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AN EXTENSION OF STOLARSKY MEANS

Slavko Simić1

Abstract. In this article we give an extension of the well known Sto-
larsky means to the multi-variable case in a simple and applicable way.
Some basic inequalities concerning this matter are also established with
applications in Analysis and Probability Theory.
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1. Introduction

1.1.

There is a huge number of papers (cf. [2], [3], [6], [7], [8]) investigating
properties of the so-called Stolarsky (or extended) two-parametric mean value,
defined for positive values of x, y by the following

Er,s(x, y) =





(
r(xs−ys)
s(xr−yr)

)1/(s−r)

, rs(r − s) 6= 0

exp
(
− 1

s + xs log x−ys log y
xs−ys

)
, r = s 6= 0

(
xs−ys

s(log x−log y)

)1/s

, s 6= 0, r = 0
√

xy, r = s = 0,

x, x = y > 0.

In this form it is introduced by Keneth Stolarsky in [1].
Most of the classical two variable means are special cases of the class E.

For example, E1,2 = x+y
2 is the arithmetic mean, E0,0 =

√
xy is the geometric

mean, E0,1 = x−y
log x−log y is the logarithmic mean, E1,1 = (xx/yy)

1
x−y /e is the

identric mean, etc. More generally, the r-th power mean
(

xr+yr

2

)1/r

is equal to
Er,2r.

Recently, several papers have been produced trying to define an extension
of the class E to n, n > 2 variables. Unfortunately, this is done in a highly
artificial mode (cf. [4], [5], [9]), without a practical background. Here is an

1 Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia, e-mail:
ssimic@turing.mi.sanu.ac.yu



82 S. Simić

illustration of this point; recently J. Merikowski ([9]) has proposed the following
generalization of the Stolarsky mean Er,s to several variables

Er,s(X) :=
[L(Xs)
L(Xr)

] 1
s−r

, r 6= s,

where X = (x1, · · · , xn) is an n-tuple of positive numbers and

L(Xs) := (n− 1)!
∫

En−1

n∏

i=1

xsui
i du1 · · · dun−1.

The symbol En−1 stands for the Euclidean simplex which is defined by

En−1 := {(u1, · · · , un−1) : ui ≥ 0, 1 ≤ i ≤ n− 1; u1 + · · ·+ un−1 ≤ 1}.

In this paper we give another attempt to generalize Stolarsky means to the
multi-variable case in a simple and applicable way. The proposed task can be
accomplished by founding a ”weighted” variant of the class E, wherefrom the
mentioned generalization follows naturally.

In the sequel we shall need notions of the weighted geometric mean G =
G(p, q;x, y) and weighted r-th power mean Sr = Sr(p, q;x, y), defined by

G := xpyq; Sr := (pxr + qyr)1/r,

where
p, q, x, y ∈ R+; p + q = 1; r ∈ R/{0}.

Note that (Sr)r > (G)r for x 6= y, r 6= 0 and limr→0 Sr = G.

1.2.

We introduce here a class W of weighted two parameters means which
includes the Stolarsky class E as a particular case. Namely, for p, q, x, y ∈
R+, p + q = 1, rs(r − s)(x− y) 6= 0, we define

W = Wr,s(p, q;x, y) :=
(r2

s2

(Ss)s − (G)s

(Sr)r − (G)r

) 1
s−r

=
(r2

s2

pxs + qys − xpsyqs

pxr + qyr − xpryqr

) 1
s−r

.

Various identities concerning the means W can be established; some of them
are the following

Wr,s(p, q;x, y) = Ws,r(p, q; x, y)

Wr,s(p, q; x, y) = Wr,s(q, p; y, x); Wr,s(p, q; y, x) = xyWr,s(p, q;x−1, y−1);

War,as(p, q;x, y) = (Wr,s(p, q;xa, ya))1/a, a 6= 0.

Note that

W2r,2s(1/2, 1/2; x, y) =
(r2

s2

x2s + y2s − 2(
√

xy)2s

x2r + y2r − 2(
√

xy)2r

)1/2(s−r)



An extension of Stolarsky means 83

=
(r2

s2

(xs − ys)2

(xr − yr)2
)1/2(s−r)

= E(r, s;x, y).

Hence E ⊂ W .
The weighted means from the class W can be extended continuously to the

domain
D = {(r, s, x, y)|r, s ∈ R, x, y ∈ R+}.

This extension is given by

Wr,s(p, q;x, y) =





(
r2

s2
pxs+qys−xpsyqs

pxr+qyr−xpryqr

)1/(s−r)

, rs(r − s)(x− y) 6= 0
(
2pxs+qys−xpsyqs

pqs2 log2(x/y)

)1/s

, s(x− y) 6= 0, r = 0

exp
(
−2
s + pxs log x+qys log y

pxs+qys−xpsyqs

− (p log x+q log y)xpsyqs

pxs+qys−xpsyqs

) , s(x− y) 6= 0, r = s

x(p+1)/3y(q+1)/3, x 6= y, r = s = 0
x, x = y.

1.3.

A natural generalization to the multi-variable case gives

Wr,s(p;x) =





(
r2(

∑
pix

s
i−(

∏
x

pi
i )s)

s2(
∑

pixr
i−(

∏
x

pi
i )r)

)1/(s−r)

, rs(s− r) 6= 0;
(

2
s2

∑
pix

s
i−(

∏
x

pi
i )s

∑
pi log2 xi−(

∑
pi log xi)2

)1/s

, r = 0, s 6= 0;

exp
(
−2
s +

∑
pix

s
i log xi−(

∑
pi log xi)(

∏
x

pi
i )s

∑
pixs

i−(
∏

x
pi
i )s

)
, r = s 6= 0;

exp
( ∑

pi log3 xi−(
∑

pi log xi)
3

3(
∑

pi log2 xi−(
∑

pi log xi)2)

)
, r = s = 0.

where x = (x1, x2, · · · , xn) ∈ Rn
+, n ≥ 2, p is an arbitrary positive weight

sequence associated with x and Wr,s(p;x0) = a for x0 = (a, a, · · · , a).
We also write

∑
(·), ∏(·) instead of

∑n
1 (·), ∏n

1 (·).
The above formulae are obtained by an appropriate limit process, imply-

ing continuity. For example Ws,s(p,x) = limr→s Wr,s(p,x) and W0,0(p,x) =
lims→0 W0,s(p,x).

2. Results and applications

Our main result is contained in the following

Proposition 1. The means Wr,s(p,x) are monotone increasing in both vari-
ables r and s.

Passing to the continuous variable case, we get the following definition of
the class W̄r,s(p, x).
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Assuming that all integrals exist

W̄r,s(p, x) =





(
r2(

∫
p(t)xs(t)dt−exp(s

∫
p(t) log x(t)dt))

s2(
∫

p(t)xr(t)dt−exp(r
∫

p(t) log x(t)dt)

)1/(s−r)

, rs(s− r) 6= 0;
(

2
s2

∫
p(t)xs(t)dt−exp(s

∫
p(t) log x(t)dt)∫

p(t) log2 x(t)dt−(
∫

p(t) log x(t)dt)2

)1/s

, r = 0, s 6= 0;

exp
(
−2
s +

∫
p(t)xs(t) log x(t)dt∫

p(t)xs(t)dt−exp(s
∫

p(t) log x(t)dt)

− (
∫

p(t) log x(t)dt) exp(s
∫

p(t) log x(t)dt)∫
p(t)xs(t)dt−exp(s

∫
p(t) log x(t)dt)

) , r = s 6= 0;

exp
( ∫

p(t) log3 x(t)dt−(
∫

p(t) log x(t)dt)3

3(
∫

p(t) log2 x(t)dt−(
∫

p(t) log x(t)dt)2)

)
, r = s = 0

where x(t) is a positive integrable function and p(t) is a non-negative function
with

∫
p(t)dt = 1.

¿From our former considerations a very applicable assertion follows

Proposition 2. W̄r,s(p, x) is monotone increasing in either r or s.

As an illustration we give the following

Proposition 3. The function w(s) defined by

w(s) :=





(
12

(πs)2 (Γ(1 + s)− e−γs)
)1/s

, s 6= 0;

exp(−γ − 4ξ(3)
π2 ), s = 0,

is monotone increasing for s ∈ (−1,∞).
In particular, for s ∈ (−1, 1) we have

Γ(1− s)e−γs + Γ(1 + s)eγs − πs

sin(πs)
≤ 1− (πs)4

144
,

where Γ(·), ξ(·), γ stands for the Gamma function, Zeta function and the Euler’s
constant, respectively.

Applications in Probability Theory

For a random variable X and an arbitrary distribution with support on
(−∞, +∞), it is well known that

EeX ≥ eEX .

Denoting the central moment of order k by µk = µk(X) := E(X − EX)k,
we improve the above inequality to the following

Proposition 4. For an arbitrary probability law with support on R, we have

EeX ≥ (1 + (µ2/2) exp (µ3/3µ2))eEX .



An extension of Stolarsky means 85

Proposition 5. We also have that

(EesX − esEX

s2σ2
X/2

)1/s

is monotone increasing in s.

Especially interesting is studying of the shifted Stolarsky means E∗, defined
by

E∗
r,s(x, y) := lim

p→0+
Wr,s(p, q; x, y).

Their analytic continuation to the whole (r, s) plane is given by

E∗
r,s(x, y) =





(
r2(xs−ys(1+s log(x/y)))
s2(xr−yr(1+r log(x/y)))

)1/(s−r)

, rs(r − s)(x− y) 6= 0;
(

2
s2

xs−ys(1+s log(x/y))
log2(x/y)

)1/s

, s(x− y) 6= 0, r = 0;

exp
(
−2
s + (xs−ys) log x−sys log y log(x/y)

xs−ys(1+s log(x/y))

)
, s(x− y) 6= 0, r = s;

x1/3y2/3, r = s = 0;
x, x = y.

Main results concerning the means E∗ are the following

Proposition 6. Means E∗
r,s(x, y) are monotone increasing in either r or s for

each fixed x, y ∈ R+.

Proposition 7. Means E∗
r,s(x, y) are monotone increasing in either x or y for

each r, s ∈ R.

The well known result of Feng Qi ([11]) states that the means Er,s(x, y) are
logarithmically concave for each fixed x, y > 0 and r, s ∈ [0,+∞); also, they are
logarithmically convex for r, s ∈ (−∞, 0].

According to this, we propose the following

3. Open question

Is there any compact interval I, I ⊂ R such that the means E∗
r,s(x, y) are

logarithmically convex (concave) for r, s ∈ I and each x, y ∈ R+?
A partial answer to this problem is given in the next

Proposition 8. On any interval I which includes zero and r, s ∈ I,
(i) E∗

r,s(x, y) are not logarithmically convex (concave);
(ii) Wr,s(p, q;x, y) are logarithmically convex (concave) if and only if p =

q = 1/2.
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4. Proofs

We prove first a global theorem concerning log-convexity of the Jensen’s
functional with a parameter, which can be very usable (cf [10]).

Theorem 1. Let fs(x) be a twice continuously differentiable function in x with
a parameter s. If f ′′s (x) is log-convex in s for s ∈ I := (a, b); x ∈ J := (c, d),
then the form

Φf (w, x; s) = Φ(s) :=
∑

wifs(xi)− fs(
∑

wixi),

is log-convex in s for s ∈ I, xi ∈ J, i = 1, 2, · · · , where w = {wi} is any positive
weight sequence.

At the beginning we need some preliminary lemmas.

Lemma 1. A positive function f is log-convex on I if and only if the relation

f(s)u2 + 2f(
s + t

2
)uw + f(t)w2 ≥ 0,

holds for each real u, w and s, t ∈ I.

This assertion is nothing more than the discriminant test for the nonnega-
tivity of second-order polynomials.

Another well known assertions are the following (cf [12], p. 74, 97-98),

Lemma 2 (Jensen’s inequality). If g(x) is twice continuously differentiable and
g′′(x) ≥ 0 on J , then g(x) is convex on J and the inequality

∑
wig(xi)− g(

∑
wixi) ≥ 0

holds for each xi ∈ J, i = 1, 2, · · · and any positive weight sequence {wi},∑
wi = 1.

Lemma 3. For a convex f , the expression

f(s)− f(r)
s− r

is increasing in both variables.

Proof of Theorem 1.
Consider the function F (x) defined as

F (x) = F (u, v, s, t; x) := u2fs(x) + 2uvf s+t
2

(x) + v2ft(x),

where u, v ∈ R; s, t ∈ I are real parameters independent of the variable x ∈ J .
Since

F ′′(x) = u2f ′′s (x) + 2uvf ′′s+t
2

(x) + v2f ′′t (x),
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and by the assumption f ′′s (x) is log-convex in s, it follows from Lemma 1 that
F ′′(x) ≥ 0, x ∈ J .

Therefore, by Lemma 2 we get
∑

wiF (xi)− F (
∑

wixi) ≥ 0, xi ∈ J,

which is equivalent to

u2Φ(s) + 2uvΦ(
s + t

2
) + v2Φ(t) ≥ 0.

According to Lemma 1 again, this is possible only if Φ(s) is log-convex and
proof is done. 2

Proof of Proposition 1.
Define the auxiliary function gs(x) by

gs(x) :=

{
(esx − sx− 1)/s2, s 6= 0;
x2/2, s = 0.

Since

g′s(x) =

{
(esx − 1)/s, s 6= 0;
x, s = 0,

and
g′′s (x) = esx, s ∈ R,

we see that gs(x) is twice continuously differentiable and that g′′s (x) is a log-
convex function for each real s, x.

Applying Theorem 1, we conclude that the form

Φg(w, x; s) = Φ(s) :=

{
(
∑

wie
sxi − es

∑
wixi)/s2, s 6= 0;

(
∑

wix
2
i − (

∑
wixi)2)/2, s = 0,

is log-convex in s.
By Lemma 3, with f(s) = log Φ(s), we find out that

log Φ(s)− log Φ(r)
s− r

= log
(Φ(s)

Φ(r)

) 1
s−r

,

is monotone increasing either in s or r. Therefore, by changing variable xi →
log xi, we finally obtain the proof of Proposition 1. 2

Proof of Proposition 2. The assertion of Proposition 2 follows from Propo-
sition 1 by the standard argument (cf [12], pp. 131-134). Details are left to the
reader. 2

Proof of Proposition 3. The proof follows putting f(t) = t, p(t) = e−t, t ∈
(0, +∞) and applying Proposition 2. 2

Proof of Proposition 4. By Proposition 2, we get

W0,1(p, ex) ≥ W0,0(p, ex),



88 S. Simić

i. e.,
EeX − eEX

µ2/2
≥ exp(

EX3 − (EX)3

3µ2
).

Using the identity EX3− (EX)3 = µ3 +3µ2EX, we obtain the proof of Propo-
sition 4. 2

Proof of Proposition 5. This assertion is a straightforward consequence of
the fact that W0,s(p, ex) is monotone increasing in s. 2

Proof of Proposition 6 Direct consequence of Proposition 1. 2

Proof of Proposition 7 This is left as an easy exercise to the readers. 2

Proof of Proposition 8 We prove only the part (ii). The proof of (i) goes
along the same lines.

Suppose that 0 ∈ (a, b) := I and that Er,s(p, q; x, y) are log-convex (concave)
for r, s ∈ I and any fixed x, y ∈ R+. Then there should be an s, s > 0 such that

Fs(p, q; x, y) := W0,s(p, q; x, y)W0,−s(p, q; x, y)− (W0,0(p, q; x, y))2

is of constant sign for each x, y > 0.
Substituting (x/y)s := ew, w ∈ R, after some calculations we get that the

above is equivalent to the assertion that F (p, q; w) is of constant sign, where

F (p, q;w) := pew + q − epw − e
2
3 (1+p)w(pe−w + q − e−pw).

Developing in power series in w, we get

F (p, q;w) =
1

1620
pq(1 + p)(2− p)(1− 2p)w5 + O(w6).

Therefore, F (p, q;w) can be of constant sign for each w ∈ R only if p =
1/2(= q).

Suppose now that I is of the form I := [0, a) or I := (−a, 0]. Then there
should be an s, s 6= 0, s ∈ I such that

W0,0(p, q; x, y)W0,2s(p, q; x, y)− (W0,s(p, q; x, y))2

is of constant sign for each x, y ∈ R+.
Proceeding as above, this is equivalent to the assertion that G(p, q;w) is of

constant sign with

G(p, q;w) := p3q3w6e
2
3 (p+1)w(pe2w + q − e2pw)− (pew + q − epw)4.

But,

G(p, q; w) =
2

405
p4q4(1 + p)(1 + q)(q − p)w11 + O(w12).

Hence we conclude that G(p, q; w) can be of constant sign for a sufficiently
small w, w ∈ R only if p = q = 1/2. Combining this with the Feng Qi theorem,
the assertion from Proposition 8 follows. 2
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