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FUNDAMENTAL THEOREMS OF ANALYSIS IN
FORMALLY REAL FIELDS
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Abstract. The theory of real closed fields admits elimination of quan-
tifiers, therefore fundamental theorems of analysis hold for all definable
functions in all real closed fields. We consider the opposite problem: If we
assume that in a formally real field some fundamental theorem of analysis
holds, would the formally real field be actually real closed?
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1. Introduction

It is proved in [1] that the theory of really closed fields is submodel com-
plete, therefore this theory admits elimination of quantifiers (A. Tarski). This
implies that all real closed fields are elementarily equivalent. Therefore, every
differential property of definable functions that can be expressed in the first-
order predicate calculus, which is true in the field of real numbers, is also true
in all real closed fields. In this paper we shall consider the opposite problem:
Assuming that in a formally real field some fundamental theorem of analysis
holds, would the formally real field be actually real closed?

First, we review some notion and notation from model theory taken from [2]
and theory of formally real fields. A field F is formally real if −1 is not a sum of
squares, or equivalently, F admits an ordering which makes F an ordered field.
The examples include all real number fields: rational numbers Q, real numbers
R, real algebraic numbers A ∩R (A is the field of algebraic numbers) and the
field of rational expressions F(x) over a formally real field F. A field F is real
closed if it is formally real with no proper formally real algebraic extensions.
We remind that every formally real field is contained in a real closed field. The
examples of real closed fields are R and A ∩R

Let ∆A be the diagram of a model A. A theory T is submodel complete if
T ∪∆A is complete for every substructure A of a model of T . The next theorem
characterizes first-order theories which admit elimination of quantifiers.

Theorem 1.1. (A. Robinson, L. Blum ) Let T be a theory in the language L.
Then the following conditions are equivalent.
1. T is submodel complete, i.e. if B and C are models of T and A is a submodel
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of B and C, then B and C are elementary equivalent over A.
2. T admits elimination of quantifiers.

Theorem 1.2. (A. Tarski) Theory RCF (Real Closed Fields) admits elimina-
tion of quantifiers.

Colorallary 1.1. Theory RCF is submodel complete.

2. Fundamental theorems of analysis in formally real fields

In this section we shall consider the status of fundamental theorems of differ-
ential calculus in formally real fields. Namely, assuming that such a theorem is
true in a formally real field F, then what are the properties of F? The following
theorem, see [3], is a typical statement of this kind.

Theorem 2.1. (D. Marker) An ordered field F is real closed iff whenever p(x) ∈
F[X] change the sign on the interval (a,b), a, b ∈ F , then there is c ∈ F such
that a < c < b and p(c) = 0.

Now we list some fundamental theorems of analysis (or, precisely, funda-
mental theorems of differential calculus). All of them have natural formulation
in the first order predicate calculus if they are restricted to definable functions.

Theorem 2.2. (Fermat) Let f be a function that is continous on [a, b], differ-
entiable on (a, b), and suppose that f has local extremum at the point c ∈ (a, b).
Then f ′(c) = 0.

Theorem 2.3. (Rolle) Let f be a function that is continuous on [a, b], differen-
tiable on (a, b) and suppose that f(a) = f(b). Then there exists c ∈ (a, b) such
that f ′(c) = 0.

Theorem 2.4. (Lagrange) Let f be a function that is continous on na [a, b] and
differentiable on (a, b). Then there exists c ∈ (a, b) such that f(b)−f(a)

b−a = f ′(c).

Theorem 2.5. (Cauchy) Let f and g be functions continous on [a, b], differen-
tiable on (a, b) and suppose that g′(x) 6= 0 on (a, b). Then, there exists c ∈ (a, b)
such that

f(b)−f(a)
g(b)−g(a) = f ′(c)

g′(c) .

Theorem 2.6. (Darboux) Let f be a function differentiable on [a, b] and let
f ′(a) < z < f ′(b). Then, there exists c ∈ (a, b) such that z = f ′(c).

Theorem 2.7. (Bolzano-Cauchy) Let f be a function continous on [a, b] and
let min{f(a), f(b)} < z < max{f(a), f(b)}. Then there exists c ∈ (a, b) such
that z = f(c).

It is not difficult to show that if f and g are definable functions, then each
of these theorems can be represented by a first order formula. For example, we
prove that this statement for Rolle’s theorem:
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Since f is definable, there is a formula ϕ(x, y, b) that defines ”f(x) = y”.
Also, since |x| < a iff −a < x < a , ”|f(x) − f(s)| < ε” there is a formula
ψ(x, s, ε, c) that defines it. So, the following sentences can be written as first-
order formulas:

Let N(f, s) mean ”f is continuous at the point s ”. Then, N(f, s) can be
written as: ∀ε∃δ∀x (ε > 0 ⇒ (δ > 0 ∧ (|x− s| < δ ⇒ |f(x)− f(s)| < ε))).

Let N(f, a, b) mean ”f is continuous on [a, b]” Then, N(f, a, b) can be written
as: ∀s(a ≤ s ≤ b ⇒ N(f, s)).

Let L(f, x, d) mean: limh→0
f(x+h)−f(x)

h = d . L(f, x, d) can be written by
the formula: ∀ε∃δ∀h (ε > 0 ⇒ (δ > 0 ∧ (0 < h < δ ⇒ | f(x+h)−f(x)

h − d| < ε))).
Let D(f, a, b) mean: ”f is differentiable on (a, b)”. Then, D(f, a, b) can be

written: ∀x(a ≤ x ≤ b ⇒ ∃dL(f, x, d)).
Now, we can write Rolle’s theorem as:
(N(f, a, b) ∧D(f, a, b) ∧ f(a) = f(b)) ⇒ ∃c(a < c < b ∧ L(f, c, 0))

As a consequence of Tarski quantifier elimination Theorem, we can define
the transfer principle which enables transfer of all first-order properties from R
to any real closed field.

The transfer principle for real closed fields. If R and F are real closed
fields, R ⊆ F then R ≺ F, i.e. if R ⊆ F, ϕ is a first-order formula in the
language RCF ∪∆R and µ a valuation over R, then R |= ϕ[µ] iff F |= ϕ[µ]

Applying the transfer principle and the fact that any fundamental theorem
of analysis can be written as first-order formulas we conclude: Fundamental
theorems of analysis hold for all definable functions in all real closed fields.

3. Formally real fields with Rolle’s theorem

Now we shall consider the opposite problem: Assuming that in a formally
real field a fundamental theorem of analysis holds, would the formally real field
be actually real closed? It can easily be proved, using Theorem 1 that if F is
formally real field with Bolzano-Cauchy theorem then F is real closed. We are
focusing here on Rolle’s theorem.

There are different ways for the formulation of this problem. We can assume
that Rolle’s theorem holds for:

1. Polynomials,
2. Rational functions.
In this paper we consider the case 1. Let F be a formally real field where

Rolle’s theorem holds for polynomials. We shall not prove that F is real closed,
but we prove that certain polynomials have roots in F.

Lemma 3.1. For every n ∈ N, n
√

n + 1 ∈ F.

Proof. We can elementary prove Lagrange’s theorem using Rolle’s theorem
(observing the polynomial q(x) = p(x)− p(b)−p(a)

b−a (x− a)).
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Let α ∈ F, α > 0. Let us observe the polynomial p(x) = xn+1.
Then, for some ε ∈ (0, α):
αn+1−0n+1

α−0 = (n + 1)εn, αn = (n + 1)εn, (α
ε )n = n + 1.

Hence, α
ε = n

√
n + 1. 2

Lemma 3.2. For every n, k ∈ N, n
√

nk + 1 ∈ F.

Proof. According to previous lemma, for any n ∈ N n
√

n + 1 ∈ F. Hence, for
n,k ∈ N, nk

√
nk + 1 ∈ F. Let c be a solution of the equation xnk = nk+1. Then

(ck)n = nk+1, so ck is a solution of the equation xn = nk+1, ie. ck = n
√

nk + 1

Lemma 3.3. Let α, n ∈ N. Then there exist a and b such that

an + an−1b + an−2b2 + . . . + a2bn−2 + abn−1 + bn = α

iff the equation xn = α has a solution.

Proof. Let us consider the polynomial p(x) = xn+1 − (n + 1)αx. Applying
Rolle’s theorem we have: if there are a and b such that p(a) = p(b), then, there
exists c ∈ (a, b) such that p′(c) = 0, i.e. (n + 1)(cn − α) = 0.

p(a) = p(b) iff
an+1 − (n + 1)αa = bn+1 − (n + 1)αb iff
an+1 − bn+1 = (n + 1)α(a− b) iff
(a− b)(an + an−1b + an−2b2 + . . . + a2bn−2 + abn−1 + bn − (n + 1)α) = 0 iff
an + an−1b + an−2b2 + . . . + a2bn−2 + abn−1 + bn − (n + 1)α = 0
Putting: a1 = a

n
√

n+1
, b1 = b

n
√

n+1
last equation becomes:

an
1 + an−1

1 b1 + an−2
1 b2

1 + . . . + a2
1b

n−2
1 + a1b

n−1
1 + bn

1 = α 2

Lemma 3.4. If α ∈ N, 2 ≤ n ≤ 6 then n
√

α ∈ F.

Proof. For example, we will prove this theorem for n = 5. There are following
cases:

1. α = 5k + 1. Then by Lemma 3.2, 5
√

α ∈ F

2. α = 5k + 2. Then 3α = 15k + 6 = 5(3k + 1) + 1, so 5
√

3α ∈ F. Therefore,
if 5
√

3 ∈ F then, for every k, 5
√

5k + 2 ∈ F

3. α = 5k + 3. Then 2α = 10k + 6 = 5(2k + 1) + 1, so 5
√

2α ∈ F. Therefore,
if 5
√

2 ∈ F then, for every k 5
√

5k + 3 ∈ F.

4. α = 5k + 4. Then 4α = 20k + 16 = 5(4k + 3) + 1, so 5
√

4α ∈ F. Therefore,
if 5
√

4 ∈ F then, for every k 5
√

5k + 4 ∈ F. 5
√

4 = ( 5
√

2)2, so it suffices to
prove that 5

√
2 ∈ F.

5. α = 5k. Let k = 5mk1, where 5 is not a divisor of k1. Then α = αm+1k1

so 5
√

α = ( 5
√

5)m1 5
√

k1. 5
√

k1 ∈ F if any of cases 1 − 4 holds, so it suffices
to prove that 5

√
5 ∈ F.
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By Lemma 3.1, 5
√

6 ∈ F, so it is sufficient to prove that 5
√

5 ∈ F and ( 5
√

2 ∈ F
or 5
√

3) ∈ F. Hence, we are solving the next equation:
a5 + a4b + a3b2 + a2b3 + ab4 + b5 = α.
Using elementary algebraic transformations we have:
a5 + a4b + a3b2 + a2b3 + ab4 + b5 = α
a4(a + b) + b4(a + b) + a2b2(a + b) = α
(a + b)(a4 + a2b2 + b4) = α
Let a + b = x, a4 + a2b2 + b4 = α

x
Then:
a4 + a2(x− a)2 + (x− a)4 = α

x
a4 + a2(x2 − 2ax + a2) + x4 − 4ax3 + 6a2x2 − 4a3x + a4 = α

x
a4 + a2x2 − 2a3x + a4 + x4 − 4ax3 + 6a2x2 − 4a3x + a4 = α

x
3a4 − 6a3x + 7a2x2 − 4ax3 + x4 = α

x

a2(3a2 − 6ax + 7x2 − 4x3

a + x4

a2 ) = α
x

a2(3a2 + x4

a2 − (6ax + 4x3

a ) + 7x2) = α
x

a2(3a2 + x4

a2 − 2x
√

3(
√

3a + 2x2√
3a

) + 7x2) = α
x

a2(t2 − x4

3a2 − 4x2 − 2x
√

3t + 7x2) = α
x , where t =

√
3a + 2x2√

3a

a2(t2 − 2x
√

3t + 3x2 − x4

3a2 ) = α
x

a2((t− x
√

3)2 − x4

3a2 ) = α
x

(a(t− x
√

3))2 − x4

3 = α
x

(a(t− x
√

3))2 = α
x + x4

3

a(t− x
√

3) = ±
√

α
x + x4

3

Let a(t− x
√

3) =
√

α
x + x4

3

a(
√

3a + 2x2√
3a
− x

√
3) =

√
α
x + x4

3√
3a2 − a

√
3x + 2x2√

3
=

√
α
x + x4

3√
3a2 − a

√
3x + 2x2√

3
=

√
3α+x5

3x

Multiplying both sides of the equation by
√

3 we have:

3a2 − 3ax + 2x2 =
√

3α+x5

x

So, solving the quadratic equation

3a2 − 3ax + 2x2 −
√

3α+x5

x = 0

we get : a1/2 =
3x±

√
12

√
3α+x2

x −15x2

6 (∗)
1. Let x = 1, α = 5. Putting these values in the equation (∗) we get a =

3±√33
6 . Let a = 3+

√
33

6 . Then b = 3−√33
6 . So, 5

√
5 ∈ F .

2. Let x = 2, α = 22. Putting these values in the equation (∗) we get
a = 6±2

√
6

6 . Let a = 6+2
√

6
6 . Then b = 6−2

√
6

6 . so, 5
√

22 ∈ F . Also,
5
√

11 ∈ F since 11 = 5 · 2 + 1 therefore 5
√

2 ∈ F . 2
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Using similar methods we can prove that the field F contains the quadratic
field over the positive rational numbers, i.e. if Q2 = Q[

√
2,
√

3 . . .] then:

Theorem 3.1. Q2 ⊆ S.

The last result is about existence of root of the polynomial degree 3.

Theorem 3.2. Let f(x) = x3 +f2x
2 +f1x+f0 ∈ Q[x]. Then there exists a ∈ F

such that f(a) = 0 whenever any of these conditions holds:
1. f0 · f2 < 0
2. f1 < 0

Proof. Let us observe the polynomial q(x) = x4

4 + f2x3

3 + f1x2

2 + f0x. We
apply Lagrange’s theorem on this polynomial, ie., for any a ∈ F there exists
−a < ε < a such that q(a)−q(−a)

2a = q′(ε). Since q′ = f , counting the left side of
the equation we have:

f2a2

3 + f0 = ε3 + f2ε
2 + f1ε + f0 ie.

ε3 + f2ε
2 + f1ε− f2a2

3 = 0
Putting a2 = − 3f0

f2
we have that ε is the solution of the equation x3 +f2x

2 +
f1x + f0 = 0. Since f0, f2 ∈ Q, such a exists whenever f0 · f2 < 0.

Putting a2 = − 3f0
f2

we have that ε is the solution of the equation x3 +f2x
2 +

f1x + f0 = 0. Since f0, f2 ∈ Q, such a exists whenever f0 · f2 < 0.
Putting x = − 1

y in equation x3 + f2x
2 + f1x + f0 = 0 we get equation

f0y
3 − f1y

2 + f2y − 1 = 0. Let q(y) = f0y4

4 − f1y3

3 + f2y2

2 − y. Then
q(a)−q(−a)

2a = f0ε
3 − f1ε

2 + f2ε− 1 i.e. − f1a2

3 − 1 = f0ε
3 − f1ε

2 + f2ε− 1
f0ε

3 − f1ε
2 + f2ε + f1a2

3 = 0.
So, for a2 = − 3

f1
, ε is the solution. Such a exists when f1 < 0. 2
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