
Novi Sad J. Math.
Vol. 38, No. 2, 2008, 153-170

MULTIFUNCTIONAL ENVIRONMENT FOR
E-LEARNING PURPOSES1

Mirjana Ivanović2, Ivan Pribela2, Boban Vesin3, Zoran Budimac2

Abstract. MILE is an e-learning tool that supports teaching, learning
and student assessment within programming courses. It integrates three
educational systems developed at the Department of Mathematics and
Informatics, Faculty of Science, University of Novi Sad: Mag, Svetovid
and Testovid. Mag is the tutoring system for learning programming lan-
guages. Svetovid is a system that helps instructors to leverage the effort
of practical programming exercises and exams. Testovid is an automated
testing system, designed for assessing students’ solutions during practical
programming exercises. In this paper the structure and functionalities of
MILE are described and discussed.

AMS Mathematics Subject Classification (2000): ???????
Key words and phrases: E-learning, educational systems, Integrated Learn-
ing Environment

1. Introduction

E-learning is the fastest growing form of education in the last decade, and
it has become the most popular way of learning. Usually e-learning systems
use computer networks as the delivery mechanism, and allows student to take
a course anywhere and anytime, so it is widely applied not only to school’s
courses but also for retraining employees in companies. In view of this, there
is a wide range of tools and environments (learning management systems, web-
based educational environments, tutoring systems. . . ) which have been used in
different educational processes and distance learning manner.

It is becoming more and more evident that the requirements of commercial
learning environments are too diverse to be provided by a single monolithic sys-
tem [11]. First, we need a system related to the content production, and then
these contents have to be put together into courses and delivered to learners.
Then, the system must provide support for communication and collaboration
between students and teachers. Finally, student modeling must be implemented
into the system, which will carry rich and detailed information concerning stu-
dent progress through the course, and which needs to be linked to the system

1 This work was supported by project "Abstract Methods and Applications in Computer
Science" (No. 144017A), of the Ministry of Science and Technological Development of the
Republic of Serbia

2Department for Mathematics and Informatics, Faculty of Science, Trg D. Obradovića 4,
21000 Novi Sad, Serbia, e-mail: {mira, pribela, zjb}@im.ns.ac.yu

3Bussines School, Vladimira Perića-Valtera 4, 21000 Novi Sad, Serbia, e-mail: vesin-
boban@yahoo.com



154 M. Ivanović, I. Pribela, B. Vesin, Z. Budimac

itself. Therefore, these environments are more likely to be produced as an inte-
gration of a number of specialized systems.

Nowadays, a great importance is being accorded to the open-source Web
technologies regarding the online assessment methods in a flexible environment.
The current development in the e-learning domain is conducted to a large extent
by tools which obtain easier maintenance of online tests [3, 14].

The main problem with online tutoring and testing systems used in labo-
ratories and classrooms is that they allow students to consult each other and
share their solutions with other students or even take tests instead of others [14].
Another problem with assessments systems is that they are not programming
language independent. The main motivation to produce such an environment
was to obtain successful and easy learning and testing facilities for different
programming languages and courses which have been conducted at our Depart-
ment. MILE (Multifunctional integrated learning environment) is a system that
combines three existing extremely useful educational components. This system
allows students to take on-line courses, to test their knowledge, to submit their
answers and receive automated feedback, to take on-line exams and be auto-
matically assessed.

These educational activities in MILE student can take in a computer labora-
tory or from a distant computer. Several security mechanisms integrated in the
system allow easier monitoring of educational activities. The paper presents the
technical and pedagogical goals of MILE, its principles of design, architecture
and functionalities.

The paper is organized as follows. Section 2 presents an overview on the
related work, section 3 introduces MILE components and section 4 concerns the
overall architecture of the developed Web system. Section 5 refers to testing
functionalities. Last section is dedicated to further directions of research and
conclusions of the paper.

2. Related work

A number of learning systems have been developed over the last ten years
that include various mechanisms for assessment of student progress. Most dis-
tinguished among them are: JITS, tutoring system implemented for teaching
the basics of programming in Java [12, 17, 19], and Moodle, a typical example
of a successful use of a learning management system [22].

Java Intelligent Tutoring System - JITS, is a tutoring system designed for
learning Java programming [19]. MILE implements some principles of tutoring
and testing from the JITS system because it proved to be successful and effective.
Positive results of the JITS system showed that the form of its lessons used to
create a course is especially effective in teaching Java programming language
[17]. Centralized architecture is implemented in MILE in contrary to distributed
architecture implemented in JITS in order to start all system’s actions from
server side of the system [12].

Moodle is a free learning management system that enables users to create
powerful learning environment full of different kinds of student-to-student and



Multifunctional environment for e-learning purposes 155

student-to-teacher interaction [21]. The main advantage of MILE system, op-
posite to the functionalities of Moodle, is that MILE provides possibilities of
online programming rather than just presenting course material to the student.
Student can write program code, compile and run his programs from remote
computer without necessity of installing any software.

One very important element of e-learning is the assessment of student prog-
ress, whether for the purposes of self-evaluation or grading. In computer courses,
together with assessment concerns, interest is also placed on the submission of
student solutions.

These topics date all the way back to the 60’s and during this long time
many systems were developed that usually followed modern concepts introduced
by new operating systems and new programming languages. There have also
been successful contemporary attempts to address the problems arising from
the usage of automatic submission and assessment tools. Unfortunately, sys-
tems like [4], [6], [10] and [18] focus on Java programming language, although
there were some attempts to create a system for testing that will encompass a
wider spectrum of programming languages developed in Python [1]. The only,
truly, programming language independent testing system is [15]; a system built
for UNIX platform, also based on command scripts, but a little outdated and
without network support. Also, the approaches used in [4], [6] and [8] cannot
be applied in our circumstances and in our academic environment. The focus of
these approaches is on the detection of cheating, while in our opinion it should
be on its prevention.

The mentioned systems rely on student honesty and provide services for the
detection of student misbehavior, mainly plagiarism. Our experience shows that
we cannot rely on student’s honesty as the main problem at some universities is
the lack of sanctions. In such environment students do not have anything to lose,
and thus resort to plagiarism without the fear of consequences. Furthermore,
the provide services are not perfect and can only detect plagiarism if the original
work is also submitted.

Svetovid successfully resolves some of the key assessment problems by pro-
viding an integrated environment that must be used for the submission. This
environment represents first line of defense and makes cheating difficult if not
impossible for the student.

By designing our system in a different way, we moved the focus from plagia-
rism detection to plagiarism prevention. We believe that this is a much better
approach than using some of the modern system relying on plagiarism detection,
like BOSS [10], CourseMaster / Ceilidh [7] or ASAP [24]. Both Svetovid and
Testovid are platform independent (written in the Java programming language
and based on Apache Ant tool [23]), network-oriented systems and are created
to be compatible with many programming languages, thus adhering to modern
requirements.



156 M. Ivanović, I. Pribela, B. Vesin, Z. Budimac

3. Overview of MILE components

The basic idea and intention was to create a multifunctional learning environ-
ment which integrates existing learning systems that could be used for different
courses and a wide range of programming languages. Three components already
implemented are chosen to make the basic structure of MILE:

1. Mag - tutoring system for distance learning of programming languages,

2. Svetovid - submission system and

3. Testovid - automated testing system.

In the following subsections these components are described in more detail.

3.1. Mag - tutoring system

Mag is a tutoring system designed to help students in learning program-
ming languages in different courses [20]. It is an interactive system that allows
students to use teaching material prepared for programming languages within
courses and to test their knowledge, as well.

The Mag is multifunctional educational software which fulfils three primary
goals, identified by earlier exploration in this field [9]. The first goal is to pro-
vide intelligent tutoring system for students in a platform independent manner.
The second goal is to provide the teachers with useful reports identifying the
strengths and weaknesses of student’s learning process. Finally, the third goal
is to provide a rapid development tool for creating basic elements of tutoring
system: tutorials and tests.

Mag supports learning by practicing and learning by samples. It combines
traditional programming experience with distance education. The System pro-
vides a learner with a more efficient and convenient way of taking a distance
programming course. It provides three types of learning activity: tutoring,
quiz-and-feedback, and on-line programming, to meet the needs of program-
ming course.

In spite of the fact that this system is designed and implemented as a gen-
eral tutoring system for different programming languages, the first completely
proposed and tested version was for an introductory Java programming course.

Preliminary design of the Mag system was based on several requirements
that every on-line learning system for a programming language should have
[20]:

• easy-to-access tutorials for students

• separated user interfaces for students and their mentors

• various examples for every particular lesson (learning module)

• different tests for every particular lesson that can be adjusted to particular
student



Multifunctional environment for e-learning purposes 157

• online programming, compiling and running of programs

• functionalities for adding new lessons, examples, and tests possibilities for
communication between students and mentors

• functionalities for easy monitoring of student’s work

• summaries and reports about student’s work.

The system recognizes two main roles, intended for two types of users:

• mentors - their role is to be the lesson and student database adminis-
trator, to track progress of students learning and help them with their
assignments and

• students - they are taking the Java programming course and will be using
the system in order to gain certain knowledge.

Figure 1: Mentor interface

Therefore, two separate user interfaces are provided for both student (learner,
2) and instructor (learner’s mentor, 1). Instructor’s interface helps in the pro-
cess of managing data about a learner and course material. Student’s interface
is a series of web pages that provide two options: taking lessons and testing
student’s knowledge. All data about student and his progress in the course,
as well as data about tutorials, tests and examples are stored in the system’s
server.

The proposed architecture has numerous benefits: platform-independence,
weightlessness and scalability. Students do not need to install software on their



158 M. Ivanović, I. Pribela, B. Vesin, Z. Budimac

Figure 2: Student interface

own machine and do not need a high-speed network connection to use Mag.
Other benefits include fast execution, since all processing is done on the J2EE
server that typically has much faster and more efficient hardware than typical
PCs.

3.2. Svetovid - submission system

Svetovid is a cross-platform software that helps instructors to leverage the
effort of practical exercises and exams [13]. It is named after the pagan Slavic
god that sees everything.

The motivation for developing this software was prompted by the problems
associated with practical exercises and exams within different programming
courses at our Department. Before the introduction of practical assessment
in programming courses, students of informatics from the Department were as-
sessed based on their hand-written solutions. There were two major problems at
the time. Students were forced to write programs without access to a computer
and a possibility to check them, for at maximum three hours. Instructors faced
the problem of evaluation of those programs by perusing the listings; looking
for obvious errors and trying to understand usually very specific and clumsy
solutions. This was tedious for both students and instructors, and efficient only
for small assignments.

Nevertheless, instructors try to give honest marks based on student’s own
solution. To avoid behaving as policemen, decision was to try to solve the
problem as automatically as possible and prevent students from cheating. As
a result, a special cross-platform submission environment for secure student
program submission has been developed [13].



Multifunctional environment for e-learning purposes 159

The goals, to be fulfilled by the Svetovid system were as follows:

1. Allow students to comfortably develop their programs.

2. Allow students to test their programs before submission.

3. Keep a log of student efforts.

4. Be flexible enough and usable for different courses including wide range
of programming languages and project stage: coding, typing, program
documentation, etc.

5. Disallow students to share programs and solutions, intentionally or unin-
tentionally.

6. Help instructors to mark student solution (i.e. program code).

The Svetovid system is designed and implemented with an easy-to-use client
environment for program development by incorporating most common IDE (In-
tegrated Development Environment) ideas (3). Using some sample input and
output data, prepared by the instructor for the preliminary testing, that is
available in advance, students can test their programs under exactly the same
conditions the instructor will. This ensures that the program will work the way
the student expects it to.

Figure 3: Svetovid client environment

Also, students work on their solutions in computer labs and can submit their
assignments whenever they are satisfied with them. If the student never explic-
itly submits his solution, it is automatically submitted after the assignment



160 M. Ivanović, I. Pribela, B. Vesin, Z. Budimac

deadline has passed. After all student solutions are submitted the instructor
can check them within the same environment under the same conditions.

The system incorporates an extensive logging mechanism. Separate log files
are kept for each day, and each course. By reviewing log files the instructors
can find: the exact time and the ID of a computer from which the student
saved/loaded a file; the number and success of compilations and program runs,
with exact time and computer used for each action. Thus, using this informa-
tion, the instructor can monitor student’s progress, or find potentially suspicious
students (the ones who did nothing, while their submitted program compiles and
works flawlessly).

By means of password protected virtual directories placed on a server, ac-
cessible to students only from the Svetovid client, disallows students to share
programs and solutions, intentionally or unintentionally.

The Svetovid system is being used to automate compiling and running of
Modula 2, Java, and Scheme programs for courses in Operating systems, Pro-
gramming languages, Data structures and algorithms and Computer graphics.

3.3. Testovid – testing system

Testovid was originally developed as a part of Svetovid [14]. But in the
meantime it grew into an independent educational tool with a number of useful
functionalities. The goal of the system is to leverage the effort of assessing
assignments during practical exercises especially at our Department. The system
has been used as well in assignment process of different West Balkan Universities
(participants of our joint DAAD project, 2000-2008) [25].

The type and number of files that the system can accept is not restricted.
The system simply makes a copy of all student files and runs prepared test
scripts. Also, the system has no limit on the amount of tests being conducted,
and during one run multiple aspects of the assignment can be tested.

Testovid system can be used to check virtually any aspect of student solution,
limited only by teachers’ imagination and proficiency with Java and Apache
Ant. Most notably, for programming solutions, system can test compilation,
code style, solution correctness (using input-output sets, comparing with correct
solution, unit testing, black box and white box testing, and so on), and check
common programming pitfalls.

However, the system is not limited to checking programming solutions, it
can be used to check document syntax and grammar (in student essays or sem-
inar papers), compare documents or their parts, evaluate quiz answers, process
images, and perform many other tasks supported by Apache Ant.

Furthermore, Testovid is able to incorporate any Apache Ant library and
is extensible as Ant is. Custom Ant libraries with new functionalities can be
implemented and used to extend current Testovid capabilities. Also any third
party libraries that are already developed can be included immediately.

The testing logic and test data are prepared by the teacher, in advance, saved
in appropriate files ready for students’ usage. Students can use many prepared
tests in order to automatically check their solutions. Most importantly, teacher
uses the same tests under the same conditions, in process of marking solutions.



Multifunctional environment for e-learning purposes 161

Testovid system is designed to run in two modes: interactive and batch
mode.

Interactive mode is used when a student wishes to test his assignment. If
the student thinks that his assignment is finished he can invoke the system from
a workstation in computer laboratory or using web interface from home. The
result from prepared test script is given to the student and also saved in a log
file for later reference (Table 1).

Course: Object oriented programming
Assignment: Java beans Assignment no 2
Student: Baranovski Nenad

Test: Compilation
Failure: Compilation failed, there were syntax errors.

Test: Geters and seters
Failure: Unable to test due to compilation errors.

-+-+-+-+-+-+-+-+-

Total: 0 points.

Table 1: Log file with student results

On the other hand, if the system is not intended to be used interactively by
students there is a possibility for instructor to test multiple projects at once.

The batch mode can be used if students are working on their assignments at
home or if interactive test ability is not desired or not allowed. In this case all
assignments must be collected before start of testing. Usually, the assignments
will be gathered by a separate submission system, and manually saved under
Testovid directory tree. Assignments are tested one at a time and results are
saved in log files. A file containing results for all students is maintained (Table
2) together with separate result reports, one for each student.

There are two main advantages of the system usage:

1. It is platform and language independent and

(a) Allows great flexibility in what and how will be tested, as well as the
file type that can be submitted to testing.

This testing system was implemented using Apache Ant, and allows students
to test their assignments in a controlled manner with the instructor’s test data.
The instructor creates an Apache Ant script to build and run the student’s
project. New scripts can be created using parts from previously created scripts,
thus simplifying the instructor’s work. The results of the tests are recorded in
log files and are available to both the students and the instructor. The Testovid
system is independent of underlying platform and programming language, but



162 M. Ivanović, I. Pribela, B. Vesin, Z. Budimac

Course: Object oriented programming
Assignment: Java beans Assignment no 2

Student Score
–––- ––-
Bajcetic Vladimir 2 points
Baranovski Nenad 0 points
Barjaktarovic Marko 0 points
Blagojevic Katarina 1 point
Boskovic Marko 1 point
Bratic Radana 1 point
Curcin Nada 2 points
...
Jovanovic Jelena 1 point
Knezevic Branko 2 points
Komaromi Filip 0 points
Kovacevic Miroslav 0 points
Krickovic Valentina 1 point
Krizan Jan 2 points
Kuzmanovic Milos 0 points
Lackovic Ivan 2 points

Table 2: Log file with results for all students

as a part of MILE, its primary purpose is to be used for testing student’s pro-
gramming solutions.

4. Overall architecture and organization of MILE

The primary motivation for integration of mentioned components was to
build a multi-functional educational system that will allow students wide range
of useful opportunities:

• Go through unlimited number of adequate tutorials

– Test their understanding of new material

– Do on-line programming

– Submit their answers and receive automated feedback

– Have final exams via Internet or in Computer laboratory.

Important issues were security and easy maintenance of the system. MILE
provides instructors with the user interface for direct access to student data and
options for quick and easy update of courses and exams.

Testovid and Svetovid were originally designed and developed as systems
independent of programming languages. Although Mag was initially considered



Multifunctional environment for e-learning purposes 163

as a general tutoring system, its first version supported only course for pro-
gramming in Java. Therefore, Mag component needed to be extended and it
was necessary to update database of tutorials and tests with other program-
ming languages in order to gain flexibility and provide courses for programming
in other languages. That flexibility would allow the use of MILE as a multi-
functional environment for learning, testing and student assessment for various
courses and programming languages at our Department. Mag was already pro-
vided with functionalities for adding new course materials which made this task
to be solved easily.

The system also provides several additional functionalities:

• Support for teacher-student and student-student communication through
chat and e-mail.

– Tools to simplify the maintenance of the system, such as the mainte-
nance of the students’ portfolio or students’ and tutors’ registration.

– Students web pages, through which learners will be able to navigate
easily through the available courses, and specific course tutorials, as
well.

Several major problems had to be resolved in order to design final architecture
of MILE. Mag was designed as a general architecture for learning programming
languages, but the pilot version was realized as Java programming tutor (on
contrary Svetovid and Testovid were multilingual systems) [20]. Therefore, it
was necessary to adjust existing components and obtain smoothly functioning
of full architecture. Second, Testovid was primarily developed for computer lab
environment. Current version of MILE allows only testing from distant com-
puter with multiple-choice and code completion questions. Our future goal is to
allow final examining (Apache Ant tool based) outside of computer laboratory.
Finally, there was a huge difference between structures of student modeling.
Student model in Svetovid was presented with one data record that included
just basic information about student. For MILE, we needed more complex stu-
dent model that will contain data about all learning sessions, testing results and
knowledge level for every student.

Database of tutorials and tests was extended to support courses for Modula
2 and Scheme programming languages; access to them from remote computers
is allowed and one unique form of student modeling is adopted.

4.1. Architecture of MILE

In order to gain flexibility and obtain extensibility module architecture for
MILE is chosen. This fits with the intended component-based architecture.
It also allows the use of any tool already developed that provide services re-
quired by MILE, rather than to develop a completely new one implement for
every service. To ensure platform independence, a Java-based implementation
is adopted.

The Architecture of MILE is presented in Figure 4. It was designed having
extensibility in mind. All of the components described below provide interfaces



164 M. Ivanović, I. Pribela, B. Vesin, Z. Budimac

for their interaction and can thus be easily overridden by a developer. All
course materials students can access via Internet, from a distant computer. Only
the final exams can be executed both on-line and from computer laboratory.
Numerous functionalities included in the instructor’s software are presented in
the right-hand side of Figure 4.

The Apache Ant Script Creator was created as an application component for
rapid development of Configuration files. Based on data from student model, the
system executes personalization of contents to suit individual learner’s prefer-
ences. MILE tries to adapt course content to the individual learner, taking into
account different levels of granularity in the information and different student
knowledge levels. The primary responsibility of the Test administration and
Repository administration components is providing a user interface for modi-
fying tutorials and tests that will be presented to students. The goal of the
Reports tool is to collect information related to a particular student or group
of students and then to present that information to the instructor. System se-
curity has to prevent access to parts of the system they are not allowed to be
used. Every user who wishes to use this system is required to have a username
and password for login to system. MILE also includes tools for communication
between students and tutors in the form of chat and e-mail. The structure is
general enough for teachers to design their own tutorials and other material for
different courses on programming languages.

Student’s software

Laboratory or on-line

On-line course

Exams

Tests

Examples

Tutorials

Login

Instructor’s software

Reports

Tests

administration

Repository

administration

Login

Batch !le

creator

Results

Security

Knowledge

repository

Tests

repository

Student

database

Solution Log !les

Assesments

Adapting

Evaluation

Con!guration

!les

Apache Ant

script creator

Presenting

Presenting

Figure 4: Architecture of MILE

Mentor’s software gives the mentor an opportunity to get insight into stu-
dent’s work with numerous reports, to create new tutorials, examples, tests and
lessons, to communicate with students, etc.

Student’s software provides easy-to-use access to all functionalities of the



Multifunctional environment for e-learning purposes 165

system. It contains web pages that can be explored in any order, with tutorials,
examples and options for testing, submission of answers and communication
with the mentor.

Students have their choice in using the system for learning in two different
modes.

In the first mode, a student is guided through the course, and order of lessons
is predefined in advance. A student must pass the test for the current lesson
before proceeding to the next one. In the worst case, if the student could not
pass the test during several attempts, he/she can cancel the learning activity.

In the second mode, a student can have an insight into all course material
without limits and test his/her knowledge without predefined order. The stu-
dent can skip current lesson at anytime and can choose another lesson by his/her
preferences. This mode is important if the student needs to be reminded of the
past material, to get a quick preview of upcoming lessons or to take lessons in
the order he/she desires.

4.2. Organization of course material

The available materials for Java course is divided into learning objects.
Learning objects (LO) are small units of learning, ranging from 2 to 15 min-
utes, according to SCORM (Sharable Courseware Object Reference Model), the
ADL standards framework [16]. A LO is constructed from Media Assets, such as
paragraphs of text or html, screen titles, captions, video, animation, diagrams,
and sound narration [5].

Learning objects in MILE are presented in the form of lessons. Every lesson
contains three basic parts: tutorials, examples and tests. An unlimited number
of examples and tests are attached to every lesson. The system provides the
mentor with the possibilities of adding new lessons as well as new tutorials,
examples and questions for existing tests. All these elements have a standardized
structure that allows the implementation of the user interface forms for entering
new lessons, tests and examples.

Java lessons of the MILE are divided into several subtopics: introduction,
syntax, loop statements, execution control, specific types and classes. Their
interaction is shown in Figure 2. Nodes present groups of lessons, and arrows
present order of execution.

Every tutorial contains explanation of concepts and appropriate syntax rules
for the material presented in the lesson. After the tutorial, the student is pro-
vided with several examples connected to the lesson. If a student wants to
exercise more examples, he can choose additional examples option.

At any stage of learning, anywhere within a lesson, student can take one
of prepared tests for that lesson. This can be very beneficial to the student
as (s)he can check his/her progress at any time and focus on parts (s)he has
missed or has not fully understood. With this approach the student can also
check his/her precognition before taking a lesson or consolidate his knowledge
of learned concepts after a lesson. This availability of tests can also be used to
facilitate learn-by-example approach.



166 M. Ivanović, I. Pribela, B. Vesin, Z. Budimac

Nodes are groups of lessons

Connectors represens interaction between groups of lessons

Grouping of lessons and their interaction

P
ro

v
id

e
d

 w
it

h
s

e
m

a
n

ti
c

a
n

a
ly

s
is

W
it

h
o

u
t

s
em

a
n

ti
c

an
a

ly
s

is

Introduction

Syntax Loop statements

Execution control

Speci!c types

Classes

Figure 5: Grouping of lessons and their interaction

5. Testing functionalities of MILE

Testing and assessment of students’ knowledge are important parts of all
modern e-learning systems. Students must have insight in their learning progress
during entire course. Therefore, testing functionalities must be implemented
into the system.

The testing of student knowledge and assessments of student solutions were
given a wider attention during the development of MILE. The idea was to pro-
vide student with two levels of testing:

1. Tests connected to every lesson that are used to test student’s understand-
ing of that particular lesson,

2. Final exam for the overall assessment of student’s knowledge.

Tests connected to every lesson. The most of currently existing e-learning and
assessment systems focus on simple assessment strategies, e.g. only on single
or multiple-choice questions (MCQ) with several answers, and radio-buttons to
select the correct answer [2]. Beside those common assessment strategies, MILE
also uses code competition questions for online programming and assessments
possibilities that are implemented using Apache Ant. The system accepts any
file types as assignments, and the instructor has great flexibility in specifying
what is to be tested and how.

We may look at an example where the instructor wants to automatically
check if a student solution compiles successfully. The instructor should write one
configuration file telling how many points to award for successful compilation,
how to name the aspect being tested and to give some friendly description
displayed to the student. The list of actions to be performed during testing has
also to be set up.



Multifunctional environment for e-learning purposes 167

When a student invokes the system to test his/her solution, he/she will
receive a message about success or failure of testing that particular program.
This message contains information about the course and assignment, list of
all tested aspects, and states the amount of points awarded. If the test was
unsuccessful, an advice given by the Ant target will be displayed to the student.

As mentioned earlier, the contents presented to the student are filtered ac-
cording to his/her prior knowledge and also based on the progress of the learner.
The system adopts tests to every particular student based on the previously
stored data in his/her student model. The system makes a log file of all mis-
takes and successful solutions that the student made and adopt next tests ac-
cordingly. For example, every test has multiple questions that are grouped by
their purpose. There are questions that test understanding of code, familiarity
with syntax rules, etc. Based on the student model, the system discovers type of
questions that caused problems to student in the previous sessions and increase
their number during next testing.

Final exam for overall assessment of student’s knowledge. The implemented
examine system allows students to test their assignments in a controlled manner
with the instructor’s test data. The instructor creates an Apache Ant script to
build and run the student’s project. New scripts can be created using parts
from previously created scripts, thus simplifying the instructors work. When a
student wishes to test his/her assignment he/she runs the system which then
copies the student’s files into a temporary directory, and the instructor’s scripts
are executed to build the project and test it. The result of each test run is
recorded in a log file for the student and the instructor.

The proposed multifunctional learning environment has a lot of advantages.
The main advantage of assessment component of MILE is the consequence of
that it is built on Apache Ant. Thus it is modern and not dependent on pro-
gramming language or specific building and compilation logic. Furthermore, the
system can be used in a wide variety of situations and environments, is very ex-
tensible, modular, and can be quickly adapted to new trends. The MILE system
supports testing of any aspect of student solutions written in any programming
language. Even more, it is not limited to assessment of programming solutions;
it can accept textual files, images, and other documents too.

The main motivation for developing the MILE system and its most common
usage, however, is to check student’s programs for compilation errors, code
style guidelines adherence, implementation correctness and performance. At
our Department, students have several courses which focus on programming
exercises (using following programming languages: Java, C#, Delphi, Modula-
2, Scheme) as a main technique for continual assessment of practical work.
During the practical exercises students work in computer laboratories on the
given assignments and the instructor assesses their practical skills. As this
way of continual assessment is very time consuming and wearying for both,
student and instructor, students can utilize MILE to check their solutions before
submitting, and instructors to increase reliability and speed up the assessment.

Besides on-line testing provided for students, the instructor is offered a batch
mode for testing of multiple submitted students projects. The system keeps



168 M. Ivanović, I. Pribela, B. Vesin, Z. Budimac

track of results for all students and generates a single file with all the results.
Apart from that, a detailed report for each student is generated and students’
model updated.

6. Conclusion

MILE has been designed to combine distance education system with submis-
sion environment in order to provide great degree of automated testing possi-
bilities. By our experiences, MILE appeared to be a modern learning tool that
possesses a lot of features for fulfilling nowadays needs and style of learning. It
provides optimal performance with the use of the most appropriate architecture.
Several improved tools for testing student’s knowledge and tools for automating
assessment of student programs are also included. The features of the system,
which enable online programming, are its main advantages. All of the actions
are run on the server. This enables student to take courses and test his/her
progress in learning from optional computer without the necessity to install any
specific kind of software. Various types of questions and tasks make the process
of student assessment easier and appropriate. According to that, appropriate
student’s model adjusts teaching and testing procedure to every particular stu-
dent. The MILE was organized in such a manner that provides further extension
of the system and smooth integration of the other components.

MILE has been used in the last semester as a learning tool for the first year
students at the Department as a complement to classroom teaching. It gave us
opportunity to evaluate the main features of the system, the results obtained by
students and the educational objectives in order to improve its functionalities
and characteristics.

Students’ satisfaction was, more or less, the same as in the completely man-
ual manner of assessment, which is by our opinion an excellent outcome of the
system. On the other hand, instructors significantly shorten the time needed
for assessment of a great number of students’ solutions, and, as a consequence,
they managed their work and duties in a more efficient and more systematized
way.

Students are also allowed to use the system from their home and therefore
provided with the possibility to learn and practice programming without time
limitations.

References

[1] Amelung, M., Piotrowski, M., Roesner, D., EduComponents: Experiences in
EAssessment in Computer Science Education. ITiCSE’06, Bologna, Italy, June
26-28, 2006.

[2] Belcadhi, L. C., Henze, N., Braham, R., An Assessment Framework for eLearn-
ing in the Semantic Web. Distributed System Institut publication, Hannover,
Germany, 2004, p. 6.

[3] Buraga, S., Brut, M., Onacă, D., An XML-based Java Application for the Man-
agement of Online Questionnaires. I*Teach project, Romania, 2006, p. 4.



Multifunctional environment for e-learning purposes 169

[4] Dempster, J., Web-based assessment software: Fit for purpose or squeeze to fit?
Computer Assisted Assessment, Issue 6, University of Warwick, 1999.

[5] Gallenson, A., Heins, J., Heins, T., Macromedia MX: Creating Learning Objects.
Macromedia Inc, 2002, p. 34.

[6] Hawkes, T., An Experiment in Computer-Assisted Assessment. Computer As-
sisted Assessment, Issue 6, University of Warwick, 1999.

[7] Higgins, C., Symeonidis, P., Tsintsifas, A. The marking system for coursemas-
ter. Proceedings of the 7th annual conference on Innovation and technology in
computer science education, ACM Press, 2002, pp. 46-50.

[8] Joanna, B., Supporting Computer-based Assessment. Teaching and Learning Di-
rectorate, University of Luton, 1999.

[9] Jones, N., Macasek, M., Walonoski, J., Rasmussen, K., Heffernan, N., Common
Tutor Object Platform – an e-Learning Software Development Strategy. Pro-
ceedings of the 15th international conference on World Wide Web, Edinburgh,
Scotland, 2006, pp. 307-316.

[10] Luck, M., Joy, M., Computer-Based Submission and Assessment in BOSS. Inter-
actions Online Journal, Issue 6, 1999.

[11] Manjon, B. F., Sancho, P. Creating cost-effective adaptive educational hyperme-
dia based on markup technologies and e-learning standards. Interactive Educa-
tional Multimedia, number 4, 2002, pp. 1-11.

[12] Murray, T., Intelligent Tutoring Systems Architecture. Proceedings of the Third
International Conference on Intelligent Tutoring Systems, Montreal, 1996, pp.
469-511.

[13] Pribela, I., Ibrajter, N., Ivanović M., Svetovid Special Submission Environment
for Students Assessment. Proc. of Second Balkan Conference in Informatics,
Ohrid, FYROM, 2005, pp. 13-19.

[14] Pribela, I., Ivanović, M., Budimac, Z., Testing Almost Any Aspect of Students’
Assignments. 3rd Balkan Conference in Informatics, Sofia, Bulgaria, 2007, pp.
173-182.

[15] Reek, K. The TRY system -or- how to avoid testing student programs. Pro-
ceedings of the twentieth SIGCSE technical symposium on Computer science
education, ACM Press New York, USA, 1989, pp. 112-116.

[16] Shepherd C., E-Learning’s Greatest Hits. Above and Beyond, 2003, p. 192.

[17] Sykes, E.R., Java intelligent tutoring system model and architecture. Proceedings
of American Association of Artificial Intelligence Spring Symposium on Human
Interaction with Autonomous Systems in Complex Environments, Menlo Park,
CA, 2003, pp. 187-193.

[18] Sykes, E. R., Franek, F., A prototype for an intelligent tutoring system for stu-
dents learning to program in Java. Proceedings of the IASTED International Con-
ference on Computers and Advanced Technology in Education, Rhodes, Greece,
2003, pp. 78-83.

[19] Sykes, E. R., Franek, F., An Intelligent Tutoring System Prototype for Learning
to Program Java. The third IEEE International Conference on Advanced Learning
Technologies (ICALT’03), Athens, Greece, 2003, pp. 485-494.



170 M. Ivanović, I. Pribela, B. Vesin, Z. Budimac

[20] Vesin, B. Ivanović, M., Budimac, Z., Pribela I., Tutoring System for Distance
Learning of Java Programming Language. 10th Symposium on Programming
Languages and Software Tools SPLST, Dobogókő, Hungary, 2007, pp. 310-320.

[21] White, G. L., A Theory of the Relationships between Cognitive Requirements of
Computer Programming Languages and Programmers’ Cognitive Characteristics.
Journal of Information Systems Education, USA, Vol 13(1), 2002, p. 8.

[22] William, H. Rice IV., Moodle E-Learning Course Development. Packt Publishing
Ltd, 2006, p. 250.

[23] Apache Ant, http://ant.apache.org/

[24] Automated, System for Assessment of Programming, http://www.elframework.
org/projects/asap

[25] DAAD project, Software Engineering: Computer Science Education and Research
Cooperation. 2000-2007, http://www.informatik.hu-berlin.de/swt/intkoop/
daa

Received by the editors October 30, 2008

http://ant.apache.org/
http://www.elframework.org/projects/asap
http://www.elframework.org/projects/asap
http://www.informatik.hu-berlin.de/swt/intkoop/daa
http://www.informatik.hu-berlin.de/swt/intkoop/daa

	Introduction
	Related work
	Overview of MILE components
	Mag - tutoring system
	Svetovid - submission system
	Testovid -- testing system

	Overall architecture and organization of MILE
	Architecture of MILE
	Organization of course material

	Testing functionalities of MILE
	Conclusion

