NOVI SAD J. MATH. Vol. 38, No. 2, 2008, 195-207

A METHOD FOR OBTAINING THIRD-ORDER ITERATIVE FORMULAS

Djordje Herceg¹, Dragoslav Herceg²

Abstract. We present a method for constructing new third-order methods for solving nonlinear equations. These methods are modifications of Newton's method. Also, we obtain some known methods as special cases, for example, Halley's method, Chebyshev's method, super-Halley method. Several numerical examples are given to illustrate the performance of the presented methods.

AMS Mathematics Subject Classification (2000): 47A63,47A75

 $Key\ words\ and\ phrases:$ Nonlinear equations, Newton's method, Third-order method, Iterative methods

1. Introduction

In this paper we consider a family of iterative methods for finding a simple root α of nonlinear equation f(x) = 0. We assume that f satisfies

(1)
$$f \in C^{3}[a,b], \quad f'(x) \neq 0, \quad x \in [a,b], \quad f(a) > 0 > f(b).$$

Under these assumptions the function f has a unique root $\alpha \in (a, b)$.

Newton's method is a well-known iterative method for computing approximation of α by using

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$$

for some appropriate starting value x_0 . Newton's method quadratically converges in some neighborhood of α if $f'(\alpha) \neq 0$, [4].

The classical Chebyshev-Halley methods which improve Newton's method are given by

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \cdot \left(1 + \frac{t(x_k)}{2(1 - \beta t(x_k))}\right),$$

This paper is a part of the scientific research project no. 144006, supported by the Ministry of Science and Technological Development, Republic of Serbia

¹Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: herceg@im.ns.ac.yu

²Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: hercegd@im.ns.ac.yu

Dj. Herceg, D. Herceg

where

(2)
$$t(x) = \frac{f(x) f''(x)}{f'(x)^2}$$

This family has third-order of convergence and includes Chebyshev's method $(\beta = 0)$, Halley's method $(\beta = \frac{1}{2})$ and super-Halley method $(\beta = 1)$, see [3, 5, 7].

Newton's and Chebyshev-Halley methods belong to the class of one-point iteration methods without memory [7]

$$(3) x_{k+1} = F\left(x_k\right).$$

Here we consider the developing of third-order modifications of Newton's method. Using an iteration function of the form

$$F(x) = x - \frac{f(x)}{f'(x)}G(x),$$

we obtain for a specific function G and some of its approximations iterative methods of the form (3), which are cubically convergent. Some known methods are members of our family of methods. So, our algorithm 2 is Chebyshev's method, our algorithm 5 is Halley's method, and our algorithm 6 is super-Halley method. Also, our algorithm 7 is

$$x_{n+1} = x_n - \frac{2f(x_n)}{f'(x_n) + f'\left(x - \frac{f(x_n)}{f'(x_n)}\right)}$$

from [8] and [2], and our algorithm 9 is

$$x_{n+1} = x_n - \frac{f(x_n)}{2} \left(\frac{1}{f'(x_n)} + \frac{1}{f'\left(x - \frac{f(x_n)}{f'(x_n)}\right)} \right)$$

from [2] and [6]. The algorithm 1 is a class of algorithms depending on two parameters.

2. Main result

The crux of the present derivation is to obtain a specific function G and some of its approximations such that the special iteration function F

(4)
$$F(x) = x - \frac{f(x)}{f'(x)}G(x)$$

produces a sequence $\{x_n\}$ by (3) which is cubically convergent.

One can see that Newton's and Chebyshev-Halley iteration functions are special cases of (3) with

$$G\left(x\right) = 1$$

A method for obtaining third-order iterative formulas

and

$$G(x) = 1 + \frac{t(x)}{2(1 - \beta t(x))}$$

respectively.

If we define

(5)
$$G(x) = \sqrt{\frac{f'(x)}{f'(\alpha)}},$$

and F by (4) we obtain an iterative method of third-order. For our definition of the function G we need the knowledge of the zero α . Since the value of α is unknown, we can use appropriate approximations for G. In [1] another weight function h is considered. Namely,

$$h(x) = 1 + \frac{1}{2} \ln \left(\left| \frac{f'(x)}{f'(\alpha)} \right| \right).$$

We shall consider three different possibilities for constructing the function G. Firstly, we approximate α in (5) only. In this way we obtain algorithm 1. The second possibility is to approximate G using Taylor or Padé expansion and after that to use some approximations for α , $f'(\alpha)$ and $f''(\alpha)$. In this way we construct algorithms 2-8. The third possibility is to approximate the square root in (5) and after that to approximate $f'(\alpha)$. This way we obtain algorithms 9 and 10. Obviously, using similar approximations one can also obtain other new third-order iterative methods.

2.1. Algorithm 1. Approximations of α

We can use some quadratic approximation for α ,

$$\alpha \approx \varphi_{\beta,\gamma}(x),$$

where φ_{β} is a suitable function depending on a real parameter β . For example, we can choose

(6)
$$\varphi_{\beta,\gamma}(x) = x - \frac{f(x)}{f'(x - \beta f(x)) + \gamma f(x)}$$

One can see that for $\gamma = 0$ and $\beta = 1$ we have (7), for $\gamma = 0$ and $\beta = 0$ (8) and for $\gamma = 0$ and $\beta = -1$ we obtain (9), which are given in [1], i.e.

(7)
$$\varphi_1(x) = x - \frac{f(x)}{f'(x - f(x))}$$

(8)
$$\varphi_0(x) = x - \frac{f(x)}{f'(x)}$$

(9)
$$\varphi_{-1}(x) = x - \frac{f(x)}{f'(x+f(x))}$$

Now we define for real parameter β

$$G_{eta,\gamma}\left(x
ight)=\sqrt{rac{f'\left(x
ight)}{f'\left(arphi_{eta,\gamma}\left(x
ight)
ight)}},$$

2.2. Approximation of G by using Taylor expansion

Using Taylor expansion from

$$\sqrt{\frac{f'(x)}{f'(\alpha)}}$$

we obtain

(10)
$$G(x) \approx 1 + \frac{(x-\alpha)f''(\alpha)}{2f'(\alpha)}.$$

Using this approximation, we can obtain some new functions:

2.2.1. Algorithm 2. Chebyshev method

In (10) instead of $x - \alpha$ we use Newton's correction $\frac{f(x)}{f'(x)}$ and approximate $f'(\alpha)$ with f'(x) and approximate $f''(\alpha)$ with f''(x). This way we obtain

$$G_{CH}(x) = 1 + \frac{f(x)f''(x)}{2f'(x)^2} = 1 + \frac{t(x)}{2}$$

Iterative method (3) with $G_{CH}(x)$ and F defined by (4) becomes Chebysev's iterative method.

2.2.2. Algorithm 3.

In (10) instead of $x - \alpha$ we use Newton's correction $\frac{f(x)}{f'(x)}$ and approximate $f'(\alpha)$ with f'(x) and $f''(\alpha)$ is approximated with

$$f''(\alpha) \approx \frac{f'(x) - f'\left(x - \frac{f(x)}{f'(x)}\right)}{\frac{f(x)}{f'(x)}}$$

So, we obtain

$$G_{D1}(x) = 1 + \frac{f'(x) - f'\left(x - \frac{f(x)}{f'(x)}\right)}{2f'(x)}.$$

2.2.3. Algorithm 4.

In (10) instead of $x - \alpha$ we use Newton's correction $\frac{f(x)}{f'(x)}$ and approximate $f'(\alpha)$ with

$$f'(x - \frac{f(x)}{f'(x)}),$$

and approximate $f''(\alpha)$ with

$$f''(\alpha) \approx \frac{f'(x) - f'\left(x - \frac{f(x)}{f'(x)}\right)}{\frac{f(x)}{f'(x)}}$$

This way we obtain

$$G_{D2}(x) = 1 + \frac{f'(x) - f'\left(x - \frac{f(x)}{f'(x)}\right)}{2f'\left(x - \frac{f(x)}{f'(x)}\right)} = \frac{f'(x) + f'\left(x - \frac{f(x)}{f'(x)}\right)}{2f'\left(x - \frac{f(x)}{f'(x)}\right)}$$

2.3. Approximation of G by using Padé expansion

Using Padé expansion from

$$\sqrt{\frac{f'(x)}{f'(\alpha)}}$$

we obtain

(11)
$$G(x) \approx \frac{1}{1 - \frac{(x-\alpha)f''(\alpha)}{2f'(\alpha)}}$$

Using this approximation, we can obtain some new algorithms:

2.3.1. Algorithm 5. Halley's method

In (11) instead of $x - \alpha$ we use Newton's correction $\frac{f(x)}{f'(x)}$ and approximate $f'(\alpha)$ with f''(x) and $f''(\alpha)$ with f''(x). In such way we obtain

$$G_{HL}(x) = \frac{1}{1 - \frac{\left(\frac{f(x)}{f'(x)}\right)f''(x)}{2f'(x)}} = \frac{2}{2 - t(x)}.$$

Iterative method (3) with $G_{CH}(x)$ and F defined by (4) becomes Halley's iterative method.

2.3.2. Algorithm 6. Super-Halley method

In (11) instead of $x - \alpha$ we use Halley's correction

$$\frac{f(x)}{f'(x)}\frac{2}{2-t(x)}$$

and approximate $f'(\alpha)$ with f'(x) and $f''(\alpha)$ with f''(x). This way we obtain super-Halley method.

$$G_{SH}(x) = \frac{1}{1 - \frac{\frac{f(x)}{f'(x)} \frac{1}{1 - \frac{t(x)}{2}} f''(x)}{2f'(x)}} = \frac{1}{1 - \frac{t(x)}{2} \frac{1}{1 - \frac{t(x)}{2}}} = \frac{1}{1 - \frac{t(x)}{2 - t(x)}} = \frac{2 - t(x)}{2(1 - t(x))}.$$

2.3.3. Algorithm 7.

In (11) instead of $x - \alpha$ we use Newton's correction $\frac{f(x)}{f'(x)}$ and approximate $f'(\alpha)$ with f'(x) and $f''(\alpha)$ with

$$f''(\alpha) \approx \frac{f'(x) - f'\left(x - \frac{f(x)}{f'(x)}\right)}{\frac{f(x)}{f'(x)}}.$$

So, we obtain

$$G_{D3}(x) = \frac{2f'(x)}{f'(x) + f'\left(x - \frac{f(x)}{f'(x)}\right)}.$$

Iterative method (3) with $G_{D3}(x)$ and F defined by (4) is considered in [8] and [2].

$$F(x) = x - \frac{f(x)}{f'(x)}G_{D3}(x).$$

2.3.4. Algorithm 8.

In (11) instead of $x - \alpha$ we use Newton's correction $\frac{f(x)}{f'(x)}$, we approximate $f'(\alpha)$ with

$$f'(x - \frac{f(x)}{f'(x)})$$

and $f''(\alpha)$ with

$$f''(\alpha) \approx \frac{f'(x) - f'\left(x - \frac{f(x)}{f'(x)}\right)}{\frac{f(x)}{f'(x)}}.$$

Now, we have

$$G_{D4}(x) = \frac{-2f'\left(x - \frac{f(x)}{f'(x)}\right)}{f'(x) - 3f'\left(x - \frac{f(x)}{f'(x)}\right)}.$$

2.4. Approximation of G by using square root approximation

For approximating square root of a real number there are many different formulas. We shall use only two to demonstrate a way for obtaining some new iterative methods of form (3) with F given by (4) where G is replaced with G_{HR} or G_{LB} .

2.4.1. Algorithm 9.

Using Heron's approximation of square root

$$\sqrt{\frac{f'(x)}{f'(\alpha)}} \approx \frac{1}{2} \left(1 + \frac{f'(x)}{f'(\alpha)} \right)$$

and

$$f'(\alpha) \approx f'\left(x - \frac{f(x)}{f'(x)}\right),$$

we obtain

$$G_{HR}(x) = \frac{1}{2} + \frac{f'(x)}{2f'\left(x - \frac{f(x)}{f'(x)}\right)}.$$

Iterative method (3) with $G_{HR}(x)$ and F defined by (4) is considered in [2] and [6].

2.4.2. Algorithm 10.

Using Lambert's approximation of square root, i.e.

$$\sqrt{\frac{f'\left(x\right)}{f'\left(\alpha\right)}} \approx \frac{1 + 3\frac{f'\left(x\right)}{f'\left(\alpha\right)}}{3 + \frac{f'\left(x\right)}{f'\left(\alpha\right)}} = \frac{3f'\left(x\right) + f'\left(\alpha\right)}{f'\left(x\right) + 3f'\left(\alpha\right)}$$

and

$$f'(\alpha) \approx f'\left(x - \frac{f(x)}{f'(x)}\right),$$

we obtain

$$G_{LB}(x) = \frac{3f'(x) + f'\left(x - \frac{f(x)}{f'(x)}\right)}{f'(x) + 3f'\left(x - \frac{f(x)}{f'(x)}\right)}.$$

Let us consider the iterative procedure (3) where F is given by (4). Our conditions imply that f has exactly one root in (a, b).

Theorem 1. Let us assume that the function f is sufficiently smooth in a neighborhood of its simple root α and $f'(\alpha) \neq 0$. Then the iterative method $x_{k+1} = F(x_k)$, where

$$F(x) = x - \frac{f(x)}{f'(x)}G(x)$$

and function G is some of our functions $G_{\beta,\gamma}$, G_{CH} , G_{HL} , G_{SH} , G_{HR} , G_{LB} , G_{D1} , G_{D2} , G_{D3} , G_{D4} , converges cubically to the unique solution α of f(x) = 0 in a neighborhood of α .

Proof. It is well known that the iterative method (3) is cubically convergent if

$$F(\alpha) = \alpha, \quad F'(\alpha) = F''(\alpha) = 0, \quad F'''(\alpha) \neq 0.$$

Differentiating (4) we get

$$F'(x) = 1 - u'(x) G(x) - u(x) G'(x)$$

and

$$F''(x) = -u''(x) G(x) - 2u'(x) G'(x) - u(x) G''(x)$$

where

$$u\left(x\right) = \frac{f\left(x\right)}{f'\left(x\right)}.$$

It is easy to see that for all our functions G it holds $G(\alpha) = 1$. After simple calculations one can obtain that

$$G'(\alpha) = \frac{f''(\alpha)}{2f'(\alpha)}.$$

We have u'(x) = 1 - t(x), where t is defined by (2). It follows that $u(\alpha) = 0$ and $u'(\alpha) = 1$.

Now, we can see that $F(\alpha) = \alpha$ and $F'(\alpha) = 0$. Since

$$u''(\alpha) = -t'(\alpha) = -\frac{f''(\alpha)}{f'(\alpha)}$$

and

$$F''(\alpha) = \frac{f''(\alpha)}{f'(\alpha)}G(\alpha) - 2G'(\alpha) = \frac{f''(\alpha)}{f'(\alpha)} - 2\frac{f''(\alpha)}{2f'(\alpha)} = 0,$$

we conclude that

$$F(\alpha) = \alpha, \quad F'(\alpha) = F''(\alpha) = 0$$

which is sufficient to complete the proof.

3. Numerical examples

We present some numerical test results for our cubically convergent methods and the Newton's method. Methods with iteration functions F were compared, where

$$F(x) = x - \frac{f(x)}{f'(x)}G(x),$$

and G is one of our functions 1, $G_{\beta,\gamma}$, G_{CH} , G_{HL} , G_{SH} , G_{HR} , G_{LB} , G_{D1} , G_{D2} , G_{D3} , G_{D4} . So, we have the following 13 iterative functions:

$$F_1(x) = x - \frac{f(x)}{f'(x)},$$

A method for obtaining third-order iterative formulas

$$\begin{split} F_{2}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{\beta,\gamma}\left(x\right), \ \beta = 1, \ \gamma = 0, \\ F_{3}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{\beta,\gamma}\left(x\right), \ \beta = 0, \ \gamma = 0, \\ F_{4}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{\beta,\gamma}\left(x\right), \ \beta = -1, \ \gamma = 0, \\ F_{5}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{CH}\left(x\right), \\ F_{6}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{D1}\left(x\right) \\ F_{7}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{D2}\left(x\right) \\ F_{8}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{HL}\left(x\right), \\ F_{9}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{SH}\left(x\right), \\ F_{10}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{D3}\left(x\right), \\ F_{11}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{D4}\left(x\right), \\ F_{12}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{HR}\left(x\right), \\ F_{13}\left(x\right) &= x - \frac{f\left(x\right)}{f'\left(x\right)}G_{LB}\left(x\right). \end{split}$$

The order of convergence COC can be approximed using the formula

$$COC \approx \frac{\ln \left| \left(x_{n+1} - \alpha \right) / \left(x_n - \alpha \right) \right|}{\ln \left| \left(x_n - \alpha \right) / \left(x_{n-1} - \alpha \right) \right|}.$$

All computations were performed in *Mathematica* 6.0. When SetPrecision is used to increase the precision of a number, we can choose number *prec* of digits in floating point arithmetics. In our tables we give the value of *prec*. We use the following stopping criteria in our calculations: $|x_k - \alpha| < \varepsilon$ and $|f(x_k)| < \varepsilon$, where α is exact solution of considered equation. With *it* we denote number of iteration steps. For numerical illustrations in this section we used the fixed stopping criteria $\varepsilon = 10^{-15}$ and *prec* = 1000.

We present some numerical test results for our iterative methods in Table 1. We used the following functions:

$$f_1(x) = \sin x - \frac{1}{2}, \quad \alpha_1 \approx 0.5235987755982988731,$$

$$f_{2}(x) = x^{3} - 10, \quad \alpha_{2} \approx 2.1544346900318837218,$$

$$f_{3}(x) = e^{x} - x^{2}, \quad \alpha_{3} \approx 0.9100075724887090607,$$

$$f_{4}(x) = x^{3} + 4x^{2} - 10, \quad \alpha_{4} \approx 1.3652300134140968458,$$

$$f_{5}(x) = (x - 1)^{3} - 1, \quad \alpha_{5} = 2,$$

$$f_{6}(x) = \sin x - \frac{x}{2}, \quad \alpha_{6} \approx 1.8954942670339809471.$$

We also display the approximation $\alpha *$ of exact root α for each equation. $\alpha *$ is calculated with precision *prec*, but only 20 digits are displayed.

As a convergence criterion it was required that distance of two consecutive approximations δ for the zero be less than 10^{-15} . Also displayed are the number of iterations to approximate root (it), the computational order of convergence (COC), the value $f(x_{it})$ and $|x_{it} - \alpha|$.

	IT	COC	Δx_*	$f(x_*)$	δ
f_1, x	$c_0 = 0$	0.05			
F_1	5	2	$3.6 \cdot 10^{-35}$	$-3.1 \cdot 10^{-35}$	$1.1 \cdot 10^{-17}$
F_2	4	3	$1.2 \cdot 10^{-58}$	$-1.0 \cdot 10^{-58}$	$8.7 \cdot 10^{-20}$
F_3	4	3	$1.3 \cdot 10^{-76}$	$-1.1 \cdot 10^{-76}$	$1.5 \cdot 10^{-25}$
F_4	4	3	$8.9 \cdot 10^{-65}$	$7.7 \cdot 10^{-65}$	$9.5 \cdot 10^{-22}$
F_5	4	3	$3.1 \cdot 10^{-24}$	$-2.7 \cdot 10^{-54}$	$2.1\cdot10^{-18}$
F_6	4	3	$2.4 \cdot 10^{-78}$	$2.1 \cdot 10^{-78}$	$3.1\cdot10^{-26}$
F_7	4	3	$4.3 \cdot 10^{-71}$	$-3.7 \cdot 10^{-71}$	$8.0\cdot10^{-24}$
F_8	4	3	$8.0\cdot10^{-56}$	$-7.0\cdot10^{-56}$	$6.9\cdot10^{-19}$
F_9	4	3	$5.0 \cdot 10^{-58}$	$-4.3 \cdot 10^{-58}$	$1.4 \cdot 10^{-19}$
F_{10}	4	4	$2.0 \cdot 10^{-158}$	$1.7 \cdot 10^{-158}$	$5.9\cdot10^{-40}$
F_{11}	4	3	$3.3\cdot10^{-64}$	$-2.8 \cdot 10^{-64}$	$1.3 \cdot 10^{-21}$
F_{12}	4	3	$1.2 \cdot 10^{-76}$	$-1.0 \cdot 10^{-76}$	$1.4 \cdot 10^{-25}$
f_1, a	$c_0 = 1$.0			
F_1	6	2	$2.8\cdot10^{-45}$	$-2.4\cdot10^{-45}$	$9.8\cdot10^{-23}$
F_2	4	3	$1.5 \cdot 10^{-51}$	$1.3 \cdot 10^{-51}$	$2.0\cdot10^{-17}$
F_3	4	3	$6.2\cdot10^{-82}$	$5.4.10^{-82}$	$2.5\cdot10^{-27}$
F_4	4	3	$5.1 \cdot 10^{-60}$	$-4.5 \cdot 10^{-60}$	$3.7 \cdot 10^{-20}$
F_5	5	3	$6.9 \cdot 10^{-81}$	$5.9 \cdot 10^{-81}$	$2.7\cdot10^{-27}$
F_6	5	3	$5.1 \cdot 10^{-131}$	$4.4 \cdot 10^{-131}$	$8.5\cdot10^{-44}$
F_7	4	3	$2.7 \cdot 10^{-59}$	$2.4 \cdot 10^{-59}$	$7.0 \cdot 10^{-20}$
F_8	5	3	$1.7 \cdot 10^{-127}$	$1.4 \cdot 10^{-127}$	$8.7 \cdot 10^{-43}$
F_9	4	3	$3.3\cdot10^{-90}$	$2.9 \cdot 10^{-90}$	$2.7 \cdot 10^{-30}$
F_{10}	4	4	$7.0 \cdot 10^{-138}$	$6.1 \cdot 10^{-138}$	$8.0\cdot10^{-35}$
F_{11}	4	3	$2.7\cdot10^{-47}$	$2.3\cdot 10^{-47}$	$5.4 \cdot 10^{-16}$
F_{12}	4	3	$2.8\cdot10^{-59}$	$2.4\cdot10^{-59}$	$7.0 \cdot 10^{-20}$
F_{13}	4	3	$6.4 \cdot 10^{-77}$	$5.5 \cdot 10^{-77}$	$1.2 \cdot 10^{-25}$

Table 1: Numerical results

f_2, x	= 0	2.2			
F_1	8	2	$5.0 \cdot 10^{-216}$	$4.1 \cdot 10^{-216}$	$2.9 \cdot 10^{-108}$
F_2	6	3	$7.9 \cdot 10^{-520}$	$-6.5 \cdot 10^{-520}$	$1.1 \cdot 10^{-173}$
F_3	6	3	$2.2 \cdot 10^{-757}$	$-1.8 \cdot 10^{-757}$	$1.2 \cdot 10^{-252}$
F_4	6	3	$1.9 \cdot 10^{-506}$	$-1.6 \cdot 10^{-506}$	$3.6 \cdot 10^{-169}$
F_5	6	3	$3.3 \cdot 10^{-503}$	$-2.7 \cdot 10^{-503}$	$3.5 \cdot 10^{-168}$
F_6	6	3	$2.0 \cdot 10^{-537}$	$-1.7 \cdot 10^{-537}$	$1.5 \cdot 10^{-179}$
F_7	5	3	$2.0 \cdot 10^{-370}$	$1.6 \cdot 10^{-370}$	$1.8 \cdot 10^{-123}$
F_8	6	3	$4.4 \cdot 10^{-571}$	$-3.6 \cdot 10^{-571}$	$1.0 \cdot 10^{-190}$
F_9	6	3	$5.7 \cdot 10^{-742}$	$-4.6 \cdot 10^{-742}$	$2.1 \cdot 10^{-247}$
F_{10}	6	3	$8.9 \cdot 10^{-639}$	$-7.3 \cdot 10^{-639}$	$3.1 \cdot 10^{-213}$
F_{11}^{10}	6	3	$2.2 \cdot 10^{-592}$	$-1.8 \cdot 10^{-592}$	$8.5 \cdot 10^{-198}$
F_{12}	5	3	$2.0 \cdot 10^{-370}$	$1.6 \cdot 10^{-370}$	$1.8 \cdot 10^{-123}$
F_{13}^{12}	6	3	$9.6 \cdot 10^{-751}$	$-7.9 \cdot 10^{-751}$	$1.9 \cdot 10^{-250}$
- 15					
f_3, x	$_{0} =$	1.27			
F_1	6	2	$2.3\cdot10^{-51}$	$-6.8\cdot10^{-51}$	$6.2\cdot10^{-26}$
F_2	5	3	$1.0 \cdot 10^{-90}$	$3.0\cdot10^{-90}$	$7.7 \cdot 10^{-31}$
F_3	4	3	$6.5 \cdot 10^{-89}$	$-1.9\cdot10^{-88}$	$8.5\cdot10^{-30}$
F_4	5	3	$1.9 \cdot 10^{-131}$	$5.7 \cdot 10^{-131}$	$2.1\cdot10^{-44}$
F_5	4	3	$7.4 \cdot 10^{-51}$	$-2.2 \cdot 10^{-50}$	$2.1 \cdot 10^{-17}$
F_6	4	3	$2.0 \cdot 10^{-58}$	$-6.1 \cdot 10^{-58}$	$6.9 \cdot 10^{-20}$
F_7	4	3	$1.0 \cdot 10^{-92}$	$-3.0 \cdot 10^{-92}$	$5.3 \cdot 10^{-31}$
F_8	4	3	$1.9 \cdot 10^{-56}$	$-5.7 \cdot 10^{-56}$	$3.4 \cdot 10^{-19}$
F_9	4	3	$9.5 \cdot 10^{-68}$	$-2.8 \cdot 10^{-67}$	$8.8 \cdot 10^{-23}$
F_{10}	4	3	$4.3 \cdot 10^{-71}$	$-1.3 \cdot 10^{-70}$	$5.4 \cdot 10^{-24}$
F_{11}	4	3	$3.7 \cdot 10^{-60}$	$-1.1 \cdot 10^{-59}$	$2.1 \cdot 10^{-20}$
F_{12}	4	3	$1.0 \cdot 10^{-92}$	$-3.0 \cdot 10^{-92}$	$5.3 \cdot 10^{-31}$
F_{13}	4	3	$1.4 \cdot 10^{-87}$	$-4.2 \cdot 10^{-87}$	$2.4 \cdot 10^{-29}$
f_4, x	$_{0} =$	1.8 [1]	10		21
F_1	5	2	$1.6 \cdot 10^{-42}$	$2.7 \cdot 10^{-41}$	$1.8 \cdot 10^{-21}$
F_2	4	3	$8.9 \cdot 10^{-57}$	$-1.5 \cdot 10^{-55}$	$1.0 \cdot 10^{-19}$
F_3	4	3	$1.8 \cdot 10^{-115}$	$-2.9 \cdot 10^{-114}$	$1.1 \cdot 10^{-38}$
F_4	5	3	$3.4 \cdot 10^{-53}$	$5.7 \cdot 10^{-52}$	$1.6 \cdot 10^{-18}$
F_5	4	3	$1.5 \cdot 10^{-96}$	$-2.4 \cdot 10^{-95}$	$1.5 \cdot 10^{-32}$
F_6	4	3	$5.4 \cdot 10^{-93}$	$-8.9 \cdot 10^{-92}$	$2.2 \cdot 10^{-31}$
F_7	3	3	$2.7 \cdot 10^{-49}$	$-4.4 \cdot 10^{-48}$	$2.1 \cdot 10^{-16}$
F_8	4	3	$3.7 \cdot 10^{-112}$	$-6.2 \cdot 10^{-111}$	$1.3 \cdot 10^{-37}$
F_9	4	3	$5.4 \cdot 10^{-130}$	$-9.0 \cdot 10^{-129}$	$2.1\cdot10^{-43}$
F_{10}	4	3	$7.3 \cdot 10^{-105}$	$-1.2 \cdot 10^{-103}$	$3.0\cdot10^{-35}$
F_{11}	4	3	$2.3 \cdot 10^{-109}$	$-3.8 \cdot 10^{-108}$	$1.0 \cdot 10^{-36}$
F_{12}	3	3	$2.7\cdot 10^{-49}$	$-4.4 \cdot 10^{-48}$	$2.1 \cdot 10^{-16}$
F_{13}	4	3	$9.8 \cdot 10^{-116}$	$-1.6 \cdot 10^{-114}$	$8.7 \cdot 10^{-39}$

f_5, x	$z_0 = 1$.8 [1]			
F_1	6	2	$9.6\cdot10^{-42}$	$2.9\cdot10^{-41}$	$3.1 \cdot 10^{-21}$
F_2	5	3	$4.4 \cdot 10^{-98}$	$1.3 \cdot 10^{-97}$	$2.0 \cdot 10^{-33}$
F_3	4	3	$5.8 \cdot 10^{-61}$	$-1.7 \cdot 10^{-60}$	$9.5 \cdot 10^{-21}$
F_4	6	3	$4.0 \cdot 10^{-105}$	$-1.2 \cdot 10^{-104}$	$8.4 \cdot 10^{-36}$
F_5	5	3	$1.7 \cdot 10^{-118}$	$-5.0 \cdot 10^{-118}$	$4.6 \cdot 10^{-40}$
F_6	5	3	$2.1 \cdot 10^{-99}$	$-6.4 \cdot 10^{-99}$	$9.9 \cdot 10^{-34}$
F_7	4	3	$4.6 \cdot 10^{-107}$	$1.4 \cdot 10^{-106}$	$6.5 \cdot 10^{-36}$
F_8	4	3	$5.8\cdot10^{-61}$	$-1.7 \cdot 10^{-60}$	$9.5 \cdot 10^{-21}$
F_9	4	3	$1.3\cdot10^{-69}$	$-3.9\cdot10^{-69}$	$1.6 \cdot 10^{-23}$
F_{10}	4	3	$1.3\cdot10^{-49}$	$-4.0 \cdot 10^{-49}$	$4.9 \cdot 10^{-17}$
F_{11}	4	3	$3.5 \cdot 10^{-56}$	$-1.1 \cdot 10^{-55}$	$3.5 \cdot 10^{-19}$
F_{12}	4	3	$4.6 \cdot 10^{-107}$	$1.4 \cdot 10^{-106}$	$6.5 \cdot 10^{-36}$
		0	0 = 10 - 63	0.0 10-62	24.10^{-21}
F_{13}	4	3	$9.5 \cdot 10^{-0.0}$	$-2.8 \cdot 10^{-3-2}$	$2.4 \cdot 10$
F_{13}	4	3	$9.5 \cdot 10^{-0.00}$	$-2.8 \cdot 10^{-32}$	2.4 * 10
F_{13} f_6, x	4 = 2	3 .3 [1]	9.5 · 10 00	-2.8 · 10	2.4 • 10
F_{13} f_6, x F_1	$4 \\ c_0 = 2 \\ 6$	3 .3 [1] 2	$9.5 \cdot 10^{-48}$	$-2.5 \cdot 10^{-48}$	$2.3 \cdot 10^{-24}$
F_{13} f_6, x F_1 F_2	4 = 2 6 = 4	$ \begin{array}{c} 3 \\ 3.3 \\ 2 \\ 3 \end{array} $	$9.5 \cdot 10^{-48}$ $3.0 \cdot 10^{-48}$ $1.1 \cdot 10^{-51}$	$-2.5 \cdot 10^{-48} \\ -8.9 \cdot 10^{-52}$	$2.3 \cdot 10^{-24}$ $1.2 \cdot 10^{-17}$
F_{13} f_6, x F_1 F_2 F_3	4 6 4 4	$\begin{array}{c} 3 \\ .3 \ [1] \\ 2 \\ 3 \\ 3 \end{array}$	$\begin{array}{c} 3.0 \cdot 10^{-48} \\ 1.1 \cdot 10^{-51} \\ 4.1 \cdot 10^{-77} \end{array}$	$-2.5 \cdot 10^{-48} \\ -8.9 \cdot 10^{-52} \\ -3.4 \cdot 10^{-77}$	$2.3 \cdot 10^{-24}$ $1.2 \cdot 10^{-17}$ $6.7 \cdot 10^{-26}$
F_{13} f_{6}, x F_{1} F_{2} F_{3} F_{4}	$ \begin{array}{c} 4 \\ \hline c_0 = 2 \\ \hline 6 \\ 4 \\ 5 \end{array} $	$ \begin{bmatrix} 3 \\ 2 \\ 3 \\ 3 \\ 3 \end{bmatrix} $	$\begin{array}{c} 3.0 \cdot 10^{-48} \\ 1.1 \cdot 10^{-51} \\ 4.1 \cdot 10^{-77} \\ 1.7 \cdot 10^{-136} \end{array}$	$\begin{array}{c} -2.8 \cdot 10 & ^{-48} \\ -8.9 \cdot 10 & ^{-52} \\ -3.4 \cdot 10 & ^{-77} \\ 1.4 \cdot 10 & ^{-136} \end{array}$	$2.3 \cdot 10^{-24}$ $1.2 \cdot 10^{-17}$ $6.7 \cdot 10^{-26}$ $7.4 \cdot 10^{-46}$
F_{13} f_6, x F_1 F_2 F_3 F_4 F_5	$ \begin{array}{c} 4 \\ 5 \\ 4 \\ 4 \\ 5 \\ 4 \end{array} $	$\begin{array}{c} 3\\ .3 \ [1]\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\end{array}$	$\begin{array}{c} 3.0\cdot10^{-48}\\ 1.1\cdot10^{-51}\\ 4.1\cdot10^{-77}\\ 1.7\cdot10^{-136}\\ 6.9\cdot10^{-49} \end{array}$	$\begin{array}{c} -2.8 \cdot 10 & ^{-2.8} \\ -2.5 \cdot 10 & ^{-48} \\ -8.9 \cdot 10 & ^{-52} \\ -3.4 \cdot 10 & ^{-77} \\ 1.4 \cdot 10 & ^{-136} \\ -5.7 \cdot 10 & ^{-49} \end{array}$	$2.3 \cdot 10^{-24} \\ 1.2 \cdot 10^{-17} \\ 6.7 \cdot 10^{-26} \\ 7.4 \cdot 10^{-46} \\ 9.8 \cdot 10^{-17} \\ \end{cases}$
$F_{13} \\ f_{6}, x \\ F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{5} \\ F_{6} \\ F_{6} \\ F_{6} \\ F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{5} \\ F_{6} \\ $	4 $c_0 = 2$ 6 4 4 5 4 4 4	$\begin{array}{c} 3\\ .3 \ [1]\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\end{array}$	$\begin{array}{c} 3.0\cdot10^{-48}\\ 1.1\cdot10^{-51}\\ 4.1\cdot10^{-77}\\ 1.7\cdot10^{-136}\\ 6.9\cdot10^{-49}\\ 3.1\cdot10^{-53} \end{array}$	$\begin{array}{r} -2.8 \cdot 10^{-48} \\ -8.9 \cdot 10^{-52} \\ -3.4 \cdot 10^{-77} \\ 1.4 \cdot 10^{-136} \\ -5.7 \cdot 10^{-49} \\ -2.5 \cdot 10^{-53} \end{array}$	$2.3 \cdot 10^{-24} \\ 1.2 \cdot 10^{-17} \\ 6.7 \cdot 10^{-26} \\ 7.4 \cdot 10^{-46} \\ 9.8 \cdot 10^{-17} \\ 3.6 \cdot 10^{-18} \\ \end{array}$
$F_{13} \\ f_6, x \\ F_1 \\ F_2 \\ F_3 \\ F_4 \\ F_5 \\ F_6 \\ F_7 \\ F_7 \\ F_6 \\ F_7 \\ F_7 \\ F_6 \\ F_7 $	$ \begin{array}{c} 4 \\ 6 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \end{array} $	$\begin{bmatrix} 3 \\ .3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{bmatrix}$	$\begin{array}{c} 3.0 \cdot 10^{-48} \\ 1.1 \cdot 10^{-51} \\ 4.1 \cdot 10^{-77} \\ 1.7 \cdot 10^{-136} \\ 6.9 \cdot 10^{-49} \\ 3.1 \cdot 10^{-53} \\ 3.6 \cdot 10^{-115} \end{array}$	$\begin{array}{r} -2.8 \cdot 10^{-48} \\ -8.9 \cdot 10^{-52} \\ -3.4 \cdot 10^{-77} \\ 1.4 \cdot 10^{-136} \\ -5.7 \cdot 10^{-49} \\ -2.5 \cdot 10^{-53} \\ -2.9 \cdot 10^{-115} \end{array}$	$2.3 \cdot 10^{-24} \\ 1.2 \cdot 10^{-17} \\ 6.7 \cdot 10^{-26} \\ 7.4 \cdot 10^{-46} \\ 9.8 \cdot 10^{-17} \\ 3.6 \cdot 10^{-18} \\ 2.2 \cdot 10^{-38} \\ \end{array}$
$F_{13} \\ f_{6}, x \\ F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{5} \\ F_{6} \\ F_{7} \\ F_{8} \\ F_{8}$	$ \begin{array}{c} 4 \\ 6 \\ 6 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	$\begin{array}{c} 3\\ .3 \ [1]\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\end{array}$	$\begin{array}{c} 3.0\cdot10^{-48}\\ 1.1\cdot10^{-51}\\ 4.1\cdot10^{-77}\\ 1.7\cdot10^{-136}\\ 6.9\cdot10^{-49}\\ 3.1\cdot10^{-53}\\ 3.6\cdot10^{-115}\\ 1.6\cdot10^{-55} \end{array}$	$\begin{array}{c} -2.5 \cdot 10^{-48} \\ -8.9 \cdot 10^{-52} \\ -3.4 \cdot 10^{-77} \\ 1.4 \cdot 10^{-136} \\ -5.7 \cdot 10^{-49} \\ -2.5 \cdot 10^{-53} \\ -2.9 \cdot 10^{-115} \\ -1.3 \cdot 10^{-55} \end{array}$	$2.3 \cdot 10^{-24} \\ 1.2 \cdot 10^{-17} \\ 6.7 \cdot 10^{-26} \\ 7.4 \cdot 10^{-46} \\ 9.8 \cdot 10^{-17} \\ 3.6 \cdot 10^{-18} \\ 2.2 \cdot 10^{-38} \\ 7.4 \cdot 10^{-19} \\ \end{array}$
$F_{13} \\ f_6, x \\ F_1 \\ F_2 \\ F_3 \\ F_4 \\ F_5 \\ F_6 \\ F_7 \\ F_8 \\ F_9$	$ \begin{array}{c} 4 \\ 6 \\ 4 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	$\begin{array}{c} 3\\ .3 \ [1]\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\end{array}$	$\begin{array}{c} 3.0\cdot10^{-48}\\ 1.1\cdot10^{-51}\\ 4.1\cdot10^{-77}\\ 1.7\cdot10^{-136}\\ 6.9\cdot10^{-49}\\ 3.1\cdot10^{-53}\\ 3.6\cdot10^{-115}\\ 1.6\cdot10^{-55}\\ 6.5\cdot10^{-72} \end{array}$	$\begin{array}{r} -2.8 \cdot 10 & ^{-2} \\ -2.5 \cdot 10 & ^{-48} \\ -8.9 \cdot 10 & ^{-52} \\ -3.4 \cdot 10 & ^{-77} \\ 1.4 \cdot 10 & ^{-136} \\ -5.7 \cdot 10 & ^{-49} \\ -2.5 \cdot 10 & ^{-53} \\ -2.9 \cdot 10 & ^{-115} \\ -1.3 \cdot 10 & ^{-55} \\ -5.3 \cdot 10 & ^{-72} \end{array}$	$2.3 \cdot 10^{-24} \\ 1.2 \cdot 10^{-17} \\ 6.7 \cdot 10^{-26} \\ 7.4 \cdot 10^{-46} \\ 9.8 \cdot 10^{-17} \\ 3.6 \cdot 10^{-18} \\ 2.2 \cdot 10^{-38} \\ 7.4 \cdot 10^{-19} \\ 4.6 \cdot 10^{-24} \\ \end{array}$
$F_{13} \\ f_6, x \\ F_1 \\ F_2 \\ F_3 \\ F_4 \\ F_5 \\ F_6 \\ F_7 \\ F_8 \\ F_9 \\ F_{10}$	$ \begin{array}{c} 4 \\ 6 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	$ \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ $	$\begin{array}{c} 3.0\cdot10^{-48}\\ 1.1\cdot10^{-51}\\ 4.1\cdot10^{-77}\\ 1.7\cdot10^{-136}\\ 6.9\cdot10^{-49}\\ 3.1\cdot10^{-53}\\ 3.6\cdot10^{-115}\\ 1.6\cdot10^{-55}\\ 6.5\cdot10^{-72}\\ 4.3\cdot10^{-64} \end{array}$	$\begin{array}{r} -2.8 \cdot 10 & ^{52} \\ -2.5 \cdot 10 & ^{52} \\ -8.9 \cdot 10 & ^{52} \\ -3.4 \cdot 10 & ^{77} \\ 1.4 \cdot 10 & ^{136} \\ -5.7 \cdot 10 & ^{49} \\ -2.5 \cdot 10 & ^{53} \\ -2.9 \cdot 10 & ^{-115} \\ -1.3 \cdot 10 & ^{55} \\ -5.3 \cdot 10 & ^{72} \\ -3.5 \cdot 10 & ^{64} \end{array}$	$2.3 \cdot 10^{-24} \\ 1.2 \cdot 10^{-17} \\ 6.7 \cdot 10^{-26} \\ 7.4 \cdot 10^{-46} \\ 9.8 \cdot 10^{-17} \\ 3.6 \cdot 10^{-18} \\ 2.2 \cdot 10^{-38} \\ 7.4 \cdot 10^{-19} \\ 4.6 \cdot 10^{-24} \\ 1.1 \cdot 10^{-21} \\ \end{array}$
$F_{13} \\ f_6, x \\ F_1 \\ F_2 \\ F_3 \\ F_4 \\ F_5 \\ F_6 \\ F_7 \\ F_8 \\ F_9 \\ F_{10} \\ F_{11}$	$ \begin{array}{c} 4 \\ 6 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \end{array} $	$ \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ $	$\begin{array}{c} 3.0\cdot10^{-48}\\ 1.1\cdot10^{-51}\\ 4.1\cdot10^{-77}\\ 1.7\cdot10^{-136}\\ 6.9\cdot10^{-49}\\ 3.1\cdot10^{-53}\\ 3.6\cdot10^{-115}\\ 1.6\cdot10^{-55}\\ 6.5\cdot10^{-72}\\ 4.3\cdot10^{-64}\\ 3.9\cdot10^{-58} \end{array}$	$\begin{array}{r} -2.8 \cdot 10^{-48} \\ -8.9 \cdot 10^{-52} \\ -3.4 \cdot 10^{-77} \\ 1.4 \cdot 10^{-136} \\ -5.7 \cdot 10^{-49} \\ -2.5 \cdot 10^{-53} \\ -2.9 \cdot 10^{-115} \\ -1.3 \cdot 10^{-55} \\ -5.3 \cdot 10^{-72} \\ -3.5 \cdot 10^{-64} \\ -3.2 \cdot 10^{-58} \end{array}$	$2.3 \cdot 10^{-24} \\ 1.2 \cdot 10^{-17} \\ 6.7 \cdot 10^{-26} \\ 7.4 \cdot 10^{-46} \\ 9.8 \cdot 10^{-17} \\ 3.6 \cdot 10^{-18} \\ 2.2 \cdot 10^{-38} \\ 7.4 \cdot 10^{-19} \\ 4.6 \cdot 10^{-24} \\ 1.1 \cdot 10^{-21} \\ 1.0 \cdot 10^{-19} \\ \end{cases}$
$F_{13} \\ f_6, x \\ F_1 \\ F_2 \\ F_3 \\ F_4 \\ F_5 \\ F_6 \\ F_7 \\ F_8 \\ F_9 \\ F_{10} \\ F_{11} \\ F_{12}$	$ \begin{array}{c} 4 \\ 6 \\ 4 \\ 5 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	$ \begin{bmatrix} 3 \\ 2 \\ 3 \\$	$\begin{array}{c} 3.0\cdot10^{-48}\\ 1.1\cdot10^{-51}\\ 4.1\cdot10^{-77}\\ 1.7\cdot10^{-136}\\ 6.9\cdot10^{-49}\\ 3.1\cdot10^{-53}\\ 3.6\cdot10^{-115}\\ 1.6\cdot10^{-55}\\ 6.5\cdot10^{-72}\\ 4.3\cdot10^{-64}\\ 3.9\cdot10^{-58}\\ 3.6\cdot10^{-115} \end{array}$	$\begin{array}{r} -2.8 \cdot 10^{-48} \\ -8.9 \cdot 10^{-52} \\ -3.4 \cdot 10^{-77} \\ 1.4 \cdot 10^{-136} \\ -5.7 \cdot 10^{-49} \\ -2.5 \cdot 10^{-53} \\ -2.9 \cdot 10^{-115} \\ -1.3 \cdot 10^{-55} \\ -5.3 \cdot 10^{-72} \\ -3.5 \cdot 10^{-64} \\ -3.2 \cdot 10^{-58} \\ -2.9 \cdot 10^{-115} \end{array}$	$2.3 \cdot 10^{-24} \\ 1.2 \cdot 10^{-17} \\ 6.7 \cdot 10^{-26} \\ 7.4 \cdot 10^{-46} \\ 9.8 \cdot 10^{-17} \\ 3.6 \cdot 10^{-18} \\ 2.2 \cdot 10^{-38} \\ 7.4 \cdot 10^{-19} \\ 4.6 \cdot 10^{-24} \\ 1.1 \cdot 10^{-21} \\ 1.0 \cdot 10^{-19} \\ 2.2 \cdot 10^{-38} \\ \end{cases}$

Conclusions

In this paper we presented the family of third-order iterative methods. Some well known methods belong to this family, for example, Halley's method, Chebyshev's method and super-Halley method from [3, 5, 7]. The first method in our tables is the Newton's method. The test results in Table 1 show that the computed order of convergence of the presented iterative methods is three, which supports the theoretical result obtained in this paper.

References

- Chun, C., A method for obtaining iterative formulas of order three. Applied Mathematics Letters 20 (2007), 1103-1109.
- Chun, C., On the construction of iterative methods with at least cubic convergence. Math. Appl. Comput. 189 (2007), 1384-1392.

- [3] Chun, C., Some variants of Chebyshev-Halley methods free from second derivative. Applied Mathematics and Computation 191 (2007), 193-198.
- [4] Dennis, J. E., Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Non-linear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
- [5] Gutierrez, J. M., Hernandez, M. A., An acceleration of Newton's method: super-Halley method. Applied Mathematics and Computation 117 (2001), 223-239.
- [6] Homeier, H. H. H., On Newton-type methods with cubic convergence. Appl. Math. Comput. 176 (2005), 425–432.
- [7] Traub, J. F., Iterative Methods for the Solution of Equations, Englewood Cliffs, NJ: Prentice-Hall, 1964; New York: Chelsea, 1982.
- [8] Weerakoon, S., Fernando, G. I., A variant of Newton's method with accelerated thirdorder convergence. Appl. Math. Lett. 17 (2000), 87-93.

Received by the editors December 16, 2008