A METHOD FOR OBTAINING THIRD-ORDER ITERATIVE FORMULAS

Djordje Herceg ${ }^{[1]}$, Dragoslav Herceg ${ }^{[2]}$

Abstract

We present a method for constructing new third-order methods for solving nonlinear equations. These methods are modifications of Newton's method. Also, we obtain some known methods as special cases, for example, Halley's method, Chebyshev's method, super-Halley method. Several numerical examples are given to illustrate the performance of the presented methods.

AMS Mathematics Subject Classification (2000): 47A63,47A75
Key words and phrases: Nonlinear equations, Newton's method, Thirdorder method, Iterative methods

1. Introduction

In this paper we consider a family of iterative methods for finding a simple root α of nonlinear equation $f(x)=0$. We assume that f satisfies

$$
\begin{equation*}
f \in C^{3}[a, b], \quad f^{\prime}(x) \neq 0, \quad x \in[a, b], \quad f(a)>0>f(b) \tag{1}
\end{equation*}
$$

Under these assumptions the function f has a unique root $\alpha \in(a, b)$.
Newton's method is a well-known iterative method for computing approximation of α by using

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}, \quad k=0,1, \ldots
$$

for some appropriate starting value x_{0}. Newton's method quadratically converges in some neighborhood of α if $f^{\prime}(\alpha) \neq 0$, [4].

The classical Chebyshev-Halley methods which improve Newton's method are given by

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \cdot\left(1+\frac{t\left(x_{k}\right)}{2\left(1-\beta t\left(x_{k}\right)\right)}\right)
$$

[^0]where
\[

$$
\begin{equation*}
t(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}} \tag{2}
\end{equation*}
$$

\]

This family has third-order of convergence and includes Chebyshev's method $(\beta=0)$, Halley's method $\left(\beta=\frac{1}{2}\right)$ and super-Halley method $(\beta=1)$, see [3, 5, 7].

Newton's and Chebyshev-Halley methods belong to the class of one-point iteration methods without memory [7]

$$
\begin{equation*}
x_{k+1}=F\left(x_{k}\right) \tag{3}
\end{equation*}
$$

Here we consider the developing of third-order modifications of Newton's method. Using an iteration function of the form

$$
F(x)=x-\frac{f(x)}{f^{\prime}(x)} G(x),
$$

we obtain for a specific function G and some of its approximations iterative methods of the form (3), which are cubically convergent. Some known methods are members of our family of methods. So, our algorithm 2 is Chebyshev's method, our algorithm 5 is Halley's method, and our algorithm 6 is super-Halley method. Also, our algorithm 7 is

$$
x_{n+1}=x_{n}-\frac{2 f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)+f^{\prime}\left(x-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right)}
$$

from [8] and [2], and our algorithm 9 is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{2}\left(\frac{1}{f^{\prime}\left(x_{n}\right)}+\frac{}{f^{\prime}\left(x-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right)}\right)
$$

from [2] and 6]. The algorithm 1 is a class of algorithms depending on two parameters.

2. Main result

The crux of the present derivation is to obtain a specific function G and some of its approximations such that the special iteration function F

$$
\begin{equation*}
F(x)=x-\frac{f(x)}{f^{\prime}(x)} G(x) \tag{4}
\end{equation*}
$$

produces a sequence $\left\{x_{n}\right\}$ by (3) which is cubically convergent.
One can see that Newton's and Chebyshev-Halley iteration functions are special cases of (3) with

$$
G(x)=1
$$

and

$$
G(x)=1+\frac{t(x)}{2(1-\beta t(x))}
$$

respectively.
If we define

$$
\begin{equation*}
G(x)=\sqrt{\frac{f^{\prime}(x)}{f^{\prime}(\alpha)}} \tag{5}
\end{equation*}
$$

and F by (4) we obtain an iterative method of third-order. For our definition of the function G we need the knowledge of the zero α. Since the value of α is unknown, we can use appropriate approximations for G. In [1] another weight function h is considered. Namely,

$$
h(x)=1+\frac{1}{2} \ln \left(\left|\frac{f^{\prime}(x)}{f^{\prime}(\alpha)}\right|\right) .
$$

We shall consider three different possibilities for constructing the function G. Firstly, we approximate α in (5) only. In this way we obtain algorithm 1. The second possibility is to approximate G using Taylor or Padé expansion and after that to use some approximations for $\alpha, f^{\prime}(\alpha)$ and $f^{\prime \prime}(\alpha)$. In this way we construct algorithms 2-8. The third possibility is to approximate the square root in (5) and after that to approximate $f^{\prime}(\alpha)$. This way we obtain algorithms 9 and 10. Obviously, using similar approximations one can also obtain other new third-order iterative methods.

2.1. Algorithm 1. Approximations of α

We can use some quadratic approximation for α,

$$
\alpha \approx \varphi_{\beta, \gamma}(x)
$$

where φ_{β} is a suitable function depending on a real parameter β. For example, we can choose

$$
\begin{equation*}
\varphi_{\beta, \gamma}(x)=x-\frac{f(x)}{f^{\prime}(x-\beta f(x))+\gamma f(x)} \tag{6}
\end{equation*}
$$

One can see that for $\gamma=0$ and $\beta=1$ we have (7), for $\gamma=0$ and $\beta=0$ (8) and for $\gamma=0$ and $\beta=-1$ we obtain (9), which are given in [1], i.e.

$$
\begin{equation*}
\varphi_{1}(x)=x-\frac{f(x)}{f^{\prime}(x-f(x))} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{0}(x)=x-\frac{f(x)}{f^{\prime}(x)} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{-1}(x)=x-\frac{f(x)}{f^{\prime}(x+f(x))} \tag{9}
\end{equation*}
$$

Now we define for real parameter β

$$
G_{\beta, \gamma}(x)=\sqrt{\frac{f^{\prime}(x)}{f^{\prime}\left(\varphi_{\beta, \gamma}(x)\right)}}
$$

2.2. Approximation of G by using Taylor expansion

Using Taylor expansion from

$$
\sqrt{\frac{f^{\prime}(x)}{f^{\prime}(\alpha)}}
$$

we obtain

$$
\begin{equation*}
G(x) \approx 1+\frac{(x-\alpha) f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)} \tag{10}
\end{equation*}
$$

Using this approximation, we can obtain some new functions:

2.2.1. Algorithm 2. Chebyshev method

In (10) instead of $x-\alpha$ we use Newton's correction $\frac{f(x)}{f^{\prime}(x)}$ and approximate $f^{\prime}(\alpha)$ with $f^{\prime}(x)$ and approximate $f^{\prime \prime}(\alpha)$ with $f^{\prime \prime}(x)$. This way we obtain

$$
G_{C H}(x)=1+\frac{f(x) f^{\prime \prime}(x)}{2 f^{\prime}(x)^{2}}=1+\frac{t(x)}{2} .
$$

Iterative method (3) with $G_{C H}(x)$ and F defined by (4) becomes Chebysev's iterative method.

2.2.2. Algorithm 3.

In (10) instead of $x-\alpha$ we use Newton's correction $\frac{f(x)}{f^{\prime}(x)}$ and approximate $f^{\prime}(\alpha)$ with $f^{\prime}(x)$ and $f^{\prime \prime}(\alpha)$ is approximated with

$$
f^{\prime \prime}(\alpha) \approx \frac{f^{\prime}(x)-f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}{\frac{f(x)}{f^{\prime}(x)}} .
$$

So, we obtain

$$
G_{D 1}(x)=1+\frac{f^{\prime}(x)-f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}{2 f^{\prime}(x)} .
$$

2.2.3. Algorithm 4.

In (10) instead of $x-\alpha$ we use Newton's correction $\frac{f(x)}{f^{\prime}(x)}$ and approximate $f^{\prime}(\alpha)$ with

$$
f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)
$$

and approximate $f^{\prime \prime}(\alpha)$ with

$$
f^{\prime \prime}(\alpha) \approx \frac{f^{\prime}(x)-f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}{\frac{f(x)}{f^{\prime}(x)}}
$$

This way we obtain

$$
G_{D 2}(x)=1+\frac{f^{\prime}(x)-f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}{2 f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}=\frac{f^{\prime}(x)+f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}{2 f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}
$$

2.3. Approximation of G by using Padé expansion

Using Padé expansion from

$$
\sqrt{\frac{f^{\prime}(x)}{f^{\prime}(\alpha)}}
$$

we obtain

$$
\begin{equation*}
G(x) \approx \frac{1}{1-\frac{(x-\alpha) f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}} \tag{11}
\end{equation*}
$$

Using this approximation, we can obtain some new algorithms:

2.3.1. Algorithm 5. Halley's method

In (11) instead of $x-\alpha$ we use Newton's correction $\frac{f(x)}{f^{\prime}(x)}$ and approximate $f^{\prime}(\alpha)$ with $f^{\prime}(x)$ and $f^{\prime \prime}(\alpha)$ with $f^{\prime \prime}(x)$. In such way we obtain

$$
G_{H L}(x)=\frac{1}{1-\frac{\left(\frac{f(x)}{f^{\prime}(x)}\right) f^{\prime \prime}(x)}{2 f^{\prime}(x)}}=\frac{2}{2-t(x)} .
$$

Iterative method (3) with $G_{C H}(x)$ and F defined by (4) becomes Halley's iterative method.

2.3.2. Algorithm 6. Super-Halley method

In (11) instead of $x-\alpha$ we use Halley's correction

$$
\frac{f(x)}{f^{\prime}(x)} \frac{2}{2-t(x)}
$$

and approximate $f^{\prime}(\alpha)$ with $f^{\prime}(x)$ and $f^{\prime \prime}(\alpha)$ with $f^{\prime \prime}(x)$. This way we obtain super-Halley method.

$$
G_{S H}(x)=\frac{1}{1-\frac{\frac{f(x)}{f^{\prime}(x)} \frac{1}{1-\frac{t(x)}{2}} f^{\prime \prime}(x)}{2 f^{\prime}(x)}}=\frac{1}{1-\frac{t(x)}{2} \frac{1}{1-\frac{t(x)}{2}}}=\frac{1}{1-\frac{t(x)}{2-t(x)}}=\frac{2-t(x)}{2(1-t(x))}
$$

2.3.3. Algorithm 7.

In (11) instead of $x-\alpha$ we use Newton's correction $\frac{f(x)}{f^{\prime}(x)}$ and approximate $f^{\prime}(\alpha)$ with $f^{\prime}(x)$ and $f^{\prime \prime}(\alpha)$ with

$$
f^{\prime \prime}(\alpha) \approx \frac{f^{\prime}(x)-f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}{\frac{f(x)}{f^{\prime}(x)}}
$$

So, we obtain

$$
G_{D 3}(x)=\frac{2 f^{\prime}(x)}{f^{\prime}(x)+f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}
$$

Iterative method (3) with $G_{D 3}(x)$ and F defined by (4) is considered in [8] and [2].

$$
F(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{D 3}(x)
$$

2.3.4. Algorithm 8.

In (11) instead of $x-\alpha$ we use Newton's correction $\frac{f(x)}{f^{\prime}(x)}$, we approximate $f^{\prime}(\alpha)$ with

$$
f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)
$$

and $f^{\prime \prime}(\alpha)$ with

$$
f^{\prime \prime}(\alpha) \approx \frac{f^{\prime}(x)-f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}{\frac{f(x)}{f^{\prime}(x)}}
$$

Now, we have

$$
G_{D 4}(x)=\frac{-2 f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}{f^{\prime}(x)-3 f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}
$$

2.4. Approximation of G by using square root approximation

For approximating square root of a real number there are many different formulas. We shall use only two to demonstrate a way for obtaining some new iterative methods of form (3) with F given by (4) where G is replaced with $G_{H R}$ or $G_{L B}$.

2.4.1. Algorithm 9.

Using Heron's approximation of square root

$$
\sqrt{\frac{f^{\prime}(x)}{f^{\prime}(\alpha)}} \approx \frac{1}{2}\left(1+\frac{f^{\prime}(x)}{f^{\prime}(\alpha)}\right)
$$

and

$$
f^{\prime}(\alpha) \approx f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)
$$

we obtain

$$
G_{H R}(x)=\frac{1}{2}+\frac{f^{\prime}(x)}{2 f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}
$$

Iterative method (3) with $G_{H R}(x)$ and F defined by (4) is considered in 2 and [6].

2.4.2. Algorithm 10.

Using Lambert's approximation of square root, i.e.

$$
\sqrt{\frac{f^{\prime}(x)}{f^{\prime}(\alpha)}} \approx \frac{1+3 \frac{f^{\prime}(x)}{f^{\prime}(\alpha)}}{3+\frac{f^{\prime}(x)}{f^{\prime}(\alpha)}}=\frac{3 f^{\prime}(x)+f^{\prime}(\alpha)}{f^{\prime}(x)+3 f^{\prime}(\alpha)}
$$

and

$$
f^{\prime}(\alpha) \approx f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)
$$

we obtain

$$
G_{L B}(x)=\frac{3 f^{\prime}(x)+f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}{f^{\prime}(x)+3 f^{\prime}\left(x-\frac{f(x)}{f^{\prime}(x)}\right)}
$$

Let us consider the iterative procedure (3) where F is given by (4). Our conditions imply that f has exactly one root in (a, b).

Theorem 1. Let us assume that the function f is sufficiently smooth in a neighborhood of its simple root α and $f^{\prime}(\alpha) \neq 0$. Then the iterative method $x_{k+1}=F\left(x_{k}\right)$, where

$$
F(x)=x-\frac{f(x)}{f^{\prime}(x)} G(x)
$$

and function G is some of our functions $G_{\beta, \gamma}, G_{C H}, G_{H L}, G_{S H}, G_{H R}, G_{L B}$, $G_{D 1}, G_{D 2}, G_{D 3}, G_{D 4}$, converges cubically to the unique solution α of $f(x)=0$ in a neighborhood of α.

Proof. It is well known that the iterative method (3) is cubically convergent if

$$
F(\alpha)=\alpha, \quad F^{\prime}(\alpha)=F^{\prime \prime}(\alpha)=0, \quad F^{\prime \prime \prime}(\alpha) \neq 0
$$

Differentiating (4) we get

$$
F^{\prime}(x)=1-u^{\prime}(x) G(x)-u(x) G^{\prime}(x)
$$

and

$$
F^{\prime \prime}(x)=-u^{\prime \prime}(x) G(x)-2 u^{\prime}(x) G^{\prime}(x)-u(x) G^{\prime \prime}(x)
$$

where

$$
u(x)=\frac{f(x)}{f^{\prime}(x)}
$$

It is easy to see that for all our functions G it holds $G(\alpha)=1$. After simple calculations one can obtain that

$$
G^{\prime}(\alpha)=\frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}
$$

We have $u^{\prime}(x)=1-t(x)$, where t is defined by (2). It follows that $u(\alpha)=0$ and $u^{\prime}(\alpha)=1$.
Now, we can see that $F(\alpha)=\alpha$ and $F^{\prime}(\alpha)=0$. Since

$$
u^{\prime \prime}(\alpha)=-t^{\prime}(\alpha)=-\frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}
$$

and

$$
F^{\prime \prime}(\alpha)=\frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)} G(\alpha)-2 G^{\prime}(\alpha)=\frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)}-2 \frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}=0
$$

we conclude that

$$
F(\alpha)=\alpha, \quad F^{\prime}(\alpha)=F^{\prime \prime}(\alpha)=0
$$

which is sufficient to complete the proof.

3. Numerical examples

We present some numerical test results for our cubically convergent methods and the Newton's method. Methods with iteration functions F were compared, where

$$
F(x)=x-\frac{f(x)}{f^{\prime}(x)} G(x)
$$

and G is one of our functions $1, G_{\beta, \gamma}, G_{C H}, G_{H L}, G_{S H}, G_{H R}, G_{L B}, G_{D 1}, G_{D 2}$, $G_{D 3}, G_{D 4}$. So, we have the following 13 iterative functions:

$$
F_{1}(x)=x-\frac{f(x)}{f^{\prime}(x)},
$$

$$
\begin{gathered}
F_{2}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{\beta, \gamma}(x), \beta=1, \gamma=0, \\
F_{3}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{\beta, \gamma}(x), \beta=0, \gamma=0, \\
F_{4}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{\beta, \gamma}(x), \beta=-1, \gamma=0, \\
F_{5}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{C H}(x), \\
F_{6}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{D 1}(x) \\
F_{7}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{D 2}(x) \\
F_{8}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{H L}(x) \\
F_{9}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{S H}(x), \\
F_{10}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{D 3}(x) \\
F_{11}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{D 4}(x) \\
F_{12}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{H R}(x) \\
F_{13}(x)=x-\frac{f(x)}{f^{\prime}(x)} G_{L B}(x)
\end{gathered}
$$

The order of convergence COC can be approximed using the formula

$$
C O C \approx \frac{\ln \left|\left(x_{n+1}-\alpha\right) /\left(x_{n}-\alpha\right)\right|}{\ln \left|\left(x_{n}-\alpha\right) /\left(x_{n-1}-\alpha\right)\right|}
$$

All computations were performed in Mathematica 6.0. When SetPrecision is used to increase the precision of a number, we can choose number prec of digits in floating point arithmetics. In our tables we give the value of prec. We use the following stopping criteria in our calculations: $\left|x_{k}-\alpha\right|<\varepsilon$ and $\left|f\left(x_{k}\right)\right|<\varepsilon$, where α is exact solution of considered equation. With it we denote number of iteration steps. For numerical illustrations in this section we used the fixed stopping criteria $\varepsilon=10^{-15}$ andprec $=1000$.

We present some numerical test results for our iterative methods in Table 1. We used the following functions:

$$
f_{1}(x)=\sin x-\frac{1}{2}, \quad \alpha_{1} * \approx 0.5235987755982988731
$$

$$
\begin{gathered}
f_{2}(x)=x^{3}-10, \quad \alpha_{2} * \approx 2.1544346900318837218, \\
f_{3}(x)=e^{x}-x^{2}, \quad \alpha_{3} * \approx 0.9100075724887090607 \\
f_{4}(x)=x^{3}+4 x^{2}-10, \quad \alpha_{4} * \approx 1.3652300134140968458, \\
f_{5}(x)=(x-1)^{3}-1, \quad \alpha_{5}=2 \\
f_{6}(x)=\sin x-\frac{x}{2}, \quad \alpha_{6} * \approx 1.8954942670339809471
\end{gathered}
$$

We also display the approximation $\alpha *$ of exact root α for each equation. $\alpha *$ is calculated with precision $p r e c$, but only 20 digits are displayed.

As a convergence criterion it was required that distance of two consecutive approximations δ for the zero be less than 10^{-15}. Also displayed are the number of iterations to approximate root ($i t$), the computational order of convergence (COC), the value $f\left(x_{i t}\right)$ and $\left|x_{i t}-\alpha\right|$.

Table 1: Numerical results

IT					COC
$f_{1}, x_{0}=0.05$		$f x_{*}$	$f\left(x_{*}\right)$	δ	
F_{1}	5	2	$3.6 \cdot 10^{-35}$	$-3.1 \cdot 10^{-35}$	$1.1 \cdot 10^{-17}$
F_{2}	4	3	$1.2 \cdot 10^{-58}$	$-1.0 \cdot 10^{-58}$	$8.7 \cdot 10^{-20}$
F_{3}	4	3	$1.3 \cdot 10^{-76}$	$-1.1 \cdot 10^{-76}$	$1.5 \cdot 10^{-25}$
F_{4}	4	3	$8.9 \cdot 10^{-65}$	$7.7 \cdot 10^{-65}$	$9.5 \cdot 10^{-22}$
F_{5}	4	3	$3.1 \cdot 10^{-24}$	$-2.7 \cdot 10^{-54}$	$2.1 \cdot 10^{-18}$
F_{6}	4	3	$2.4 \cdot 10^{-78}$	$2.1 \cdot 10^{-78}$	$3.1 \cdot 10^{-26}$
F_{7}	4	3	$4.3 \cdot 10^{-71}$	$-3.7 \cdot 10^{-71}$	$8.0 \cdot 10^{-24}$
F_{8}	4	3	$8.0 \cdot 10^{-56}$	$-7.0 \cdot 10^{-56}$	$6.9 \cdot 10^{-19}$
F_{9}	4	3	$5.0 \cdot 10^{-58}$	$-4.3 \cdot 10^{-58}$	$1.4 \cdot 10^{-19}$
F_{10}	4	4	$2.0 \cdot 10^{-158}$	$1.7 \cdot 10^{-158}$	$5.9 \cdot 10^{-40}$
F_{11}	4	3	$3.3 \cdot 10^{-64}$	$-2.8 \cdot 10^{-64}$	$1.3 \cdot 10^{-21}$
F_{12}	4	3	$1.2 \cdot 10^{-76}$	$-1.0 \cdot 10^{-76}$	$1.4 \cdot 10^{-25}$
$f_{1}, x_{0}=1.0$					
F_{1}	6	2	$2.8 \cdot 10^{-45}$	$-2.4 \cdot 10^{-45}$	$9.8 \cdot 10^{-23}$
F_{2}	4	3	$1.5 \cdot 10^{-51}$	$1.3 \cdot 10^{-51}$	$2.0 \cdot 10^{-17}$
F_{3}	4	3	$6.2 \cdot 10^{-82}$	$5.4 .10^{-82}$	$2.5 \cdot 10^{-27}$
F_{4}	4	3	$5.1 \cdot 10^{-60}$	$-4.5 \cdot 10^{-60}$	$3.7 \cdot 10^{-20}$
F_{5}	5	3	$6.9 \cdot 10^{-81}$	$5.9 \cdot 10^{-81}$	$2.7 \cdot 10^{-27}$
F_{6}	5	3	$5.1 \cdot 10^{-131}$	$4.4 \cdot 10^{-131}$	$8.5 \cdot 10^{-44}$
F_{7}	4	3	$2.7 \cdot 10^{-59}$	$2.4 \cdot 10^{-59}$	$7.0 \cdot 10^{-20}$
F_{8}	5	3	$1.7 \cdot 10^{-127}$	$1.4 \cdot 10^{-127}$	$8.7 \cdot 10^{-43}$
F_{9}	4	3	$3.3 \cdot 10^{-90}$	$2.9 \cdot 10^{-90}$	$2.7 \cdot 10^{-30}$
F_{10}	4	4	$7.0 \cdot 10^{-138}$	$6.1 \cdot 10^{-138}$	$8.0 \cdot 10^{-35}$
F_{11}	4	3	$2.7 \cdot 10^{-47}$	$2.3 \cdot 10^{-47}$	$5.4 \cdot 10^{-16}$
F_{12}	4	3	$2.8 \cdot 10^{-59}$	$2.4 \cdot 10^{-59}$	$7.0 \cdot 10^{-20}$
F_{13}	4	3	$6.4 \cdot 10^{-77}$	$5.5 \cdot 10^{-77}$	$1.2 \cdot 10^{-25}$

$f_{2}, x_{0}=2.2$

F_{1},	8	2	$5.0 \cdot 10^{-216}$	$4.1 \cdot 10^{-216}$	$2.9 \cdot 10^{-108}$
F_{1}	6	3	$7.9 \cdot 10^{-520}$	$-6.5 \cdot 10^{-520}$	$1.1 \cdot 10^{-173}$
F_{2}	6	$3.2 \cdot 10^{-757}$	$-1.8 \cdot 10^{-757}$	$1.2 \cdot 10^{-252}$	
F_{3}	6	3	$2.2 \cdot 0^{-506}$	$-1.6 \cdot 10^{-506}$	$3.6 \cdot 10^{-169}$
F_{4}	6	3	$1.9 \cdot 10^{-503}$	$-2.7 \cdot 10^{-503}$	$3.5 \cdot 10^{-168}$
F_{5}	6	3	$3.3 \cdot 10^{-537}$		
F_{6}	6	3	$2.0 \cdot 10^{-537}$	$-1.7 \cdot 10^{-537}$	$1.5 \cdot 10^{-179}$
F_{7}	5	3	$2.0 \cdot 10^{-370}$	$1.6 \cdot 10^{-370}$	$1.8 \cdot 10^{-123}$
F_{8}	6	3	$4.4 \cdot 10^{-571}$	$-3.6 \cdot 10^{-571}$	$1.0 \cdot 10^{-190}$
F_{9}	6	3	$5.7 \cdot 10^{-742}$	$-4.6 \cdot 10^{-742}$	$2.1 \cdot 10^{-247}$
F_{10}	6	3	$8.9 \cdot 10^{-639}$	$-7.3 \cdot 10^{-639}$	$3.1 \cdot 10^{-213}$
F_{11}	6	3	$2.2 \cdot 10^{-592}$	$-1.8 \cdot 10^{-592}$	$8.5 \cdot 10^{-198}$
F_{12}	5	3	$2.0 \cdot 10^{-370}$	$1.6 \cdot 10^{-370}$	$1.8 \cdot 10^{-123}$
F_{13}	6	3	$9.6 \cdot 10^{-751}$	$-7.9 \cdot 10^{-751}$	$1.9 \cdot 10^{-250}$

$f_{3}, x_{0}=1.27$

F_{1}	6	2	$2.3 \cdot 10^{-51}$	$-6.8 \cdot 10^{-51}$	$6.2 \cdot 10^{-26}$
F_{2}	5	3	$1.0 \cdot 10^{-90}$	$3.0 \cdot 10^{-90}$	$7.7 \cdot 10^{-31}$
F_{3}	4	3	$6.5 \cdot 10^{-89}$	$-1.9 \cdot 10^{-88}$	$8.5 \cdot 10^{-30}$
F_{4}	5	3	$1.9 \cdot 10^{-131}$	$5.7 \cdot 10^{-131}$	$2.1 \cdot 10^{-44}$
F_{5}	4	3	$7.4 \cdot 10^{-51}$	$-2.2 \cdot 10^{-50}$	$2.1 \cdot 10^{-17}$
F_{6}	4	3	$2.0 \cdot 10^{-58}$	$-6.1 \cdot 10^{-58}$	$6.9 \cdot 10^{-20}$
F_{7}	4	3	$1.0 \cdot 10^{-92}$	$-3.0 \cdot 10^{-92}$	$5.3 \cdot 10^{-31}$
F_{8}	4	3	$1.9 \cdot 10^{-56}$	$-5.7 \cdot 10^{-56}$	$3.4 \cdot 10^{-19}$
F_{9}	4	3	$9.5 \cdot 10^{-68}$	$-2.8 \cdot 10^{-67}$	$8.8 \cdot 10^{-23}$
F_{10}	4	3	$4.3 \cdot 10^{-71}$	$-1.3 \cdot 10^{-70}$	$5.4 \cdot 10^{-24}$
F_{11}	4	3	$3.7 \cdot 10^{-60}$	$-1.1 \cdot 10^{-59}$	$2.1 \cdot 10^{-20}$
F_{12}	4	3	$1.0 \cdot 10^{-92}$	$-3.0 \cdot 10^{-92}$	$5.3 \cdot 10^{-31}$
F_{13}	4	3	$1.4 \cdot 10^{-87}$	$-4.2 \cdot 10^{-87}$	$2.4 \cdot 10^{-29}$

$f_{4}, x_{0}=1.8[1]$					
F_{1}	5	2	$1.6 \cdot 10^{-42}$	$2.7 \cdot 10^{-41}$	$1.8 \cdot 10^{-21}$
F_{2}	4	3	$8.9 \cdot 10^{-57}$	$-1.5 \cdot 10^{-55}$	$1.0 \cdot 10^{-19}$
F_{3}	4	3	$1.8 \cdot 10^{-115}$	$-2.9 \cdot 10^{-114}$	$1.1 \cdot 10^{-38}$
F_{4}	5	3	$3.4 \cdot 10^{-53}$	$5.7 \cdot 10^{-52}$	$1.6 \cdot 10^{-18}$
F_{5}	4	3	$1.5 \cdot 10^{-96}$	$-2.4 \cdot 10^{-95}$	$1.5 \cdot 10^{-32}$
F_{6}	4	3	$5.4 \cdot 10^{-93}$	$-8.9 \cdot 10^{-92}$	$2.2 \cdot 10^{-31}$
F_{7}	3	3	$2.7 \cdot 10^{-49}$	$-4.4 \cdot 10^{-48}$	$2.1 \cdot 10^{-16}$
F_{8}	4	3	$3.7 \cdot 10^{-112}$	$-6.2 \cdot 10^{-111}$	$1.3 \cdot 10^{-37}$
F_{9}	4	3	$5.4 \cdot 10^{-130}$	$-9.0 \cdot 10^{-129}$	$2.1 \cdot 10^{-43}$
F_{10}	4	3	$7.3 \cdot 10^{-105}$	$-1.2 \cdot 10^{-103}$	$3.0 \cdot 10^{-35}$
F_{11}	4	3	$2.3 \cdot 10^{-109}$	$-3.8 \cdot 10^{-108}$	$1.0 \cdot 10^{-36}$
F_{12}	3	3	$2.7 \cdot 10^{-49}$	$-4.4 \cdot 10^{-48}$	$2.1 \cdot 10^{-16}$
F_{13}	4	3	$9.8 \cdot 10^{-116}$	$-1.6 \cdot 10^{-114}$	$8.7 \cdot 10^{-39}$

Conclusions

In this paper we presented the family of third-order iterative methods. Some well known methods belong to this family, for example, Halley's method, Chebyshev's method and super-Halley method from [3, 5, 7. The first method in our tables is the Newton's method. The test results in Table 1 show that the computed order of convergence of the presented iterative methods is three, which supports the theoretical result obtained in this paper.

References

[1] Chun, C., A method for obtaining iterative formulas of order three. Applied Mathematics Letters 20 (2007), 1103-1109.
[2] Chun, C., On the construction of iterative methods with at least cubic convergence. Math. Appl. Comput. 189 (2007), 1384-1392.
[3] Chun, C., Some variants of Chebyshev-Halley methods free from second derivative. Applied Mathematics and Computation 191 (2007), 193-198.
[4] Dennis, J. E., Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Non-linear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
[5] Gutierrez, J. M., Hernandez, M. A., An acceleration of Newton's method: superHalley method. Applied Mathematics and Computation 117 (2001), 223-239.
[6] Homeier, H. H. H., On Newton-type methods with cubic convergence. Appl. Math. Comput. 176 (2005), 425-432.
[7] Traub, J. F., Iterative Methods for the Solution of Equations, Englewood Cliffs, NJ: Prentice-Hall, 1964; New York: Chelsea, 1982.
[8] Weerakoon, S., Fernando, G. I., A variant of Newton's method with accelerated thirdorder convergence. Appl. Math. Lett. 17 (2000), 87-93.

Received by the editors December 16, 2008

[^0]: This paper is a part of the scientific research project no. 144006, supported by the Ministry of Science and Technological Development, Republic of Serbia
 ${ }^{1}$ Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: herceg@im.ns.ac.yu
 ${ }^{2}$ Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: hercegd@im.ns.ac.yu

