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THE SUBSPACES OF HAMILTON SPACES OF
HIGHER ORDER

Irena Comidl

Abstract. To introduce the theory of subspaces in the Hamilton spaces
of higher order, H, it was necessary to solve several difficulties, because
the classical theory of subspaces could not be applied. In almost all theo-
ries the m-dimensional subspace in the n-dimensional space was given by
the introduction of m-parameters and n — m normal vectors N, but the
transformation of their coordinates was always a problem.

Here, we introduce in H two complementary family of subspaces Hi
and Hsz. In this way we obtain the complicated coordinate transformations
expressed in elegant matrix form in H, H; and H2, and determine their
connections. This method allows us to obtain the transformations of the
natural bases B, By and B, of T(H), T(H:) and T(H>) further B*, B}
and Bj of T*(H), T*(H:) and T*(Ha2). As the elements of the natural
bases are not transforming as tensors the adapted bases B, Bi, Bz of
T(H), T(H:1), and T(Hz) are introduced using the matrices N, N1 and
Ns, respectively. For the dual spaces T*(H), T"(H1) and T*(H2) the
adapted bases are B*, B] and B35 formed with the matrices M, M; and
Mo, respectively.

It is proved that N and M, N1 and M;i, N2 and Ms are inverse ma-
trices to each other if B* is dual to B, B is dual to By and Bj is dual
to Ba. The main result is the construction of adapted basis B’ = By U Bs
and B*' = Bf U B3 of T(H) and T*(H) in such a way that the elements
of B’ and B*' are transforming as tensors and the tensor from space H
can be decomposed as a sum of projections on H; and H». It is obtained
by the determination of the relations between N, N1 and N2 further be-
tween M, M;, and Ms. This very important result allows us to study
the connections, torsion and curvature tensors, Jacobi fields, sprays and
other invariants in the subspaces and surrounding space and determine
their relations which will be done later on.
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1. The natural and adapted basis of T(H) and T*(H)

Let us denote by H the (k 4+ 2)n dimensional manifold, where some point
p € H in some local chart (U, ¢) has the coordinates:

(xaap0a7plav cee >pka) = ($7p07p17 e »Pk) = (ma7pAa)a

a,b,e,d,...=1,n, AB,C,D,...=0,k.

If (x“/,p()a/, ..., Pka’) are the coordinates of the same point p in the coordi-
nate chart (U’, ¢’), then the allowable coordinate transformation in H are given
by

(1.1) z* =2 (%) & 2 = 2%(a)
ox®
Poa’ = (O)Bg’pOav © )Ba/ = o o a"ra

Diar = (0> W B poa + (O)Ba'pla

2
D2a’ = (2)Bg’p0a /pla (O)B a'P2as-- -
0 2
k k
Prar = <O>(’“)bep0a ( ) Blpia + -+ ( )(O)Bg/p;m,

k
" dA (O)Ba/
(1.2) Apg, = —a s A=0.k
It is supposed that the C*° transformation z% = z% (%) is 1 — 1 and its

. . / 3 .
inverse transformation z* = z%(z® ), a = 1,n is also C*°. It can be proved:

Theorem 1.1. The transformations of type (1.1) form a pseudo-group.
A nice example of H can be obtained if we define

0 d d*
1.3 a = 4 > a — 73;P0as- s Pka = 77 P0a-
(1.3) Poa = gor Pla= 3P0 Pka = 27Po

Using the product rule for differentiation with respect to ¢, where x* = z°(t),
Doa = Doa(t) are C'™ functiones, we obtain all relations of (1.1).
From (1.1)-(1.3) it follows that for this example

(1.4) OB = poor (22), VB = pro(z2),..., P B = pro (x%).

The new form of (1.1) is obtained if (1.4) is substituted in (1.1).
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In the further examinations it will be supposed that pa.(A = 0,k) are
arbitrary independent variables whose transformation law is prescribed by (1.1).

The natural basis of T'(H) is

0
oz’ B apACL

(1.5) B =1{8,,0°,0%,....9"), 8,=

JA=0,F.

Theorem 1.2. The elements of the natural basis B of T(H) transform in the
following way

(1.6)  0a = VBY 00 + (0ap0ar)0* + (Dap1ar)0'® + -+ + (Daprar)O™
0 (0) (0) 0a’ < ) 1a’ (k>(k) k
0 = 0 BSo0" + Bg,aa+~- 0 B“B“
ala — 1 (O)Balala’+ 2 1)Ba 82a B k (k—1) Ba 8ka
1 @ 1 1
2 / 3 k
2a _ (0) a 2a 1) pa 93a’ . (k—2) pa ka
o= (2o + (B)oma @ 50
k /
ka _ (0) a ka .
5 Q) 0.9
If we introduce the notations:
(L7) [ =[0,0™0"...0"), (9] = [0,0° 9" ... 0",
[ Dz 0 0 0 0
dapoar (7)) VB, 0 0 0
8 B =| G (VB (HOBL ()OBL 0
o (H®BL ()6VBL .. (YOB |

then (1.6) can be written in the form

19) ] = [pNBE)] = @) = (10NBEG)) = (B P,
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Theorem 1.3. The partial derivatives of the variables are connected by:

8p0a’ apla’ apk:a’ 0
1.10 = - .= :()Bg/: o (20
( ) apOa 6171(1 8pka Po ( )
apla’

— (1)Ba/ — (7@
6p0a a pla (x )7

8p2a’ 2 apla’ 2 (1) 2
= == Ba/ = a’ a yoeey
Opra (1) poe \1) B =y e @)

B A+ BIpars-a _
OpBa B OpB-1)a

B B apOa B B o

The natural basis B* of T*(H) is

(111) B* = {d$a7dp0aadplav--~7dpka}-

From the relation

’ ’

’ ’ 2 ’
8p3a = §6p2a = § . — apla = 3 (1)33/ = 3 Pia’ (x2)7 NN
Op2a  20pia 2 1 0poa 2 2

z% =2 (xa)apOa’ :pOa(xaapOa)a"'vpka’ :pka(xa,p()aaplaa"'apka)

we have

Theorem 1.4. The elements of the natural basis B* are transforming in the

following way

;o Ox®
(1.12) dz® = ; d®
7o
3 ’ 6 ’
dpou = o da + S0 dpo,
xz 8p0a
apla’ apla’ apla’
dprar = dz® dpoa + 22 dpras
D1 Spa Dpon Poa + Opra D1
e e e ke
dpka’: Dk dx® + Di dp0a+ Dk dpla“!“‘v‘pik

oz Opoa Opia ODka
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Using (1.10) and the notation

- , -

dz® [ dx® T

dea’ dea

(1.13) [dary) = | 1o |, [d@] = | Pra
L dpka’ 1 L dpka .

we have the shorter form of (1.12) as follows:
(1.14) (i) = B ld(a).

Theorem 1.5. If the bases B* and B are dual to each other, then B =
{dz®  dpoar, dpiars - - - dprar} and B’ = {0,,0%° 0 ... 0%} are also dual
to each other.

Proof. From (1.9) it follows

(1.15) ®)) = [9“BY)),  [BY

b’ !
© B =l

(a)

Using the assumption
[dw)][0“] = 631,

(1.14) and (1.15) we get

[da)[0®] = [BL)[di) [0 BL)) =

[B(a)

c b’ a v /
eI = (BB = o1

(e

O

From (1.6) and (1.12) it is obvious that the elements of the natural bases
B and B* are not transforming as tensors. To obtain more convenient bases of
T(H) and T*(H) we construct the so-called adapted bases B and B*.

The adapted basis B of T'(H) will be denoted by

(1.16) B = {0,,06%, 8%, ... &%},
‘We shall use the notations

(1.17) (6] = [3,0%61 ... 5%
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—4Va0b
—4Vald
1.18 N@ =
(1.18) NGT= | n
L ~—{Vakb

Definition 1.1. .

(1.19)

()] _ 15(b) (a)
[0°] = [0™][ Ny

0
o
—Nyy

Oa
_N2b

Oa
_Nkb

la
_N2b

la
_Nkb

Jie [0 =[N

o

2a
_Nk'b

(b
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o |

The adapted basis B of T(H) 1is defined by

(G)}T[a(b)]T.

From this relatiqn it is obvious that the elements of B are linear combination
of the elements of B, where the coefficients IV are function of the coordinates

of a point p € H.

Theorem 1.6.

basis B of T(H) to transform as d-tensor, i.e.

(1.20) 6o =OBY 5, 4 = 0B 4
1s the following matriz equation
a’ a b a
(1.21) NGO B = BOING,
where
[ @B« 0
0o ©ps 0
0) gla) 1 _ 0 0o ©Opg
(1.22) [ B(a,)] = a
| 0 0 0

The necessary and sufficient conditions for elements of the

=0,k

©) B,

This matrix will appear frequently later on. It is important to remark, that
in the above matrix the element in the place (1.1) differs from the other elements

on the main diagonal.

Proof. Equations (1.20) can be written in the matrix form as follows

(1.23)

(6] = (OB )
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Using Definition 1.1 or (1.19) we can write (1.23) as:

[OUNINGY) = (VB IING))

The substitution of (1.9) into the above equation and the fact that [(O)B((Z,))]
is a diagonal matrix result

015y

NGy = 0NN (O BE)

(0) (a’)]'

The above equation is satisfied if

(®) 1ra7@)y _ rar(a’) (a)
[Bih [Ny = INg) 1O Bl

i.e. when (1.21) is valid. O
The elements of the adapted basis B* of T*(H) will be denoted by
(1.24) B* = {6z, 6poa, P1as - - -  OPka -

The following notations will be used:

ox® oy 0 0 o - 0
6p0a Maop 52 0 0 0
(5]31@ Malb Mﬁll) (Sg 0 0
1.25) [6(a] = MO =
( ) [ ( )} dp2a [ (a)] Mz Mgg ]\421}1J 62 0
| OPka | | Moy Mg Mgy Mo - 6

Definition 1.2. . The adapted basis B* of T*(H) is defined by

(1.26) [B(a)] = M) ][d ey

Theorem 1.7. The elements of B* are transforming as d-tensors i.e.

(1.27) dz” = OBY 4z Spay = OB%0pas, A=0,k

if and only if the elements of the matrix M are transforming in the following
way

M) = (M

(1.28) (OB M)

N ®)
(a?) (@B
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Proof. (1.27) can be written in the matrix form as
[B(an] = [ BN 6(a))-
Using (1.14) and (1.26) the above equation gives

MG den] = IMGIBG)

— (a) ®)
(a’) (a’) (b')] [d(b)} - [(O)B(a/)] [M(a)][d(b)]

from which it follows (1.28). O

Theorem 1.8. The adapted bases B* and B are dual to each other when B*
and B are dual to each other and

(1.29) [MEINGD = 6t

i.e. [M((;))] is the inverse matriz of [N((;)].
Proof. The duality of B* and B is equivalent with:
<dz®, 0y >= 06} < dpaa, P’ >= 656

<dz®, 9P’ >=0 < dpa,,d >=0.

or shorter [d()][0¥)] = 6¢1. Now we have
[0I8®] = M1 )0 NIN ) =

c b
(M OLTING) ] = [M,

2. The subspaces in H

First we introduce the family of subspaces and complementary subspaces in
the base manifold M. Let us consider the equations

(2.1) % = z%(ut, . e ™ o) = 2w, v?),

a=1,n, «a,fB,7,0,&,...= l,m,d,ﬁA,”y,S,é,...:m—&—l,n.

If the Jacobian matrix

(2 2) J = 6(x17~--»$n) B (gﬁz) B [Ba}mxn
. 8(U1"”7um7vm+1’_”’vn) (gi:) [Bg}(n—m)Xn



The subspaces of Hamilton spaces of higher order 179

has rank n, then we can express u® and v® as functions of z%, i.e.

(2.3) u® = u®(z%),v" = v¥(x?)
_ o(ul,...,um, vmtt L on 5

In the above the following notations were used:

ox® 5 Ouf i P

a
Ba = ax a — = — =
> Que’ > e’ b 9y b Pad

From (2.2) and (2.4) it follows:

(2.5) (BEIBE) = [68mxm  [BEIBL] = O ()
(2.6) (BB = 0umyxm [BEIBL) = 03] (e (nm)
and
58] 0 A
27  JJi= | = [BaIBE] + [BAIBY] = 6]
0 [53]

We shall restrict our consideration on such special transformations for which
Ba“B = 0 for all indices, because on the subspaces M; and M, determined by
(2.8) and (2.9), this relation is valid.

Two complementary subspaces of the base manifold M are determined by
the equations:

(2.8) i (TR TR TULN GLL N GL B

(2.9) % =g%(C,C?, ..., 0™ ™ ).

Equation (2.8) determines the family of m-dimensional subspaces M; of M
and (2.9) the family of (n — m) dimensional subspaces M of M.

Here we shall consider some special case of general transformation (2.1),
namely when (2.1) is valid, the new coordinates of the same point in the base
manifold M are (u!', ..., u™ o +D" o) but

(2.10) ' =u (Wt u™), 0 = (o™,
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and
’

(2.11) % =z° (ul/,...,um ,v(m'*'l)/,...,v" ) =% (u,v®).

If the above transformations are C'>° and 1 — 1, then there exist inverse
transformations of the form (2.3), namely

(2.12) u® =u® (2%), v¥ =0 (7).
Now we have

(2.13) By = By Bj B + B3, BS B}

a

Bg = BiB§ BY + B4BS, Bl
For such special transformation of the base manifold M, the above equations
have big influence on the second, third, ..., equations of (1.1).
From po. = (%) B%py, it is clear that py, is transforming as a covariant vector
field. As now the transformations on the base manifold M are determined by
(2.1)-(2.13) we have:

0 ou® 0 ov® 9
(2.14) 9er ~ oot ow | oz B
o0 oo 0 o0
ou®  Oux dze’ vt vd dxe’
AS Poa, Poas Poa are transforming as covariant vector fields in T*M, T* My,

T*M> respectively from (2.14) and (2.15) it follows that poa, poa and pos are
transforming as 6—2,1, au% and 6% and from (2.14), (2.15) we get

(2.15)

(2.16) Poa = B%Poa, Poa = BPoas  Poa = BEPoa + Bpoa-

From

oz \ Qu® du’ dz  Ovd Hvd dx | dxe

o (axa ou~ due’ dx® v’ am’) 0

and the notations

(217) « «@ Ot/ & (§é d/

o' = ParPq > o = Pa Dy
we can see that the relation
(2.18) Poar = Bgpoa + Biipoa
is satisfied.
We shall use the notations:

~ d?poa d*poa d*poa

2.19 Y=  paa= LB, =PG4 T
(2.19) PAa = =gpa— PAa= —ga PAa= g
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Theorem 2.1. The transformations of the form (2.8) induce the (k + 2)m-

dimensional Hamilton space Hy, where the transformations of the point
(u® =1, poa; Pra, - - -, Pra) € H1 are given by

(2.20) u® = 0 (%),

«
Poar = Ba/pOa ;

1
Plar = (0> (1)Ba/p0a ( >
2
= () () (i

k k
Do = (0) (k)Ba/pOa ( (k— 1)Ba/p1a cee (k) B& ks

’ploc;

—_

where
(A) pao dA o
Ba/ - dt»TBa/
If in (2.20) we substitute everywhere a by & obtain the transformation law of
coordinates of point (v® = v°% pos,Pa,- - -, Pra) € Ha, where the base manifold

My of Hy is determined by (2.9) and dimHs = (k + 2)(n — m).
Theorem 2.2. The relations between two types of coordinates of the same
point p € H:
(2, Poas P1as - - - s Pra) and (U™, Poas - - -, Pk Vs P0a> Plas - - - > Phar)
are given by:
(2.21) 2% = 2%t ... u™ 0™ ")

Doa = By poa + B,?poa
pra = (M Bpoa + O Bpia) + (a/d)

P20 = (P B poa + 2 BEp1a + @ Bypaa) + (a/d), .. .,

k k R
Pka = (( )BQPOQ (1> (k= 1)13&17104 ot (k) (O)ngka) + (OL/O[),

where in some equation (/&) means the expression in the former bracket in
which a is substituted by &.

Theorem 2.3. The coordinates in the subspaces are expressed as the functions
of coordinates in the surrounding place in the following way:
u® =u(zt, .. 2"), v* =¥zt 2")

% =z%ut u?, . u™), 2% = 2™ ")
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(2:22) Poa = BY Poa;
— () pga a
Pla = Bap0a + Baplav

D2 = (2)ng0a —+ 2(1)ngla + ng2a7 ey

EN " k
Pra = P Blpoa + (1)(k DB+ -+ (k) B i

The formulae from (2.22) are valid if w and o are substituted by v and & re-
spectively.

Theorem 2.4. Equations (2.21) and (2.22) are equivalent.

Proof. First we prove that (2.22) = (2.21).
From

Poa = Bapoa; Poa = Bipoa =
Poa By + poa By = (BEBy' + BABY)poa = 0{poa = Pob,
which is the first equation from (2.21). Further, from
Pra = YUBpoa + Bipras  pra = Y Bipoa + Bipia =
Bipro + Bypria = (B W BS + By Y B)poa + (BLBY + BiB; )pia-
The substitution of pg, = pong + pOﬁBf gives
(ByBg + By B3), = (63); = 0=
ByWBe + BB = (WBeBe + VBEBY).
(2.5) and (2.6) result:
B'pra + Bipia = —(WByBL + VB BL)(BEpos + prog) + 0y p1a =
B'pa + Bipia + Y Bypoa + Y Bypoa = pias

which is the second equation of (2.21). The other equations of (2.21) can be
proved in the similar manner. The proof in the opposite direction is similar. O

To introduce the natural and adapted bases in tangent and cotangent spaces
of the subspaces Hy and H» of H it is convenient to use the matrix representation
of coordinate transformations obtained in 1 and 2.
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Let us introduce the notations

Poa Poa DPoa

Pia Pia Pia

22)  d=| | Wl=| | lbal=

L Pka | L Pka L Pka
[ OBy 0 0 0o 7
(0)VBy  ()OBL 0 0
2ty (B, = | BB QOB (OB 0
L O®B: OBy e ()8

Here s means small, because [B((Z,))]S is the part of [B((a))}, which was intro-

duced in (1.8).

We shall obtain [py], [par], [pa’] if in (2.23) @, @ and & substitute by a’, o’
and &' respectively. In a similar way, [B((z/))](s), [B((g,))}(s) can be obtained from
(2.24) if everywhere a, a’ are substituted by «, o’ or &, &', respectively.

The matrices [B((Zg}s and [B((a%]S can be obtained from (2.24) if everywhere
a’ is substituted by a or &, respectively.

Using the above notations the transformation (1.1) in H can be written in
the form

(2.25) z* =z (2%), [pa']Z[Bgz/))](s)[Pa]-

The transformations in Hy and Hs prescribed by (2.20) are now given by

(2.26) u® = u (), [pan) = [BE)] (s Pa),

(2.27) V0% =% (0%, [pa] = [B((g/))](s) [P):

To obtain the connection between the ambient space H and subspaces H;
and Hy we need matrices [B((:))](s) and [B((f))](s), which can be obtained from
(2.24) if a, o’ are substituted by «, a or &, a, respectively.

The relations between the coordinates of H, Hy and Hs, which are explicitly

written in (2.21), (2.22) now can be expressed as:

% =z (u®) + xa(vd) < u® =u*(z?), vd = vd(xa)
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(2.28) [p)] = [Blwls)lpwl  p@)] = [B((Eika [P(a)]

(2:29) @) = [B{ () [pe] + [B{ 1 (s) [pia]

3. The natural and adapted bases in T(H,), T(Hs), T*(H;)
and T*(H,)

The natural bases By of T(H;) and By of T'(Hy) are given by:

_ 0 0
3.1 By = {0,,0%,0',...,0"}, 04=+—,0% =
( ) 1 { 5 5 5 3 }7 auav 8pAa
_ S s . 0 . 0
3.2 By = {0a,0°%,0',...,0"}, 05 =—-—,0"% = :
( ) 2 { ) 3 ) 5 }7 8’00‘7 3]9/1@

We shall use the matrices [B((z,))], [B((z,))] which are obtained from [B((Z,))]

defined by (1.8) if a, a’, x are substituted «, o/, u and &, &', v, respectively.
Let (u®® poass..-,Prar) be transformed coordinates of the same point
(u%% Poas - - -y Pre) from Hy and

(0] = [0,0°0' ... 8"].

Theorem 3.1. The connection between two natural bases By and B of T(Hy)
are given by

(3.3) [0()] = [ ][],

The elements of the natural bases By and B of T(Hy) are transforming as
follows:

(3.4) 0] = [0 [B{)).

The natural bases B} of T*(H;) and B} of T(Hs) are given by

(3.5) Bf = {du®®, dpoa, dpia; - - -, dpra )

(3.6) B; = {dv®®, dpos, dpia, - - -, dpra}-

The bases B;’ and B}’ are obtained from B} and Bj if in (3.5) « is substi-
tuted by o’ and in (3.6) & is substituted by &'.
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‘We shall use the notations

r dan B r d,UOd B!

dpoe, dpoa

[die)] = dpra | | [dia)] = dp1a
L dpra | L dpra |

(similar for [d(4] and [ds)])-

Theorem 3.2. The connection between two natural bases Bf and Bi' of
T*(H,) are given by

(3.7) [d(ar)] = [B{\ld(a)].

The elements of the natural bases B and B3’ of T(Hs) are transforming as
follows:

(3.8) [d(an)] = [B((?;‘,?)] [da))-

It is obvious that the elements of the natural bases By, B}, Bo, B} are not
transforming as tensors, so it is necessary to construct the adapted bases By,
By of T(Hy), T(Hs) and B}, B; of T*(H,), T*(Hs). The explicit forms of these
bases are:

Bl = {6(1’ 50@761aa ey 5ko¢}
By = {64,06%%, 6% ... %}
Bik = {5,“004, 5p0a7 5ploc’ ey 5pka}

B3 = {51)0&, 0P0G, O0P2as - - -5 5?1«1}-
We introduce the notations

[6(0)] = [6,80%8 ... 6k,

[6(9)] = [6460001% ... 6F9].

[N((g))] is obtained from [N((;))], given by (1.5), if a is substituted by « and

b by ( (similar for [N((g))]) [(O)B((z,))]([OB((g,))]) is obtained from [(O)Bﬁa/)] (see

(1.22)) if a is substituted by a(&) and o’ by o'(&').
The elements of B; are transforming as d-tensors if they satisfy the relations

(3.9) 6o = OBY 5, 4> = OB’ A =0 F.
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The above equations can be written in the matrix form:
(3.10) [5(@)] _ [(O)B((g,))][(;(a')].

The elements of By are transforming as d-tensors if the equations of the type
(3.9) and (3.10) are valid when «, o’ are substituted by &, &'.

Definition 3.1. . The adapted basis By of T(Hy) (B2 of T(Hs)) is defined by

(3.11) (6] = [P]ING) ]

(3.12) (6] = [DDNIN ).

Theorem 3.3. The necessary and sufficient conditions for the elements of
the adapted basis B1(Bs) of T(H1)(T(Hsz) to transform as d-tensors are the
following matriz equations

(@)71(0) pla) 1 _ (B) (@)
(3.13) [N (e 17 Ban] = [B(s) [N(g)]

(@)1(0) g(@) 1 _ 1R (&)
(3.14) ([N 3y IV Ban] = [B g [IN 3,1

The proof is similar to the proof of Theorem 1.6.
Let us denote by [M((f)) }([M((f )) ]) the matrix obtained from [M ((2;] defined in
(1.25) if a is substituted by a(&) and b by 8(3).

Definition 3.2. . The adapted basis By (B3) of T*(Hy)(T*(Hz)) is defined by

(3.15) [Ba] = (M)
(3.16) (b)) = [M()1ld ),
where ;
- 6u0a - o 5v0a E
5]7004 5p0d
Biey) = | Pra || [5a) = | OP1a

L dpra L dpra J
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Theorem 3.4. The elements of the adapted basis BY of T*(H,) (B3 of T*(H3))
are transforming as d-tensors, i.e.

du® = OB ', bpror = OB 0pas A=0,k

dv%%" = (0 g‘,dvo‘i, Opag = (O)Bg,§p,4d A=0k

if and only if the matrices M are transforming in the following way:

(3.17) (BN = MENBE)
(3.18) (©BENME) = MENBE) .

(@) B
The proof is similar to the proof of Theorem 1.7.

Theorem 3.5. The adapted bases BY and By are dual to each other when B
and By are dual to each other and

(3.19) [IMENING) = 621

i.e. [M((g))] is the inverse matriz of [N((g))].

Theorem 3.6. The adapted bases B; and Bs are dual to each other when B,
and Bs are dual to each other and

(3.20) IMNING) = 831,

TN : (@)
i-e. [M(g)] is the inverse matriz of [N(B) ].

The proof of Theorems 3.5 and 3.6 is similar to the proof of Theorem 1.8.
Theorem 3.7. The elements of the natural bases By(Bz) of T(Hy)(T(Hz))

can be expressed as functions of the adapted bases B1(Bz) of T(H1)(T(Hz)) in
the following way

(3.21) RIS [5(6)][M((g))]
(3.22) [0¥)] = [5(6)][M((g))}-

Proof. From (3.11) and (3.19) it follows

BN = PONINGNIMD] = [0P183T = [0)]

From (3.12) and (3.20) we get

BONME = PPINGIMG] = 171631 = [07).
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Theorem 3.8. The elements of the natural bases B (B3) of T*(Hy)(T*(Hs))
can be expressed as functions of the adapted bases Bi(B3) of T*(Hy)(T*(Hz))
in the following way

(3.23) [doy)] = [N((f)) 1[6(3)]
(3.24) [dea) = NGB )
Proof. The proof follows from (3.15), (3.16), (3.19) and (3.20). |

As dimH = (k + 2)n, dimH; = (k + 2)m, dimHs = (k+ 2)(n —m) and Hq,
Hs are the subspaces of H, we can construct the adapted bases

B' = By UBy of T(H) and B* = B} U B} of T*(H).
Now we have two adapted bases of T'(H):
B = {0,,0%,6% ... 6%} = [6(¥)]

(3.25) B’ = {60, 04,6%, 5% gt 50 . oM sFAY = {669}
and two adapted bases of T*(H):

B* = {axaa 6p0a7 6p1a7 ceey 5pka}

(3.26)  B* = {6u”, 5v%, 6P0as 5P0as OP1cvs OP16vs - - - » ODkers 0Pk} = {0 0 }-

We want such adapted basis B’ of T(H) and B*' of T*(H) which is connected
with B and B* in the following way:

(3.27) 0a = B%5o + B35 649 = B26A® + B5AY

(3.28) 82" = BA0u® + BL6v®  0paa = BE6paa + BXopas.
The matrix equation of (3.27) and (3.28) is given by
(3.29) [6)] = 5[ B + [5°] BE)]

(3.30) B(a)] = [V BN ()] + [ B b(a))-

In the former theorems we gave the conditions for [M] and [N], such that
the elements of B, B*, By, Bf, Bs, B; transform as tensors and B* be dual to
B, B} to By and Bj to Bs. The equations (3.27) and (3.28) are new restriction
for the adapted bases. It is easy to prove
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Theorem 3.9. If B is dual to By, B; dual to By, then B* is dual to B if
(3.27) and (3.28) are satisfied.

Theorem 3.10. The elements of the adapted bases B, B*, B’ and B*' satisfy
(8.29) and (3.30) if different [M] and [N], which appear in their construction
are connected by

HN(G)] _ [N(a)][(O)B(a)

(0) R(®)
(3.31) [ Bl [N, @[ B

()

0) p® ra7(a)y _ ar(8)17(0) p(a)

b «
(3.32) MO B = [ B M)
0)110) gB) _ 1) g @11 17()
M1 By = [ B 1M g))-

Proof. Substituting the equations

5] = PPN i) = [M)][de)]

(6] = [DDNNG)] (o)) = M{]d ()]

6@ = 0PIV ) = (M)

(8) (&) ] [d

@)

into (3.29) and (3.30) we get

(3.33) PPNNG) = DPIINEN® B + 107N [BLY]
(3.34) M) = (OB [di) + (O BENM ) d5).

Equations (3.33) and (3.34) are valid for an arbitrary [0()] and arbitrary [d(,].
If we take: , .

0®)] = [3(6)][(0)3((5))]’ 0P =0
we obtain the first equation in (3.31) and if we take

O — 19310 g®) B) —
0] = [P BY], (9] =0

we obtain the second equation in (3.31).
On the other hand, if we take
[dwy] = [BG) ), [d,

pl =0



190 I. Comié

we obtain the first equation in (3.32), and if we take

ldw) = [V B)

][d(ﬁ)L [dig)] =0
we obtain the second equation of (3.32). O

From (3.31), (3.32) and (2.7) we obtain

Theorem 3.11. If the elements of B, B’ further B* and B*' satisfy (3.29)
and (3.30), then

(@)1 _ 1(0) p(®) 11 ar(2)71(0) (a) (B)11 a7 (@)11(0) (@)
(335 NG = [OBQINGIOBE) + BOING O BE)
(7 _ 1(0) p(a)11 3 7(B)17(0) 2(d) (@)11 27 (B)71(0) ()
(336) M) = (OB B+ (BEIM© B

Theorem 3.12. If (3.35) and (3.36) are valid and BY, is dual to By, B} is
dual to Ba, then [N((C))][M((j))] =021, i.e. B* is dual to B'.

Proof.

a d 3 g
NG = (OBQUNGOBE + (O BIING IO B

©) p( 11781710 p(d) 0) G127 (9)17(0) p(d)
([ B(a)][M(fy)][ B(&)] + [ B(a)HM(ﬁ/)H B(S)]

0) g a7 (8)71(0) z(d) 0) g1 ar(é 57 (®)11(0) g(d)y _

_ 10) B 56 71(0) R(d) ) p(B)156 71(0) p(d)] _ <d
= (B8O B + [ BEN6 1O B = 51

In the calculation of (3.19), (3.20) and (2.7) was used. ad

Conclusion:

If we construct two supplementary family of subspaces H; and Hy of H and
construct the adapted bases By, By of T(Hy), T(Hz), further By, B; of T*(Hy),
T*(H>), in such a way, that the duality is valid, then in T'(H) there exist one and
only one adapted basis B constructed by [N?] given by (3.35) and in T*(H) the
basis Bx constructed by [M] given by (3.36) in such a way that the elements
of different adapted bases are connected by (3.29) and (3.30). These equations
are tensor equations and are very important for further investigation.
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4. Special adapted bases

For the further investigations, especially in the theory of sprays and Jacobi
fields the introduced adapted bases are not convenient. We need less variables

in the matrices [N((;l))] and [M ((f;; ], in such a way that the previous conditions
(1.19), (1.21), (1.26), (1.28) and (1.29) are satisfied.
The explicit form of (1.21) and (1.28) have equations of the form:

a' a B a B
(41) N%b/(o) a — (B>N%b(O)BlZ:’ + <B _ >N(B 1)b(1)BlZ:/ + t +

B B
<1>N?z?(3‘”33 _ (0)(3)35

A+ B
<A+B) Nt g By +
( A+ B

A+ B— ) (A4 B— 1)b()B§f+"'+

A+ B _ A+B
A+1) A]‘Ba l)b(B UB;;’ - ( A )(B)Bg’a

(4.3) M%®©Ope, — <8) MY, ©) Bg,+(>MBl;;,<1>B§;,+

(B; 1>Ml(£,1)b’(3_1)3ll);, + <§>(B)BZ,, ...

(44) M OB >{i§’+3)a/ 0BY +

A+1 (A+1)b" (1) pb
)M(A+B)a’( )Bb' NI

(A+B)a’

A+

<A + B - 1> NA+B=1Y (A+B— DBy +

) (A+B) B,

If we put in (4.2)
" A+ B
N(ﬁlJrB)b = ( A >NBb7

for every 0 < A < A+ B < k, use the properties of binomial coefficients, and
compare (4.1) and (4.2) we get

A+B
(4.5) N gy = < ) )NW.
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In a similar way if we substitute in (4.4) and (4.3)

’ A + B ’
(4.6) MY, 5y :< A )Mgl;u

for every 0 < A < A+ B < k and compare the obtained equations, we get
A+ B
Ab _ 0b
M(A+B)a - ( A )MBa’

Definition 4.1. . The special adapted basis B = {84,080, 61 ... 6k} of T(H)
s given by

(4.7) (6] = ["]ING)),
where
(4.8) -
5t 0 0 0 0
~Naow (90 0 0 0
—Nay —NYY (i) 5 2O 0
[]\7((;))] — | —1Va2p —Ngz? _(é)N?l? (g) b 0
—Nazp —Ngi' —()Ngy =) Ny 0
| —{Vakbd —Nl(c)g _(lf)N(Okaq)b _(Q)N(Okafz)b (2)55 i

Definition 4.2. . The special adapted basis B* = {dz®, Opoas -+ Opra t Of T*(H)
s given by

~ (b
(4.9) [6a)) = M) )ldw));
where
T 0 0 0 0 7
Maop 08 0 0 0
Malb Mlotl; (} 62 0 0
- 2 2
(410) ()= | Mo Mg (Mg ()% 0
Ma3b Mga (1)Mga (Q)Mloa 0
' k k k
L Makp Ml(c)g (1)M(01?—1)a (k—l)M(OI?—Q)a (k)(sg J

Remark 4.1. If in Definition 4.1 we substitute (a,b) by (v, 8) or (&, 3) we
obtain the special adapted basis

By = {04,6%, 8% ..., 6 of T(H,)

or
By = {04,0°%,6%¢ ... 6FY of T(Hs).
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Remark 4.2. If we in Definition 4.2 (a,b) substitute by («, 8) or (&, 3) we
obtain the special adapted basis
)

Bf:{dua,(;p pras-- - Oprat  of T7(H1)

0 ?
or

B; = {0v%,6p,,,0

Piar "

L Opat of TH(Ha).

0&?

Remark 4.3. As the special adapted bases are special cases of adapted
bases, so all Theorems 3.3-3.12 are valid for them.
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