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AN EXTENSION OF STOLARSKY MEANS
Slavko Simidl

Abstract. In this article we give an extension of the well known Sto-
larsky means to the multi-variable case in a simple and applicable way.
Some basic inequalities concerning this matter are also established with
applications in Analysis and Probability Theory.
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1. Introduction

1.1.

There is a huge number of papers (cf. [2], [B], [6], [7], [8]) investigating
properties of the so-called Stolarsky (or extended) two-parametric mean value,
defined for positive values of z,y by the following

(g \ L/ (57T)
(75@7%) , rs(r—s) #0
exp(—1 + £lomslonn) = 52
E B (Qf,y) = z°—y° 1/s
" (s(logxf{ogy)) ’ 8 7é 0,r=0
/Ty, r=s=20,
x, x=1y>0.

In this form it is introduced by Keneth Stolarsky in [1].
Most of the classical two variable means are special cases of the class F.

For example, F1 o = % is the arithmetic mean, Fy o = v/zy is the geometric
mean, Eo; = = is the logarithmic mean, Ey; = (2% /y¥) 77 /e is the

NG|
identric mean, etc. More generally, the r-th power mean (L;yr) " is equal to
Er,27‘-
Recently, several papers have been produced trying to define an extension
of the class F to n, n > 2 variables. Unfortunately, this is done in a highly
artificial mode (cf. [], [5], [9]), without a practical background. Here is an
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illustration of this point; recently J. Merikowski ([9]) has proposed the following
generalization of the Stolarsky mean E, ; to several variables

L(X%)
E,.s(X):= |: i| ) )
=[] s
where X = (21, - ,x,) is an n-tuple of positive numbers and

L(X?):= (nfl)!/ Hzfuidu1~~~dun_1.
E

n—1;—1
The symbol E, 1 stands for the Euclidean simplex which is defined by
E’I’L—l = {(ula"' ?un—l):ui 2071 SZSTL—17 Uy + -+ Uy S 1}

In this paper we give another attempt to generalize Stolarsky means to the
multi-variable case in a simple and applicable way. The proposed task can be
accomplished by founding a ”weighted” variant of the class F, wherefrom the
mentioned generalization follows naturally.

In the sequel we shall need notions of the weighted geometric mean G =
G(p,q; x,y) and weighted r-th power mean S, = S,(p, g; z,y), defined by

G :=aPy?; S, := (pz" +qy")V",
where
p,q;x,y € RY; p+q=1; r € R/{0}.
Note that (S,)" > (G)" for x # y, r # 0 and lim,_¢ S, = G.
1.2.

We introduce here a class W of weighted two parameters means which
includes the Stolarsky class E as a particular case. Namely, for p,q,z,y €
Ri,p+q=1rs(r—s)(x—y)#0, we define

r M) = _ (ﬁ px® + qy® — aPy® ) =

W =W, s(p, q; @, =\=Z -
)= (G (S = (G)r s* pr” + qy” — Py

Various identities concerning the means W can be established; some of them
are the following

Wis(p, a; 2, y) = W (p, g5 2, )
Wrs(p a3z, y) = Wes(a, 039, 2); Wos(p, @y 2) = 2yWo s (p, gzt y ™)
Waras(0: @ 2, y) = (Wrs(p, 2%, y")) "7, a # 0.
Note that

r? 2? +y? — 2(/zy)?* ) 1/2(s—7)

W2r,23<1/27 1/2;5(:; y) = (?IQT + er — 2(\/@)27«
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B <r2 (2 — y5)2)1/2(8—r) _
- 52 (w’!“ _ yT)2
Hence £ C W.

The weighted means from the class W can be extended continuously to the
domain

D ={(r,s,z,y)|r,s € R, z,y € Ry}

This extension is given by

s s ps,qs\L/(8—T)
(mrtm =), st = s)(@—y) £0

s2 px”+qyT —xPTyI”
Syt —areyre\ 1/
(2 pgs?log?(z/y) ) ) s(x—y) #0,7=0
-2 pz® log z+qy° logy

Wr,s(paq;wvy) = eXP| 5 + prs4qy® —aPsyds S(Z‘ _ ) 7& 0.7r=s

_ (plogaz+qlogy)aPiy?® y T
pri+qy® —xPiyds
$(p+1)/3y(Q+1)/37 €T 7£ Yy, r=8= 0

z, T =1y.

1.3.

A natural generalization to the multi-variable case gives

V25 pra ([T o))\ 1/ (5=7)
(i) rals =) £
2 Y-l 1/s _ ,
Wrs(p;x) — (52Zpi log? z;,— (). pilogwi)Q) ’ r _073 #Oa
’ —2 | Y pizilogz;— (3 pilogz;)([] Tfi)s> _ .
exp SZ+ . % pimf—(l;[szigi)s , =S 7é 0;
pilog” xi— (3 pilogx; .
XP 3T pilogZ 2 (3, ps 1ogwi>2>>’ r=s=0.
where x = (z1,22, - ,2,) € R, n > 2, p is an arbitrary positive weight
sequence associated with x and W, s(p;xo) = a for xo = (a,a,--- ,a).

We also write > (+), [T(-) instead of Y7 (-), [T ().

The above formulae are obtained by an appropriate limit process, imply-
ing continuity. For example W, ¢(p,x) = lim,_,; W, s(p,x) and Wy o(p,x) =
limg_,o Wo s(p, X).

2. Results and applications

Our main result is contained in the following

Proposition 1. The means W, 5(p,x) are monotone increasing in both vari-
ables r and s.

Passing to the continuous variable case, we get the following definition of
the class W, s(p, x).
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Assuming that all integrals exist

2([ p(t)a® (1) dt—exp(s [ p(t) log z(£)dt)) \ /(") 3 _
(s2<fp(t)ﬂ(t)dtfexp(rfp(t)logz(t)dt)) , rs(s =) #0;

(3 e utennte o) logm)dt))” r=0,s#0;

$2 I p(t) log? :E(t)dt—(ff p(t)log z(t)dt)?
= —2 [ p(t)z°(t) log z(t)dt
Welp:2) SPLT T T di-owG [poler@d) 4,
_ ([ p(t) log z(t)dt) exp(s [ p(t) log x(t)dt)) ’ ’
J p(t)zs (t)dt—exp(s [ p(t) log z(t)dt)

r=s=20

oxcp [ L PB1og® e(t)dt=([ p(t) log a(t)dt)*
P 3(Tp(t) logZz(t)dt—(] p(t) log 2(t)dt)?) )

where z(t) is a positive integrable function and p(¢) is a non-negative function
with [ p(t)dt = 1.

;From our former considerations a very applicable assertion follows
Proposition 2. W, s(p,z) is monotone increasing in either r or s.

As an illustration we give the following

Proposition 3. The function w(s) defined by

/s
R G R ) BT

eXp(_’Y - %(23))7 s =V,
is monotone increasing for s € (—1,00).
In particular, for s € (—1,1) we have
_ TS (ms)*
I'(l1-— 74 T(1 7 <1
(1=s)e™ +T{L+s)e sin(ms) — 144 °

where I'(+),&(+), v stands for the Gamma function, Zeta function and the Euler’s
constant, respectively.

Applications in Probability Theory

For a random variable X and an arbitrary distribution with support on
(=00, +00), it is well known that

EeX > FX,

Denoting the central moment of order k by ux = pr(X) := E(X — EX),
we improve the above inequality to the following

Proposition 4. For an arbitrary probability law with support on R, we have

Be™ > (14 (n2/2) exp (u3/3p2))e™™ .
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Proposition 5. We also have that

(EGSX _ 6sEX>1/S
s20% /2

18 monotone increasing in S.

Especially interesting is studying of the shifted Stolarsky means E*, defined
by
E J(z,y) == lim W, (p,q;2,y).
p—0F

Their analytic continuation to the whole (r, s) plane is given by

7'2(555— °(14slog(xz/ 1/(s=7) .
(sQ(fozTglerlz‘zEx/Zg;;) ’ T‘S(’r‘ - S)(LL' - y) 7& 0;
)

s_ s 1/s
T 1+slog(x /
(522 yl(()g‘;r(x/f)( = ) ’ S( y) O’ 0;

EX (z,y) = _ 25 —y°) log 2—sy° log y log(x
rs(T,Y) exp T2+( zés)—zi(1+glogfz?;y(;§( /y)), s(x—y) #0,r =

ol /3y23 r =5 =0;

T, T=1y.

|
®

Main results concerning the means E* are the following

Proposition 6. Means E;  (v,y) are monotone increasing in either r or s for
each fized v,y € RT.

Proposition 7. Means Er,s(x, y) are monotone increasing in either x ory for
each r,s € R.

The well known result of Feng Qi ([I1]) states that the means E, s(z,y) are
logarithmically concave for each fixed x,y > 0 and r, s € [0, +00); also, they are
logarithmically convex for r, s € (—o0, 0].

According to this, we propose the following

3. Open question

Is there any compact interval I, I C R such that the means E; (v,y) are
logarithmically convexr (concave) for r,s € I and each x,y € Rt ?
A partial answer to this problem is given in the next

Proposition 8. On any interval I which includes zero and r,s € I,

(i) Ey (x,y) are not logarithmically convex (concave);

(11) W,s(p,q;x,y) are logarithmically convex (concave) if and only if p =
qg=1/2.
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4. Proofs

We prove first a global theorem concerning log-convexity of the Jensen’s
functional with a parameter, which can be very usable (cf [I0]).

Theorem 1. Let fi(z) be a twice continuously differentiable function in x with
a parameter s. If f!'(x) is log-convex in s for s € I := (a,b); x € J := (¢,d),
then the form

Oi(w,x;8) = B(s) := Zwlfg(:cl) - fg(z wiT;),

is log-convex in s for s € I, x; € J,i =1,2,---, where w = {w;} is any positive
weight sequence.

At the beginning we need some preliminary lemmas.

Lemma 1. A positive function f is log-convex on I if and only if the relation
t
Flsya? + 24 (0 yuw + (2t 2 0,

holds for each real u,w and s,t € I.

This assertion is nothing more than the discriminant test for the nonnega-
tivity of second-order polynomials.
Another well known assertions are the following (cf [12], p. 74, 97-98),

Lemma 2 (Jensen’s inequality). If g(z) is twice continuously differentiable and
g"(x) >0 on J, then g(x) is convex on J and the inequality

> wigla) = g(Y_wizy) = 0
holds for each x; € J, i = 1,2,--+ and any positive weight sequence {w;},
Lemma 3. For a convex f, the expression
f(s) = f(r)
s—r
1s increasing in both variables.

Proof of Theorem 1.
Consider the function F(x) defined as

F(x) = F(u,v,s,t;x) := u’ fs(z) + 2uv fage (z) 4+ 02 fi(z),

where u,v € R; s,t € I are real parameters independent of the variable z € J.
Since
F'(z) = u® [ (x) + 2uo flus (x) + 0° f] (),
2
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and by the assumption f!(z) is log-convex in s, it follows from Lemma 1 that
F'(z) >0, z e J.
Therefore, by Lemma 2 we get

which is equivalent to
t
u?®(s) + 2uv¢(%) +02®(t) > 0.

According to Lemma 1 again, this is possible only if ®(s) is log-convex and
proof is done. o

Proof of Proposition 1.
Define the auxiliary function g, (z) by

(et — sz —1) /s, s #0;
95(x) = {252/27 s=0.
Since
e’ —1)/s, s#0;
o) = {( o o7
x, s =0,
and

gl (z) = e s € R,
we see that gs(z) is twice continuously differentiable and that ¢Z/(z) is a log-

convex function for each real s, x.
Applying Theorem 1, we conclude that the form

) _ . (Z w;es%i — eSZ 11)7:171)/82’ s 7& 0;
(I)g(w73;‘, S) = ‘P(S) = {(Z wﬂ:f B (Z wil’i)Q)/Z s =0,

is log-convex in s.
By Lemma 3, with f(s) = log ®(s), we find out that

log ®(s) — log ®(r) o (CID(S)) Sir7

s—r & O(r)
is monotone increasing either in s or r. Therefore, by changing variable z; —
log x;, we finally obtain the proof of Proposition 1. a

Proof of Proposition 2. The assertion of Proposition 2 follows from Propo-
sition 1 by the standard argument (cf [I2], pp. 131-134). Details are left to the
reader. a

Proof of Proposition 3. The proof follows putting f(¢) = ¢,p(t) = e~ %, t €
(0, +00) and applying Proposition 2. O

Proof of Proposition 4. By Proposition 2, we get
WO,l(p7 eX) 2 WO,O(p7 ex)a
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i. e,
EeX — FX EX? - (EX)3
Bl 7 5 axp(EXEX)
fi2/2 g
Using the identity EX? — (EX)3 = us +3u2 EX, we obtain the proof of Propo-
sition 4. a

Proof of Proposition 5. This assertion is a straightforward consequence of

the fact that Wy s(p, €*) is monotone increasing in s. O
Proof of Proposition 6 Direct consequence of Proposition 1. ]
Proof of Proposition 7 This is left as an easy exercise to the readers. O

Proof of Proposition 8 We prove only the part (ii). The proof of (i) goes
along the same lines.

Suppose that 0 € (a,b) := I and that E, 4(p, ¢; , y) are log-convex (concave)
for r,s € I and any fixed z,y € RT. Then there should be an s, s > 0 such that

Fi(p, g2, y) == Wos(p, ¢ 2, y)Wo,—s (0, ¢ 2, y) — Woo(p, ¢ 2,y))?

is of constant sign for each z,y > 0.
Substituting (z/y)® := e, w € R, after some calculations we get that the
above is equivalent to the assertion that F'(p,q;w) is of constant sign, where

F(p,q;w) = pe +q — e’ — e3P0 (pe=v 4 g — e7Pv),
Developing in power series in w, we get
1
F(p.g;w) = 1555041 +p)(2 = p)(1 = 2p)u” + O(w?),
Therefore, F(p,q;w) can be of constant sign for each w € R only if p =

1/2(= q).
Suppose now that I is of the form I := [0,a) or I := (—a,0]. Then there
should be an s,s # 0,s € I such that

Woo(p, a3z, y)Wo,25(p, ¢ 2, y) — (Wo s(p, ¢ 2, y))?

is of constant sign for each z,y € RT.
Proceeding as above, this is equivalent to the assertion that G(p, ¢; w) is of
constant sign with

G(p, g;w) == p>Puled PHIW(pe2v 4 g — e2P0) — (pe¥ 4 q — eP?)L,
But,
2
405
Hence we conclude that G(p, q;w) can be of constant sign for a sufficiently

small w, w € R only if p = ¢ = 1/2. Combining this with the Feng Qi theorem,
the assertion from Proposition 8 follows. O

G(p,q;w) = —p"¢* (1 +p)(1 + q)(q¢ — p)w*" + O(w"?).
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