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THE SUBSPACES OF HAMILTON SPACES OF
HIGHER ORDER

Irena Čomić1

Abstract. To introduce the theory of subspaces in the Hamilton spaces
of higher order, H, it was necessary to solve several difficulties, because
the classical theory of subspaces could not be applied. In almost all theo-
ries the m-dimensional subspace in the n-dimensional space was given by
the introduction of m-parameters and n −m normal vectors N , but the
transformation of their coordinates was always a problem.

Here, we introduce in H two complementary family of subspaces H1

and H2. In this way we obtain the complicated coordinate transformations
expressed in elegant matrix form in H, H1 and H2, and determine their
connections. This method allows us to obtain the transformations of the
natural bases B̄, B̄1 and B̄2 of T (H), T (H1) and T (H2) further B̄∗, B̄∗

1

and B̄∗
2 of T ∗(H), T ∗(H1) and T ∗(H2). As the elements of the natural

bases are not transforming as tensors the adapted bases B, B1, B2 of
T (H), T (H1), and T (H2) are introduced using the matrices N , N1 and
N2, respectively. For the dual spaces T ∗(H), T ∗(H1) and T ∗(H2) the
adapted bases are B∗, B∗

1 and B∗
2 formed with the matrices M , M1 and

M2, respectively.

It is proved that N and M , N1 and M1, N2 and M2 are inverse ma-
trices to each other if B∗ is dual to B, B∗

1 is dual to B1 and B∗
2 is dual

to B2. The main result is the construction of adapted basis B′ = B1 ∪B2

and B∗′ = B∗
1 ∪ B∗

2 of T (H) and T ∗(H) in such a way that the elements
of B′ and B∗′ are transforming as tensors and the tensor from space H
can be decomposed as a sum of projections on H1 and H2. It is obtained
by the determination of the relations between N , N1 and N2 further be-
tween M , M1, and M2. This very important result allows us to study
the connections, torsion and curvature tensors, Jacobi fields, sprays and
other invariants in the subspaces and surrounding space and determine
their relations which will be done later on.
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1. The natural and adapted basis of T (H) and T ∗(H)

Let us denote by H the (k + 2)n dimensional manifold, where some point
p ∈ H in some local chart (U,ϕ) has the coordinates:

(xa, p0a, p1a, . . . , pka) = (x, p0, p1, . . . , pk) = (xa, pAa),

a, b, c, d, . . . = 1, n, A, B,C, D, . . . = 0, k.

If (xa′ , p0a′ , . . . , pka′) are the coordinates of the same point p in the coordi-
nate chart (U ′, ϕ′), then the allowable coordinate transformation in H are given
by

xa′ = xa′(xa) ⇔ xa = xa(xa′)(1.1)

p0a′ = (0)Ba
a′p0a, (0)Ba

a′ =
∂xa

∂xa′ = ∂a′x
a

p1a′ =
(

1
0

)
(1)Ba

a′p0a +
(

1
1

)
(0)Ba

a′p1a

p2a′ =
(

2
0

)
(2)Ba

a′p0a +
(

2
1

)
(1)Ba

a′p1a +
(

2
2

)
(0)Ba

a′p2a, . . . ,

pka′ =
(

k

0

)
(k)Ba

a′p0a +
(

k

1

)
(k−1)Ba

a′p1a + · · ·+
(

k

k

)
(0)Ba

a′pka,

(1.2) (A)Ba
a′ =

dA (0)Ba
a′

dtA
, A = 0, k.

It is supposed that the C∞ transformation xa′ = xa′(xa) is 1 − 1 and its
inverse transformation xa = xa(xa′), a = 1, n is also C∞. It can be proved:

Theorem 1.1. The transformations of type (1.1) form a pseudo-group.

A nice example of H can be obtained if we define

(1.3) p0a =
∂

∂xa
, p1a =

d

dt
p0a, . . . , pka =

dk

dtk
p0a.

Using the product rule for differentiation with respect to t, where xa = xa(t),
p0a = p0a(t) are C∞ functiones, we obtain all relations of (1.1).

From (1.1)-(1.3) it follows that for this example

(1.4) (0)Ba
a′ = p0a′(xa), (1)Ba

a′ = p1a′(xa), . . . , (k)Ba
a′ = pka′(xa).

The new form of (1.1) is obtained if (1.4) is substituted in (1.1).
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In the further examinations it will be supposed that pAa(A = 0, k) are
arbitrary independent variables whose transformation law is prescribed by (1.1).

The natural basis of T (H) is

(1.5) B̄ = {∂a, ∂0a, ∂1a, . . . , ∂ka}, ∂a =
∂

∂xa
, ∂Aa =

∂

∂pAa
, A = 0, k.

Theorem 1.2. The elements of the natural basis B̄ of T (H) transform in the
following way

∂a = (0)Ba′
a ∂a′ + (∂ap0a′)∂0a′ + (∂ap1a′)∂1a′ + · · ·+ (∂apka′)∂ka′(1.6)

∂0a =
(

0
0

)
(0)Ba

a′∂
0a′ +

(
1
0

)
(1)Ba

a′∂
1a′ + · · ·+

(
k

0

)
(k)Ba

a′∂
ka′ ,

∂1a =
(

1
1

)
(0)Ba

a′∂
1a′ +

(
2
1

)
(1)Ba

a′∂
2a′ + · · ·+

(
k

1

)
(k−1)Ba

a′∂
ka′ ,

∂2a =
(

2
2

)
(0)Ba

a′∂
2a′ +

(
3
2

)
(1)Ba

a′∂
3a′ + · · ·+

(
k

2

)
(k−2)Ba

a′∂
ka′ , . . . ,

∂ka =
(

k

k

)
(0)Ba

a′∂
ka′ .

If we introduce the notations:

(1.7) [∂(a)] = [∂a∂0a∂1a . . . ∂ka], [∂(a′)] = [∂a′∂
0a′∂1a′ . . . ∂ka′ ],

(1.8) [B(a)
(a′)] =




∂axa′ 0 0 0 0

∂ap0a′
(
0
0

)
(0)Ba

a′ 0 0 0

∂ap1a′
(
1
0

)
(1)Ba

a′
(
1
1

)
(1)Ba

a′
(
1
1

)
(0)Ba

a′ 0

· · · · · · · · · · · · · · ·

∂apka′
(
k
0

)
(k)Ba

a′
(
k
1

)
(k−1)Ba

a′ . . .
(
k
k

)
(0)Ba

a′




then (1.6) can be written in the form

(1.9) [∂(a)] = [∂(a′)][B(a)
(a′)] ⇒ [∂(a)]T =

(
[∂(a′)][B(a)

(a′)]
)T

= [B(a)
(a′)]

T [∂(a′)]T .
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Theorem 1.3. The partial derivatives of the variables are connected by:

∂p0a′

∂p0a
=

∂p1a′

∂p1a
= · · · = ∂pka′

∂pka
= (0)Ba

a′ = p0a′(xa)(1.10)

∂p1a′

∂p0a
= (1)Ba

a′ = p1a′(xa),

∂p2a′

∂p1a
=

(
2
1

)
∂p1a′

∂p0a
=

(
2
1

)
(1)Ba

a′ =
(

2
1

)
p1a′(xa), . . . ,

∂p3a′

∂p2a
=

3
2

∂p2a′

∂p1a
=

3
2
· 2
1

∂p1a′

∂p0a
=

(
3
2

)
(1)Ba

a′ =
(

3
2

)
p1a′(x2), . . . ,

∂p(A+B)a′

∂pBa
=

A + B

B

∂p(A+B−1)a′

∂p(B−1)a
= · · ·

· · · =
(

A + B

B

)
∂pAa′

∂p0a
=

(
A + B

B

)
(A)Ba

a′ .

The natural basis B̄∗ of T ∗(H) is

(1.11) B̄∗ = {dxa, dp0a, dp1a, . . . , dpka}.

From the relation

xa′ = xa′(xa), p0a′ = p0a(xa, p0a), . . . , pka′ = pka(xa, p0a, p1a, . . . , pka)

we have

Theorem 1.4. The elements of the natural basis B̄∗ are transforming in the
following way

dxa′ =
∂xa′

∂xa
dxa(1.12)

dp0a′ =
∂p0a′

∂xa
dxa +

∂p0a′

∂p0a
dp0a

dp1a′ =
∂p1a′

∂xa
dxa +

∂p1a′

∂p0a
dp0a +

∂p1a′

∂p1a
dp1a, . . .

...

dpka′ =
∂pka′

∂xa
dxa +

∂pka′

∂p0a
dp0a +

∂pka′

∂p1a
dp1a + · · ·+ ∂pka′

∂pka
dpka.
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Using (1.10) and the notation

(1.13) [d(a′)] =




dxa′

dp0a′

dp1a′

...

dpka′




, [d(a)] =




dxa

dp0a

dp1a

...

dpka




we have the shorter form of (1.12) as follows:

(1.14) [d(a′)] = [B(a)
(a′)][d(a)].

Theorem 1.5. If the bases B̄∗ and B̄ are dual to each other, then B̄′∗ =
{dxa′ , dp0a′ , dp1a′ , . . . , dpka′} and B̄′ = {∂a′ , ∂

0a′ , ∂1a′ , . . . , ∂ka′} are also dual
to each other.

Proof. From (1.9) it follows

(1.15) [∂(b′)] = [∂(c)][B(b′)
(c) ], [B(a)

(a′)][B
(b′)
(a) ] = δb′

a′I.

Using the assumption
[d(b)][∂(a)] = δa

b I,

(1.14) and (1.15) we get

[d(a′)][∂(b′)] = [B(a)
a′ ][d(a)][∂(c)][B(b′)

(c) ] =

[B(a)
(a′)]δ

c
aI[B(b′)

(c) ] = [B(a)
(a′)][B

(b′)
(a) ] = δb′

a′I.

2

From (1.6) and (1.12) it is obvious that the elements of the natural bases
B̄ and B̄∗ are not transforming as tensors. To obtain more convenient bases of
T (H) and T ∗(H) we construct the so-called adapted bases B and B∗.

The adapted basis B of T (H) will be denoted by

(1.16) B = {δa, δ0a, δ1a, . . . , δka}.

We shall use the notations

(1.17) [δ(a)] = [δaδ0aδ1a . . . δka]
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(1.18) [N (a)
(b) ] =




δb
a 0 0 0 · · · 0

−Na0b δa
b 0 0 · · · 0

−Na1b −N0a
1b δa

b 0 · · · 0

−Na2b −N0a
2b −N1a

2b δa
b · · · 0

...

−Nakb −N0a
kb −N1a

kb −N2a
kb · · · δa

b




.

Definition 1.1. . The adapted basis B of T (H) is defined by

(1.19) [δ(a)] = [∂(b)][N (a)
(b) ] i.e. [δ(a)]T = [N (a)

(b) ]T [∂(b)]T .

From this relation it is obvious that the elements of B are linear combination
of the elements of B̄, where the coefficients N are function of the coordinates
of a point p ∈ H.

Theorem 1.6. The necessary and sufficient conditions for elements of the
basis B of T (H) to transform as d-tensor, i.e.

(1.20) δa = (0)Ba′
a δa′ δAa = (0Ba

a′δ
Aa′ , A = 0, k

is the following matrix equation

(1.21) [N (a′)
(b′) ][(0)B(a)

(a′)] = [B(b)
(b′)][N

(a)
(b) ],

where

(1.22) [(0)B(a)
(a′)] =




(0)Ba′
a 0 0 · · · 0

0 (0)Ba
a′ 0 · · · 0

0 0 (0)Ba
a′ · · · 0

...

0 0 0 · · · (0)Ba
a′




.

This matrix will appear frequently later on. It is important to remark, that
in the above matrix the element in the place (1.1) differs from the other elements
on the main diagonal.

Proof. Equations (1.20) can be written in the matrix form as follows

(1.23) [δ(a)] = [(0)B(a)
(a′)][δ

(a′)].
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Using Definition 1.1 or (1.19) we can write (1.23) as:

[∂(b)][N (a)
(b) ] = [(0)B(a)

(a′)][∂
(b′)][N (a′)

(b′) ].

The substitution of (1.9) into the above equation and the fact that [(0)B(a)
(a′)]

is a diagonal matrix result

[∂(b′)][B(b)
(b′)][N

(a)
(b) ] = [∂(b′)][N (a′)

(b′) ][(0)B(a)
(a′)].

The above equation is satisfied if

[B(b)
(b′)][N

(a)
(b) ] = [N (a′)

(b′) ][(0)B(a)
(a′)].

i.e. when (1.21) is valid. 2

The elements of the adapted basis B∗ of T ∗(H) will be denoted by

(1.24) B∗ = {δxa, δp0a, δp1a, . . . , δpka}.

The following notations will be used:

(1.25) [δ(a)] =




δxa

δp0a

δp1a

δp2a

...

δpka




[M (b)
(a)] =




δa
b 0 0 0 · · · 0

Ma0b δb
a 0 0 · · · 0

Ma1b M0b
1a δb

a 0 · · · 0

Ma2b M0b
2a M1b

2a δb
a · · · 0

...

Makb M0b
ka M1b

ka M2b
ka · · · δb

a




.

Definition 1.2. . The adapted basis B∗ of T ∗(H) is defined by

(1.26) [δ(a)] = [M (b)
(a)][d(b)].

Theorem 1.7. The elements of B∗ are transforming as d-tensors i.e.

(1.27) dxa′ = (0)Ba′
a dxa, δpAa′ = (0)Ba

a′δpAa, A = 0, k

if and only if the elements of the matrix M are transforming in the following
way

(1.28) [(0)B(a)
(a′)][M

(b)
(a)] = [M (b′)

(a′)][B
(b)
(b′)].
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Proof. (1.27) can be written in the matrix form as

[δ(a′)] = [(0)B(a)
(a′)][δ(a)].

Using (1.14) and (1.26) the above equation gives

[M (b′)
(a′)][d(b′)] = [M (b′)

(a′)][B
(b)
(b′)][d(b)] = [(0)B(a)

(a′)][M
(b)
(a)][d(b)]

from which it follows (1.28). 2

Theorem 1.8. The adapted bases B∗ and B are dual to each other when B̄∗

and B̄ are dual to each other and

(1.29) [M (c)
(a)][N

(b)
(c) ] = δb

aI,

i.e. [M (a)
(b) ] is the inverse matrix of [N (a)

(b) ].

Proof. The duality of B̄∗ and B̄ is equivalent with:

< dxa, ∂b >= δa
b < dpAa, ∂Bb >= δB

Aδδ
b

< dxa, ∂Bb >= 0 < dpAa, ∂b >= 0.

or shorter [d(c)][∂(d)] = δd
c I. Now we have

[δ(a)][δ(b)] = [M (c)
(a)][d(c)][∂(d)][N (b)

(d) ] =

[M (c)
(a)]δ

d
c I[N (b)

(d) ] = [M (c)
(a)][N

(b)
(c) ] = δb

aI.

2

2. The subspaces in H

First we introduce the family of subspaces and complementary subspaces in
the base manifold M . Let us consider the equations

xa = xa(u1, . . . , um, vm+1, . . . , vn) = xa(uα, vα̂),(2.1)

a = 1, n, α, β, γ, δ, ε, . . . = 1,m, α̂, β̂, γ̂, δ̂, ε̂, . . . = m + 1, n.

If the Jacobian matrix

(2.2) J =
[

∂(x1, . . . , xn)
∂(u1, . . . , um, vm+1, . . . , vn)

]
=




(
∂xa

∂uα

)
(

∂xa

∂vâ

)


 =

[
[Ba

α]m×n

[Ba
α̂](n−m)×n

]
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has rank n, then we can express uα and vα̂ as functions of xa, i.e.

(2.3) uα = uα(xa), vα̂ = vα̂(xa)

(2.4) J−1 =
[
∂(u1, . . . , um, vm+1, . . . , vn)

∂(x1, . . . , xn)

]
=

[
[Bβ

b ]n×m[Bβ̂
b ]n×(n−m)

]
.

In the above the following notations were used:

Ba
α =

∂xa

∂uα
, Ba

α̂ =
∂xa

∂vα̂
, Bβ

b =
∂uβ

∂xb
, Bβ̂

b =
∂vβ̂

∂xb
.

From (2.2) and (2.4) it follows:

(2.5) [Ba
α][Bβ

a ] = [δβ
α]m×m [Ba

α][Bα̂
a ] = 0m×(n−m)

(2.6) [Ba
β̂
][Bβ

a ] = 0(n−m)×m [Ba
α̂][Bβ̂

a ] = [δβ̂
α̂](n−m)×(n−m)

and

(2.7) JJ−1 =




[δα
β ] 0

0 [δα̂
β̂
]


 = [Ba

α][Bα
b ] + [Ba

α̂][Bα̂
b ] = [δa

b ]n×n.

We shall restrict our consideration on such special transformations for which
B a

α β̂
= 0 for all indices, because on the subspaces M1 and M2, determined by

(2.8) and (2.9), this relation is valid.
Two complementary subspaces of the base manifold M are determined by

the equations:

(2.8) xa = xa(u1, u2, . . . , um, Cm+1, . . . , Cn),

(2.9) xa = xa(C1, C2, . . . , Cm, vm+1, . . . , vn).

Equation (2.8) determines the family of m-dimensional subspaces M1 of M
and (2.9) the family of (n−m) dimensional subspaces M2 of M .

Here we shall consider some special case of general transformation (2.1),
namely when (2.1) is valid, the new coordinates of the same point in the base
manifold M are (u1′ , . . . , um′

, v(m+1)′ , . . . , vn′), but

uα′ = uα′(u1, . . . , um), vα̂′ = vα̂′(vm+1, . . . , vn),(2.10)

uα = uα(u1′ , . . . , um′
), vα̂ = vα̂(v(m+1)′ , . . . , vn′)
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and

(2.11) xa′ = xa′(u1′ , . . . , um′
, v(m+1)′ , . . . , vn′) = xa′(uα′ , vα̂′).

If the above transformations are C∞ and 1 − 1, then there exist inverse
transformations of the form (2.3), namely

(2.12) uα′ = uα′(xa′), vα̂′ = vα̂′(xa′).

Now we have

Ba′
a = Ba′

α′B
α′
β Bβ

a + Ba′
α̂′B

α̂′

β̂
Bβ̂

a(2.13)

Ba
a′ = Ba

αBα
β′B

β′

a′ + Ba
α̂Bα̂

β̂′B
β̂′

a′ .

For such special transformation of the base manifold M , the above equations
have big influence on the second, third, ..., equations of (1.1).

From p0a′ = (0)Ba
a′p0a it is clear that p0a is transforming as a covariant vector

field. As now the transformations on the base manifold M are determined by
(2.1)-(2.13) we have:

(2.14)
∂

∂xa
=

∂uα

∂xa

∂

∂uα
+

∂vα̂

∂xa

∂

∂vα̂
,

(2.15)
∂

∂uα
=

∂xa

∂uα

∂

∂xa
,

∂

∂vα̂
=

∂xa

∂vα̂

∂

∂xa
.

As p0a, p0α, p0α̂ are transforming as covariant vector fields in T ∗M , T ∗M1,
T ∗M2 respectively from (2.14) and (2.15) it follows that p0a, p0α and p0α̂ are
transforming as ∂

∂xa , ∂
∂uα and ∂

∂vα̂ and from (2.14), (2.15) we get

(2.16) p0α = Ba
αp0a, p0α̂ = Ba

α̂p0a, p0a = Bα
a p0α + Bα̂

a p0α̂.

From
∂

∂xa′ =

(
∂xa

∂uα

∂uα

∂uα′
∂uα′

∂xa′ +
∂xa

∂vα̂

∂vα̂

∂vα̂′
∂vα̂′

∂xa′

)
∂

∂xa

and the notations

(2.17) Bα
a′ = Bα

α′B
α′
a′ , Bα̂

a′ = Bα̂
α̂′B

α̂′
a′

we can see that the relation

(2.18) p0a′ = Bα
a′p0α + Bα̂

a′p0α̂

is satisfied.
We shall use the notations:

(2.19) pAa =
dAp0a

dtA
, pAα =

dAp0α

dtA
, pAα̂ =

dAp0α̂

dtA
, A = 1, k.
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Theorem 2.1. The transformations of the form (2.8) induce the (k + 2)m-
dimensional Hamilton space H1, where the transformations of the point
(uα = u0α, p0α, p1α, . . . , pkα) ∈ H1 are given by

u0α′ = u0α′(u0α),(2.20)

p0α′ = Bα
α′p0α,

p1α′ =
(

1
0

)
(1)Bα

α′p0α +
(

1
1

)
Bα

α′p1α,

p2α′ =
(

2
0

)
(2)Bα

α′p0α +
(

2
1

)
(1)Bα

α′p1α +
(

2
2

)
Bα

α′p2α, . . . ,

pkα′ =
(

k

0

)
(k)Bα

α′p0α +
(

k

1

)
(k−1)Bα

α′p1α + · · ·+
(

k

k

)
Bα

α′pkα,

where
(A)Bα

α′ =
dA

dtA
Bα

α′ .

If in (2.20) we substitute everywhere α by α̂ obtain the transformation law of
coordinates of point (vα̂ = v0α̂, p0α̂, pα̂, . . . , pkα̂) ∈ H2, where the base manifold
M2 of H2 is determined by (2.9) and dimH2 = (k + 2)(n−m).

Theorem 2.2. The relations between two types of coordinates of the same
point p ∈ H:

(xa, p0a, p1a, . . . , pka) and (uα, p0α, . . . , pkα, vα̂, p0α̂, p1α̂, . . . , pkα̂)

are given by:

xa = xa(u1, . . . , um, vm+1, . . . , vn)(2.21)
p0a = Bα

a p0α + Bα̂
a p0α̂

p1a = ((1)Bα
a p0α + (0)Bα

a p1α) + (α/α̂)

p2a = ((2)Bα
a p0α + 2(1)Bα

a p1α + (2)Bα
a p2α) + (α/α̂), . . . ,

pka = ((k)Bα
a p0α +

(
k

1

)
(k−1)Bα

a p1α + · · ·+
(

k

k

)
(0)Bα

a pkα) + (α/α̂),

where in some equation (α/α̂) means the expression in the former bracket in
which α is substituted by α̂.

Theorem 2.3. The coordinates in the subspaces are expressed as the functions
of coordinates in the surrounding place in the following way:

uα = uα(x1, . . . , xn), vα̂ = vα̂(x1, . . . , xn)

xa = xa(u1, u2, . . . , um), xa = xa(vm+1, . . . , vn)
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p0α = Ba′
α p0a,(2.22)

p1α = (1)Ba
αp0a + Ba

αp1a,

p2α = (2)Ba
αp0a + 2(1)Ba

αp1a + Ba
αp2a, . . . ,

pkα = (k)Ba
αp0a +

(
k

1

)
(k−1)Ba

αp1a + · · ·+
(

k

k

)
Ba

αpka.

The formulae from (2.22) are valid if u and α are substituted by v and α̂ re-
spectively.

Theorem 2.4. Equations (2.21) and (2.22) are equivalent.

Proof. First we prove that (2.22) ⇒ (2.21).
From

p0α = Ba
αp0a, p0α̂ = Ba

α̂p0a ⇒

p0αBα
b + p0α̂Bα̂

b = (Ba
αBα

b + Ba
α̂Bα̂

b )p0a = δa
b p0a = p0b,

which is the first equation from (2.21). Further, from

p1α = (1)Ba
αp0a + Ba

αp1a, p1α̂ = (1)Ba
α̂p0a + Ba

α̂p1a ⇒

Bα
b p1α + Bα̂

b p1α̂ = (Bα
b

(1)Ba
α + Bα̂

b
(1)Ba

α̂)p0a + (Ba
αBα

b + Ba
α̂Bα̂

b )p1a.

The substitution of p0a = p0βBβ
a + p0β̂Bβ̂

a gives

(Bα
b Ba

α + Bα̂
b Ba

α̂)′t = (δa
b )′t = 0 ⇒

Bα
b

(1)Ba
α + Bα̂

b
(1)Ba

α̂ = −((1)Bα
b Ba

α + (1)Bα̂
b Ba

α̂).

(2.5) and (2.6) result:

Bα
b p1α + Bα̂

b p1α̂ = −((1)Bα
b Ba

α + (1)Bα̂
b Ba

α̂)(Bβ
a p0β + Bβ̂

a p0β̂) + δa
b p1a ⇒

Bα
b p1α + Bα̂

b p1α̂ + (1)Bα
b p0α + (1)Bα̂

b p0α̂ = p1a,

which is the second equation of (2.21). The other equations of (2.21) can be
proved in the similar manner. The proof in the opposite direction is similar. 2

To introduce the natural and adapted bases in tangent and cotangent spaces
of the subspaces H1 and H2 of H it is convenient to use the matrix representation
of coordinate transformations obtained in 1 and 2.
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Let us introduce the notations

(2.23) [pa] =




p0a

p1a

...

pka




, [pα] =




p0α

p1α

...

pkα




, [pα̂] =




p0α̂

p1α̂

...

pkα̂




(2.24) [B(a)
(a′)](s) =




(0)Ba
a′ 0 0 · · · 0

(
1
0

)
(1)Ba

a′
(
1
1

)
(0)Ba

a′ 0 · · · 0
(
2
0

)
(2)Ba

a′
(
2
1

)
(1)Ba

a′
(
2
2

)
(0)Ba

a′ · · · 0

...
...

...
(
k
0

)
(k)Ba

a′
(
k
1

)
(k−1)Ba

a′ · · · · · · (
k
k

)
(0)Ba

a′




.

Here s means small, because [B(a)
(a′)]s is the part of [B(a)

(a′)], which was intro-
duced in (1.8).

We shall obtain [pa′ ], [pα′ ], [pα̂′ ] if in (2.23) a, α and α̂ substitute by a′, α′

and α̂′ respectively. In a similar way, [B(α)
(α′)](s), [B(α̂)

(α̂′)](s) can be obtained from
(2.24) if everywhere a, a′ are substituted by α, α′ or α̂, α̂′, respectively.

The matrices [B(a)
(α)]s and [B(a)

(α̂)
]s can be obtained from (2.24) if everywhere

a′ is substituted by α or α̂, respectively.
Using the above notations the transformation (1.1) in H can be written in

the form

(2.25) xa′ = xa′(xa), [pa′ ] = [B(a)
(a′)](s)[pa].

The transformations in H1 and H2 prescribed by (2.20) are now given by

(2.26) u0α′ = u0α′(uα), [p(α′)] = [B(α)
(α′)](s)[p(α)],

(2.27) v0α̂′ = v0α̂′(v0α̂), [p(α̂′ ] = [B(α̂)
(α̂′)](s)[p(α̂)].

To obtain the connection between the ambient space H and subspaces H1

and H2 we need matrices [B(α)
(a) ](s) and [B(α̂)

(a) ](s), which can be obtained from
(2.24) if a, a′ are substituted by α, a or α̂, a, respectively.

The relations between the coordinates of H, H1 and H2, which are explicitly
written in (2.21), (2.22) now can be expressed as:

xa = xa(uα) + xa(vα̂) ⇔ uα = uα(xa), vα̂ = vα̂(xa)
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(2.28) [p(α)] = [Ba
(α)](s)[p(a)], [p(α̂)] = [B(a)

(α̂)](s)[p(a)]

(2.29) [p(a)] = [B(α)
(a) ](s)[p(α)] + [B(α̂)

(a) ](s)[p(α̂)].

3. The natural and adapted bases in T (H1), T (H2), T ∗(H1)
and T ∗(H2)

The natural bases B̄1 of T (H1) and B̄2 of T (H2) are given by:

(3.1) B̄1 = {∂α, ∂0α, ∂1α, . . . , ∂kα}, ∂α =
∂

∂uα
, ∂Aα =

∂

∂pAα

(3.2) B̄2 = {∂α̂, ∂0α̂, ∂1α̂, . . . , ∂kα̂}, ∂α̂ =
∂

∂vα̂
, ∂Aα̂ =

∂

∂pAα̂
.

We shall use the matrices [B(α)
(α′)], [B(α̂)

(α̂′)] which are obtained from [B(a)
(a′)]

defined by (1.8) if a, a′, x are substituted α, α′, u and α̂, α̂′, v, respectively.
Let (u0α′ , p0α′ , . . . , pkα′) be transformed coordinates of the same point

(u0α, p0α, . . . , pkα) from H1 and

[∂(α)] = [∂α∂0α∂1α . . . ∂kα].

Theorem 3.1. The connection between two natural bases B̄1 and B̄′
1 of T (H1)

are given by

(3.3) [∂(α)] = [∂(α′)][B(α)
(α′)].

The elements of the natural bases B̄2 and B̄′
2 of T (H2) are transforming as

follows:

(3.4) [∂(α̂)] = [∂(α̂′)][B(α̂)
(α̂′)].

The natural bases B̄∗
1 of T ∗(H1) and B̄∗

2 of T (H2) are given by

(3.5) B̄∗
1 = {du0α, dp0α, dp1α, . . . , dpkα},

(3.6) B̄∗
2 = {dv0α̂, dp0α̂, dp1α̂, . . . , dpkα̂}.

The bases B̄∗′
1 and B̄∗′

2 are obtained from B̄∗
1 and B̄∗

2 if in (3.5) α is substi-
tuted by α′ and in (3.6) α̂ is substituted by α̂′.
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We shall use the notations

[d(α)] =




du0α

dp0α

dp1α

...

dpkα




, [d(α̂)] =




dv0α̂

dp0α̂

dp1α̂

...

dpkα̂




(similar for [d(α′)] and [d(α̂′)]).

Theorem 3.2. The connection between two natural bases B̄∗
1 and B̄∗′

1 of
T ∗(H1) are given by

(3.7) [d(α′)] = [B(α)
(α′)][d(α)].

The elements of the natural bases B̄∗
2 and B̄∗′

2 of T (H2) are transforming as
follows:

(3.8) [d(α̂′)] = [B(α̂)
(α̂′)][d(α̂)].

It is obvious that the elements of the natural bases B̄1, B̄∗
1 , B̄2, B̄∗

2 are not
transforming as tensors, so it is necessary to construct the adapted bases B1,
B2 of T (H1), T (H2) and B∗

1 , B∗
2 of T ∗(H1), T ∗(H2). The explicit forms of these

bases are:

B1 = {δα, δ0α, δ1α, . . . , δkα}

B2 = {δα̂, δ0α̂, δ1α̂, . . . , δkα̂}

B∗
1 = {δu0α, δp0α, δp1α, . . . , δpkα}

B∗
2 = {δv0α̂, δp0α̂, δp2α̂, . . . , δpkα̂}.

We introduce the notations

[δ(α)] = [δαδ0αδ1α . . . δkα],

[δ(α̂)] = [δα̂δ0α̂δ1α̂ . . . δkα̂].

[N (α)
(β) ] is obtained from [N (a)

(b) ], given by (1.5), if a is substituted by α and

b by β (similar for [N (α̂)

(β̂)
]). [(0)B(α)

(α′)]([
0B

(α̂)
(α̂′)]) is obtained from [(0)Ba

(a′)] (see
(1.22)) if a is substituted by α(α̂) and a′ by α′(α̂′).

The elements of B1 are transforming as d-tensors if they satisfy the relations

(3.9) δα = (0)Bα′
α δα′ δAα = (0)Bα

α′δ
Aα′ , A = 0, k.
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The above equations can be written in the matrix form:

(3.10) [δ(α)] = [(0)B(α)
(α′)][δ

(α′)].

The elements of B2 are transforming as d-tensors if the equations of the type
(3.9) and (3.10) are valid when α, α′ are substituted by α̂, α̂′.

Definition 3.1. . The adapted basis B1 of T (H1) (B2 of T (H2)) is defined by

(3.11) [δ(α)] = [∂(β)][N (α)
(β) ]

(3.12) ([δ(α̂)] = [∂(β̂)][N (α̂)

(β̂)
]).

Theorem 3.3. The necessary and sufficient conditions for the elements of
the adapted basis B1(B2) of T (H1)(T (H2) to transform as d-tensors are the
following matrix equations

(3.13) [N (α′)
(β′) ][(0)B(α)

(α′)] = [B(β)
(β′)[N

(α)
(β) ]

(3.14) ([N (α̂′)
(β̂′)

][(0)B(α̂)
(α̂′)] = [B(β̂)

(β̂′)
][N (α̂)

(β̂)
].

The proof is similar to the proof of Theorem 1.6.
Let us denote by [M (β)

(α) ]([M
(β̂)
(α̂) ]) the matrix obtained from [M (b)

(a)] defined in

(1.25) if a is substituted by α(α̂) and b by β(β̂).

Definition 3.2. . The adapted basis B∗
1(B∗

2) of T ∗(H1)(T ∗(H2)) is defined by

(3.15) [δ(α)] = [M (β)
(α) ][d(β)]

(3.16) [δ(α̂)] = [M (β̂)
(α̂) ][d(β̂)],

where

[δ(α)] =




δu0α

δp0α

δp1α

...

δpkα




, [δ(α̂)] =




δv0α̂

δp0α̂

δp1α̂

...

δpkα̂




.
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Theorem 3.4. The elements of the adapted basis B∗
1 of T ∗(H1) (B∗

2 of T ∗(H2))
are transforming as d-tensors, i.e.

du0α′ = (0)Bα′
α du0α, δpAα′ = (0)Bα

α′δpAα A = 0, k

dv0α̂′ = (0)Bα̂
α̂′dv0α̂, δpAα̂′ = (0)Bα̂

α̂′δpAα̂ A = 0, k

if and only if the matrices M are transforming in the following way:

(3.17) [(0)B(α)
(α′)][M

(β)
(α) ] = [M (β′)

(α′) ][B
(β)
(β′)]

(3.18) ([(0)B(α̂)
(α̂′)][M

(β̂)
(α̂) ] = [M (β̂′)

(α̂′) ][B
(β̂)

(β̂′)
].

The proof is similar to the proof of Theorem 1.7.

Theorem 3.5. The adapted bases B∗
1 and B1 are dual to each other when B̄∗

1

and B̄1 are dual to each other and

(3.19) [M (γ)
(α) ][N

(β)
(γ) ] = δβ

αI

i.e. [M (α)
(β) ] is the inverse matrix of [N (α)

(β) ].

Theorem 3.6. The adapted bases B∗
2 and B2 are dual to each other when B̄∗

2 ,
and B̄2 are dual to each other and

(3.20) [M (γ̂)
(α̂) ][N

(β̂)
(γ̂) ] = δβ̂

α̂I,

i.e. [M (α̂)

(β̂)
] is the inverse matrix of [N (α̂)

(β̂)
].

The proof of Theorems 3.5 and 3.6 is similar to the proof of Theorem 1.8.

Theorem 3.7. The elements of the natural bases B̄1(B̄2) of T (H1)(T (H2))
can be expressed as functions of the adapted bases B1(B2) of T (H1)(T (H2)) in
the following way

(3.21) [∂(α)] = [δ(β)][M (α)
(β) ]

(3.22) [∂(α̂)] = [δ(β̂)][M (α̂)

(β̂)
].

Proof. From (3.11) and (3.19) it follows

[δ(α)][M (γ)
(α) ] = [∂(β)][N (α)

(β) ][M (γ)
(α) ] = [∂(β)]δγ

βI = [∂(γ)]

From (3.12) and (3.20) we get

[δ(α̂)][M (γ̂)
(α̂) ] = [∂(β̂)][N (α̂)

(β̂)
][M (γ̂)

(α̂) ] = [∂β̂ ]δγ̂

β̂
I = [∂γ̂ ].

2
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Theorem 3.8. The elements of the natural bases B̄∗
1(B̄∗

2) of T ∗(H1)(T ∗(H2))
can be expressed as functions of the adapted bases B∗

1(B∗
2) of T ∗(H1)(T ∗(H2))

in the following way

(3.23) [d(α)] = [N (β)
(α) ][δ(β)]

(3.24) [d(α̂)] = [N (β̂)
(α̂) ][δ(β̂)].

Proof. The proof follows from (3.15), (3.16), (3.19) and (3.20). 2

As dimH = (k + 2)n, dimH1 = (k + 2)m, dimH2 = (k + 2)(n−m) and H1,
H2 are the subspaces of H, we can construct the adapted bases

B′ = B1 ∪B2 of T (H) and B∗′ = B∗
1 ∪B∗

2 of T ∗(H).

Now we have two adapted bases of T (H):

B = {δa, δ0a, δ01, . . . , δka} = [δ(a)]

(3.25) B′ = {δα, δα̂, δ0α, δ0α̂, δ1α, δ1α̂, . . . , δkα, δkα̂} = {δα, δα̂}
and two adapted bases of T ∗(H):

B∗ = {δxa, δp0a, δp1a, . . . , δpka}

(3.26) B∗′ = {δuα, δvα̂, δp0α, δp0α̂, δp1α, δp1α̂, . . . , δpkα, δpkα̂} = {δα, δα̂}.
We want such adapted basis B′ of T (H) and B∗′ of T ∗(H) which is connected

with B and B∗ in the following way:

(3.27) δa = Bα
a δα + Bα̂

a δα̂ δAa = Ba
αδAα + Ba

α̂δAα̂

(3.28) δxa = Ba
αδuα + Ba

α̂δvα̂ δpAa = Bα
a δpAα + Bα̂

a δpAα̂.

The matrix equation of (3.27) and (3.28) is given by

(3.29) [δ(a)] = [δ(α)][(0)B(a)
(α)] + [δα̂][(0)B(a)

(α̂)]

(3.30) [δ(a)] = [(0)B(α)
(a) ][δ(α)] + [(0)B(α̂)

(a) ][δ(α̂)].

In the former theorems we gave the conditions for [M ] and [N ], such that
the elements of B, B∗, B1, B∗

1 , B2, B∗
2 transform as tensors and B∗ be dual to

B, B∗
1 to B1 and B∗

2 to B2. The equations (3.27) and (3.28) are new restriction
for the adapted bases. It is easy to prove
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Theorem 3.9. If B∗
1 is dual to B1, B∗

2 dual to B2, then B∗ is dual to B if
(3.27) and (3.28) are satisfied.

Theorem 3.10. The elements of the adapted bases B, B∗, B′ and B∗′ satisfy
(3.29) and (3.30) if different [M ] and [N ], which appear in their construction
are connected by

[(0)B(b)
(β)][N

(a)
(b) ] = [N (α)

(β) ][(0)B(a)
(α)](3.31)

[(0)B(b)

(β̂)
][N (a)

(b) ] = [N (α̂)

(β̂)
][(0)B(a)

(α̂)]

[M (b)
(a)][

(0)B
(β)
(b) ] = [(0)B(α)

(a) ][M (β)
(α) ](3.32)

[M (b)
(a)][

(0)B
(β̂)
(b) ] = [(0)B(α̂)

(a) ][M (β̂)
(α̂) ].

Proof. Substituting the equations

[δ(a)] = [∂(b)][N (a)
(b) ] [δ(a)] = [M (b)

(a)][d(b)]

[δ(α)] = [∂(β)][N (α)
(β) ] [δ(α)] = [M (β)

(α) ][d(β)]

[δ(α̂)] = [∂(β̂)][N (α̂)

(β̂)
] [δ(α̂)] = [M (β̂)

(α̂) ][d(β̂)]

into (3.29) and (3.30) we get

(3.33) [∂(b)][N (a)
(b) ] = [∂(β)][N (α)

(β) ][(0)B(a)
(α)] + [∂β̂ ][N α̂

β̂
][B(a)

α̂ ]

(3.34) [M (b)
(a)][d(b)] = [(0)B(α)

(a) ][M (β)
(α) ][d(β)] + [(0)B(α̂)

(a) ][M (β̂)
(α̂) ][dβ̂ ].

Equations (3.33) and (3.34) are valid for an arbitrary [∂(b)] and arbitrary [d(b)].
If we take:

[∂(b)] = [∂(β)][(0)B(b)
(β)], [∂(β̂)] = 0

we obtain the first equation in (3.31) and if we take

[∂(b)] = [∂(β̂)][(0)B(b)

(β̂)
], [∂(β)] = 0

we obtain the second equation in (3.31).
On the other hand, if we take

[d(b)] = [(0)B(β)
(b) ][d(β)], [d(β̂)] = 0
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we obtain the first equation in (3.32), and if we take

[d(b)] = [(0)B(β̂)
(b) ][d(β̂)], [d(β)] = 0

we obtain the second equation of (3.32). 2

From (3.31), (3.32) and (2.7) we obtain

Theorem 3.11. If the elements of B, B′ further B∗ and B∗′ satisfy (3.29)
and (3.30), then

(3.35) [N (a)
(c) ] = [(0)B(β)

(c) ][N (α)
(β) ][(0)B(a)

(α)] + [B(β̂)
(c) ][N (α̂)

(β̂)
][(0)B(a)

(α̂)]

(3.36) [M (d)
(a) ] = [(0)B(α)

(a) ][M (β)
(α) ][

(0)B
(d)
(β)] + [B(α̂)

(a) ][M (β̂)
(α̂) ][

(0)B
(d)

(β̂)
]

Theorem 3.12. If (3.35) and (3.36) are valid and B∗
1 , is dual to B1, B∗

2 is
dual to B2, then [N (a)

(c) ][M (d)
(a) ] = δd

c I, i.e. B∗′ is dual to B′.

Proof.

[N (a)
(c) ][M (d)

(a) ] = ([(0)B(β)
(c) ][N (α)

(β) ][(0)B(a)
(α)] + [(0)B(β̂)

(c) ][N (α̂)

(β̂)
][(0)B(a)

(α̂)])

([(0)B(γ)
(a) ][M

(δ)
(γ) ][

(0)B
(d)
(δ) ] + [(0)B(γ̂)

(a) ][M
(δ̂)
(γ̂) ][

(0)B
(d)

(δ̂)
]

[(0)B(β)
(c) ][N (α)

(β) δγ
αI[M (δ)

(γ) ][
(0)B

(d)
(δ) ] + [(0)B(β̂)

(c) ][N (α̂)

(β̂)
]δγ̂

α̂I[M (δ̂)
(γ̂) ][

(0)B
(d)

(δ̂)
] =

= [(0)B(β)
(c) δδ

βI[(0)B(d)
(δ) ] + [(0)B(β̂)

(c) ]δδ̂
β̂
I[(0)B(d)

(δ̂)
] = δd

c I.

In the calculation of (3.19), (3.20) and (2.7) was used. 2

Conclusion:
If we construct two supplementary family of subspaces H1 and H2 of H and

construct the adapted bases B1, B2 of T (H1), T (H2), further B∗
1 , B∗

2 of T ∗(H1),
T ∗(H2), in such a way, that the duality is valid, then in T (H) there exist one and
only one adapted basis B constructed by [Na

b ] given by (3.35) and in T ∗(H) the
basis B∗ constructed by [Ma

b ] given by (3.36) in such a way that the elements
of different adapted bases are connected by (3.29) and (3.30). These equations
are tensor equations and are very important for further investigation.
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4. Special adapted bases

For the further investigations, especially in the theory of sprays and Jacobi
fields the introduced adapted bases are not convenient. We need less variables
in the matrices [N (a)

(b) ] and [M (b)
(a)], in such a way that the previous conditions

(1.19), (1.21), (1.26), (1.28) and (1.29) are satisfied.
The explicit form of (1.21) and (1.28) have equations of the form:

N0a′
Bb′

(0)Ba
a′ =

(
B

B

)
N0a

Bb
(0)Bb

b′ +
(

B

B − 1

)
N0a

(B−1)b
(1)Bb

b′ + · · ·+(4.1)

(
B

1

)
N0a

1b
(B−1)Bb

b′ −
(

B

0

)
(B)Ba

b′

NAa′
(A+B)b′

(0)Ba
a′ =

(
A + B

A + B

)
NAa

(A+B)b
(0)Bb

b′ +(4.2)
(

A + B

A + B − 1

)
NAa

(A+B−1)b
(1)Bb

b′ + · · ·+
(

A + B

A + 1

)
NAa

(B−1)b
(B−1)Bb

b′ −
(

A + B

A

)
(B)Ba

b′ ,

M0b
Ba

(0)Ba
a′ =

(
0
0

)
M0b′

Ba′
(0)Bb

b′ +
(

1
0

)
M1b′

Ba′
(1)Bb

b′ + · · ·(4.3)

(
B − 1

0

)
M

(B−1)b′

Ba′
(B−1)Bb

b′ +
(

B

0

)
(B)Bb

a′ , . . .

MAb
(A+B)a

(0)Ba
a′ =

(
A

A

)
MAb′

(A+B)a′
(0)Bb

b′ +(4.4)
(

A + 1
A

)
M

(A+1)b′

(A+B)a′
(1)Bb

b′ + · · ·+

(
A + B − 1

A

)
M

(A+B−1)b′

(A+B)a′
(A+B−1)Bb

b′ +
(

A + B

A

)
(A+B)Bb

a′ .

If we put in (4.2)

NAa
(A+B)b =

(
A + B

A

)
N0a

Bb,

for every 0 ≤ A ≤ A + B ≤ k, use the properties of binomial coefficients, and
compare (4.1) and (4.2) we get

(4.5) NAa′
(A+B)b′ =

(
A + B

A

)
N0a′

1b′ .
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In a similar way if we substitute in (4.4) and (4.3)

(4.6) MAb′
(A+B)a′ =

(
A + B

A

)
M0b′

Ba′ ,

for every 0 ≤ A ≤ A + B ≤ k and compare the obtained equations, we get

MAb
(A+B)a =

(
A + B

A

)
M0b

Ba.

Definition 4.1. . The special adapted basis B̃ = {δa, δ0a, δ1a, . . . , δka} of T (H)
is given by

(4.7) [δ(a)] = [∂b][Ñ (a)
(b) ],

where
(4.8)

[Ñ (a)
(b) ] =




δb
a 0 0 0 · · · 0

−Na0b

(
0
0

)
δa
b 0 0 · · · 0

−Na1b −N0a
1b

(
1
1

)
δa
b 0 · · · 0

−Na2b −N0a
2b −(

2
1

)
N0a

1b

(
2
2

)
δa
b · · · 0

−Na3b −N0a
3b −(

3
1

)
N0a

2b −(
3
2

)
N0a

1b · · · 0
...

−Nakb −N0a
kb −(

k
1

)
N0a

(k−1)b −(
k
2

)
N0a

(k−2)b · · · (
k
k

)
δa
b




.

Definition 4.2. . The special adapted basis B̃∗ = {dxa, δp0a , . . . , δpka
} of T ∗(H)

is given by

(4.9) [δ(a)] = [M̃ (b)
(a)][d(b)],

where

(4.10) [M̃ (b)
(a)] =




δa
b 0 0 0 · · · 0

Ma0b δb
a 0 0 · · · 0

Ma1b M0b
1a

(
1
1

)
δb
a 0 · · · 0

Ma2b M0b
2a

(
2
1

)
M0b

1a

(
2
2

)
δb
a · · · 0

Ma3b M0b
3a

(
3
1

)
M0b

2a

(
3
2

)
M0b

1a · · · 0
...

Makb M0b
ka

(
k
1

)
M0b

(k−1)a

(
k

k−1

)
M0b

(k−2)a · · · (
k
k

)
δb
a




.

Remark 4.1. If in Definition 4.1 we substitute (a, b) by (α, β) or (α̂, β̂) we
obtain the special adapted basis

B̃1 = {δα, δ0α, δ1α, . . . , δkα} of T (H1)

or
B̃2 = {δα̂, δ0α̂, δ1α̂, . . . , δkα̂} of T (H2).
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Remark 4.2. If we in Definition 4.2 (a, b) substitute by (α, β) or (α̂, β̂) we
obtain the special adapted basis

B̃∗
1 = {duα, δp0α

, δp1α
, . . . , δpkα

} of T ∗(H1)

or
B̃∗

2 = {δvα̂, δp0α̂
, δp1α̂

, . . . , δpkα̂
} of T ∗(H2).

Remark 4.3. As the special adapted bases are special cases of adapted
bases, so all Theorems 3.3-3.12 are valid for them.
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