, y3)
and (u, y4) on CFi , that is, for each point x in Gp, there are two rational points
on CFi . Hence there are 2(p − 3) = 2p − 6 rational points. We see, as above
that there are six rational points (m, 0), (p −m, 0), (0, k), (0, p − k), (h, y1) and
(p− h, y2) on CFi . Consequently, there are a total 2(p− 3) + 6 = 2p of rational
points on CFi .

Case 2: Let N /∈ Q73. If y = 0, then aix
2 ≡ N(mod 73) has no solution

since N
ai

is not a square mod 73 and if x = 0, then ciy
2 ≡ N(mod 73) has no
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solution since N
ci

is not a square mod 73. Set Hp = Fp − {0}. Then there is no
point x in Hp such that the congruence aix

2 + bixy + ciy
2 ≡ N(mod 73) has a

solution y. Therefore there are no rational points on CFi
. 2

Remark 3.3. Note that in above theorem we only consider the number of
rational points on CFi

over F73. When we consider this problem for other primes
p, then we can give the following theorem.

Theorem 3.4. Let CFi
be the conic in (3.7). Then

#CFi(Fp) =
{

2p if N ∈ Qp

0 if N /∈ Qp

for every prime p such that p ≡ 1(mod 4).

Proof. This theorem can be proved the same way as Theorem 3.2. 2

4. Cubic Congruences

In 1896, Voronoi [17] presented his algorithm for computing a system of
fundamental units of a cubic number field. His technique was described in terms
of binary quadratic forms. Later his technique was restarted in the language
of multiplicative lattices by Delone and Faddeev [5]. In 1985, Buchmann [2]
generalized the Voronoi’s algorithm. A cubic congruence over a field Fp is

(4.1) x3 + ux2 + vx + w ≡ 0(mod p),

where u, v, w ∈ Fp. Solutions of cubic congruence (including cubic residues)
considered by many authors. Dietmann [6] considered the small solutions of
additive cubic congruences. Manin [12] considered the cubic congruence on
prime modules. Mordell [14] considered the cubic congruence in three variables
and also the congruence ax3+by3+cz3+dxyz ≡ n(mod p). Williams and Zarnke
[25] gave some algorithms for solving the cubic congruence on prime modules.
Let H(∆) denote the group of classes of primitive, integral binary quadratic
forms F (x, y) = ax2 + bxy + cy2 of discriminant ∆. Let K be a quadratic field
Q(
√

∆), let L be the splitting field of x3 + ax2 + bx + c, let f0 = f0(L/K) be
the part of the conductor of the extension L/K, and let f be a positive integer
with f0|f . In [16], Spearman and Williams considered the cubic congruence
x3+ax2+bx+c ≡ 0(mod p) and binary quadratic forms F (x, y) = ax2+bxy+cy2.
They proved that the cubic congruence x3 + ax2 + bx + c ≡ 0(mod p) has three
solutions if and only if p is represented by a quadratic form F in J , where
J = J(L,K, F ) is a subgroup of index 3 in H(∆(K)f2).

In [19, 20], we considered the number of integer solutions of cubic congru-
ences x3 + ax2 + bx + c ≡ 0(mod p) for binary quadratic forms F (x, y) =
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ax2 + bxy + cy2. In this section we will consider the same problem for cubic
congruences

C3
Fi

: x3 + aix
2 + bix + ci ≡ 0(mod 73)(4.2)

associated with Fi = aix
2 + bixy + ciy

2, which is a form in the proper cycle of
F . Let

C3
Fi

(F73) = {x ∈ F73 : x3 + aix
2 + bix + ci ≡ 0(mod 73)}.

Then we have the following theorem.

Theorem 4.1. Let C3
Fi

be the cubic congruence in (4.2). Then

#C3
Fi

(F73) =





3 if i = 5, 6, 8, 14, 15, 17
1 if i = 0, 4, 9, 13
0 otherwise.

Proof. Let i = 5. Then F5 = (−4, 5, 3) by (2.1). It is easily seen that the cubic
congruence

C3
F5

: x3 − 4x2 + 5x + 3 ≡ 0(mod 73)

has three solutions x = 32, 54, 64. In fact one can obtain the following table:

i Fi C3
Fi

C3
Fi

(F73) #C3
Fi

(F73)
0 F0 x3 + x2 + 7x− 6 {41} 1
1 F1 x3 − 6x2 + 5x + 2 {} 0
2 F2 x3 + 2x2 + 7x− 3 {} 0
3 F3 x3 − 3x2 + 5x + 4 {} 0
4 F4 x3 + 4x2 + 3x− 4 {12} 1
5 F5 x3 − 4x2 + 5x + 3 {32,54,64} 3
6 F6 x3 + 3x2 + 7x− 2 {3,32,35} 3
7 F7 x3 − 2x2 + 5x + 6 {} 0
8 F8 x3 + 6x2 + 7x− 1 {24,55,61} 3
9 F9 x3 − x2 + 7x + 6 {32} 1
10 F10 x3 + 6x2 + 5x− 2 {} 0
11 F11 x3 − 2x2 + 7x + 3 {} 0
12 F12 x3 + 3x2 + 5x− 4 {} 0
13 F13 x3 − 4x2 + 3x + 4 {61} 1
14 F14 x3 + 4x2 + 5x− 3 {9,19,41} 3
15 F15 x3 − 3x2 + 7x + 2 {38,41,70} 3
16 F16 x3 + 2x2 + 5x− 6 {} 0
17 F17 x3 − 6x2 + 7x + 1 {12,18,49} 3

This completes the proof. 2



80 A. Tekcan, A. Özkoç, B. Gezer, O. Bizim

References

[1] Atkin, A. O. L., Moralin, F., Elliptic Curves and Primality Proving. Math. Comp.
61 (2003)(1993), 29–68.

[2] Buchmann, J., A generalization of Voronoi’s unit Algorithm I, II. Journal of
Number Theory 20(2) (1985), 177–209.

[3] Buchmann, J., Vollmer, U., Binary Quadratic Forms: An Algorithmic Approach.
Berlin, Heidelberg: Springer-Verlag, 2007.

[4] Buell, D. A., Binary Quadratic Forms, Clasical Theory and Modern Computa-
tions. New York: Springer-Verlag, 1989.

[5] Delone, B. N., Faddeev, K., The Theory of Irrationalities of the Third Degree.
Transl. Math. Monographs 10, Amer. Math. Soc., Providence, Rhode Island 28
(1964), 3955.

[6] Dietmann, R., Small Solutions of Additive Cubic Congruences. Archiv der Math-
ematik 75 (3)(2000), 195–197.

[7] Flath, D. E., Introduction To Number Theory. Wiley, 1989.
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