AN EXTENSION OF STOLARSKY MEANS

Slavko Simić 1

Abstract. In this article we give an extension of the well known Stolarsky means to the multi-variable case in a simple and applicable way. Some basic inequalities concerning this ma[tt](#page-0-0)er are also established with applications in Analysis and Probability Theory.

AMS Mathematics Subject Classification (2000): 26A51, 60E15 Key words and phrases: Logarithmic convexity, extended mean values, generalized power means, shifted Stolarsky means

1. Introduction

1.1.

There is a huge number of papers (cf. $[2]$, $[3]$, $[6]$, $[7]$, $[8]$) investigating properties of the so-called Stolarsky (or extended) two-parametric mean value, defined for positive values of x, y by the following

$$
E_{r,s}(x,y) = \begin{cases} \left(\frac{r(x^s - y^s)}{s(x^r - y^r)}\right)^{1/(s-r)}, & rs(r-s) \neq 0\\ \exp\left(-\frac{1}{s} + \frac{x^s \log x - y^s \log y}{x^s - y^s}\right), & r = s \neq 0\\ \left(\frac{x^s - y^s}{s(\log x - \log y)}\right)^{1/s}, & s \neq 0, r = 0\\ \sqrt{xy}, & r = s = 0,\\ x, & x = y > 0. \end{cases}
$$

In this form it is introduced by Keneth Stolarsky in [1].

Most of the classical two variable means are special cases of the class E. Most of the classical two variable means are special cases of the class *E*.
For example, $E_{1,2} = \frac{x+y}{2}$ is the arithmetic mean, $E_{0,0} = \sqrt{xy}$ is the geometric mean, $E_{0,1} = \frac{x-y}{\log x - \log y}$ is the logarithmic mean, $E_{1,1} = (x^x/y^y)^{\frac{1}{x-y}}/e$ is the identric mean, etc. More generally, the r-th power mean $\left(\frac{x^r+y^r}{2}\right)$ 2 $\left(\frac{1}{r}\right)$ is equal to $E_{r,2r}$.

Recently, several papers have been produced trying to define an extension of the class E to $n, n > 2$ variables. Unfortunately, this is done in a highly artificial mode (cf. [4], [5], [9]), without a practical background. Here is an

¹ Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia, e-mail: ssimic@turing.mi.sanu.ac.yu

illustration of this point; recently J. Merikowski ([9]) has proposed the following generalization of the Stolarsky mean $E_{r,s}$ to several variables

$$
E_{r,s}(X) := \left[\frac{L(X^s)}{L(X^r)}\right]^{\frac{1}{s-r}}, \quad r \neq s,
$$

where $X = (x_1, \dots, x_n)$ is an *n*-tuple of positive numbers and

$$
L(Xs) := (n - 1)! \int_{E_{n-1}} \prod_{i=1}^{n} x_i^{su_i} du_1 \cdots du_{n-1}.
$$

The symbol E_{n-1} stands for the Euclidean simplex which is defined by

$$
E_{n-1} := \{(u_1, \dots, u_{n-1}) : u_i \ge 0, 1 \le i \le n-1; u_1 + \dots + u_{n-1} \le 1\}.
$$

In this paper we give another attempt to generalize Stolarsky means to the multi-variable case in a simple and applicable way. The proposed task can be accomplished by founding a "weighted" variant of the class E , wherefrom the mentioned generalization follows naturally.

In the sequel we shall need notions of the weighted geometric mean $G =$ $G(p, q; x, y)$ and weighted r-th power mean $S_r = S_r(p, q; x, y)$, defined by

$$
G := x^p y^q; \ \ S_r := (px^r + qy^r)^{1/r}
$$

,

where

$$
p, q, x, y \in R^+; p + q = 1; r \in R/\{0\}.
$$

Note that $(S_r)^r > (G)^r$ for $x \neq y$, $r \neq 0$ and $\lim_{r \to 0} S_r = G$.

1.2.

We introduce here a class W of weighted two parameters means which includes the Stolarsky class E as a particular case. Namely, for $p, q, x, y \in$ $R_+, p + q = 1, rs(r - s)(x - y) \neq 0$, we define

$$
W=W_{r,s}(p,q;x,y):=\Big(\frac{r^2}{s^2}\frac{(S_s)^s-(G)^s}{(S_r)^r-(G)^r}\Big)^{\frac{1}{s-r}}=\Big(\frac{r^2}{s^2}\frac{px^s+qy^s-x^{ps}y^{qs}}{px^r+qy^r-x^{pr}y^{qr}}\Big)^{\frac{1}{s-r}}.
$$

Various identities concerning the means W can be established; some of them are the following

$$
W_{r,s}(p,q;x,y) = W_{s,r}(p,q;x,y)
$$

 $W_{r,s}(p,q;x,y) = W_{r,s}(q,p;y,x); W_{r,s}(p,q;y,x) = xyW_{r,s}(p,q;x^{-1},y^{-1});$

$$
W_{ar,as}(p,q;x,y) = (W_{r,s}(p,q;x^a,y^a))^{1/a}, \ a \neq 0.
$$

Note that

$$
W_{2r,2s}(1/2,1/2;x,y) = \left(\frac{r^2}{s^2}\frac{x^{2s} + y^{2s} - 2(\sqrt{xy})^{2s}}{x^{2r} + y^{2r} - 2(\sqrt{xy})^{2r}}\right)^{1/2(s-r)}
$$

An extension of Stolarsky means 83

$$
= \left(\frac{r^2}{s^2} \frac{(x^s - y^s)^2}{(x^r - y^r)^2}\right)^{1/2(s-r)} = E(r, s; x, y).
$$

Hence $E \subset W$.

The weighted means from the class W can be extended continuously to the domain

$$
D = \{(r, s, x, y)|r, s \in R, x, y \in R_+\}.
$$

This extension is given by

$$
W_{r,s}(p,q;x,y) = \begin{cases} \left(\frac{r^2}{s^2} \frac{px^s + qy^s - x^{ps}y^{qs}}{px^r + qy^r - x^{pr}y^{qr}}\right)^{1/(s-r)}, & rs(r-s)(x-y) \neq 0\\ \left(2\frac{px^s + qy^s - x^{ps}y^{qs}}{pq^{s^2} \log^2(x/y)}\right)^{1/s}, & s(x-y) \neq 0, r = 0\\ \exp\left(\frac{-2}{s} + \frac{px^s \log x + qy^s \log y}{px^s + qy^s - x^{ps}y^{qs}}\right), & s(x-y) \neq 0, r = s\\ -\frac{(p \log x + q \log y)x^{ps}y^{qs}}{px^s + qy^s - x^{ps}y^{qs}}\right), & s(x-y) \neq 0, r = s\\ x, & x = y. \end{cases}
$$

1.3.

A natural generalization to the multi-variable case gives

$$
W_{r,s}(\mathbf{p}; \mathbf{x}) = \begin{cases} \left(\frac{r^2 (\sum p_i x_i^s - (\prod x_i^{p_i})^s)}{s^2 (\sum p_i x_i^r - (\prod x_i^{p_i})^r)} \right)^{1/(s-r)}, & rs(s-r) \neq 0; \\ \left(\frac{2}{s^2} \frac{\sum p_i x_i^s - (\prod x_i^{p_i})^s}{\sum p_i \log^2 x_i - (\sum p_i \log x_i)^2} \right)^{1/s}, & r = 0, s \neq 0; \\ \exp\left(\frac{-2}{s} + \frac{\sum p_i x_i^s \log x_i - (\sum p_i \log x_i)(\prod x_i^{p_i})^s}{\sum p_i x_i^s - (\prod x_i^{p_i})^s} \right), & r = s \neq 0; \\ \exp\left(\frac{\sum p_i \log^3 x_i - (\sum p_i \log x_i)^3}{3(\sum p_i \log^2 x_i - (\sum p_i \log x_i)^2)} \right), & r = s = 0. \end{cases}
$$

where $\mathbf{x} = (x_1, x_2, \dots, x_n) \in R_+^n$, $n \geq 2$, **p** is an arbitrary positive weight sequence associated with **x** and $W_{r,s}(\mathbf{p}; \mathbf{x}_0) = a$ for $\mathbf{x}_0 = (a, a, \dots, a)$.
We also write $\Sigma(\cdot)$, $\Pi(\cdot)$ instead of $\Sigma^n(\cdot)$, $\Pi^n(\cdot)$ We also write $\sum(\cdot)$, $\prod(\cdot)$ instead of $\sum_1^n(\cdot)$, $\prod_1^n(\cdot)$.

The above formulae are obtained by an appropriate limit process, implying continuity. For example $W_{s,s}(\mathbf{p}, \mathbf{x}) = \lim_{r \to s} W_{r,s}(\mathbf{p}, \mathbf{x})$ and $W_{0,0}(\mathbf{p}, \mathbf{x}) =$ $\lim_{s\to 0} W_{0,s}(\mathbf{p}, \mathbf{x}).$

2. Results and applications

Our main result is contained in the following

Proposition 1. The means $W_{r,s}(\mathbf{p}, \mathbf{x})$ are monotone increasing in both variables r and s.

Passing to the continuous variable case, we get the following definition of the class $\bar{\tilde{W}}_{r,s}(p,x)$.

Assuming that all integrals exist

$$
\bar{W}_{r,s}(p,x) = \begin{cases}\n\left(\frac{r^2(\int p(t)x^s(t)dt - \exp(s\int p(t)\log x(t)dt))}{s^2(\int p(t)x^r(t)dt - \exp(r\int p(t)\log x(t)dt)}\right)^{1/(s-r)}, & rs(s-r) \neq 0; \\
\left(\frac{2}{s^2}\frac{\int p(t)x^s(t)dt - \exp(s\int p(t)\log x(t)dt)}{\int p(t)\log^2 x(t)dt - (\int p(t)\log x(t)dt)}\right)^{1/s}, & r = 0, s \neq 0; \\
\exp\left(\frac{-2}{s} + \frac{\int p(t)x^s(t)\log x(t)dt}{\int p(t)x^s(t)dt - \exp(s\int p(t)\log x(t)dt)}\right), & r = s \neq 0; \\
-\frac{(\int p(t)\log x(t)dt) \exp(s\int p(t)\log x(t)dt)}{\int p(t)x^s(t)dt - \exp(s\int p(t)\log x(t)dt)}\right), & r = s = 0\n\end{cases}
$$

where $x(t)$ is a positive integrable function and $p(t)$ is a non-negative function where $x(t)$ is a po
with $\int p(t)dt = 1$.

¿From our former considerations a very applicable assertion follows

Proposition 2. $\bar{W}_{r,s}(p,x)$ is monotone increasing in either r or s.

As an illustration we give the following

Proposition 3. The function $w(s)$ defined by

$$
w(s) := \begin{cases} \left(\frac{12}{(\pi s)^2} (\Gamma(1+s) - e^{-\gamma s})\right)^{1/s}, & s \neq 0; \\ \exp(-\gamma - \frac{4\xi(3)}{\pi^2}), & s = 0, \end{cases}
$$

is monotone increasing for $s \in (-1, \infty)$.

In particular, for $s \in (-1,1)$ we have

$$
\Gamma(1-s)e^{-\gamma s} + \Gamma(1+s)e^{\gamma s} - \frac{\pi s}{\sin(\pi s)} \le 1 - \frac{(\pi s)^4}{144},
$$

where $\Gamma(\cdot), \xi(\cdot), \gamma$ stands for the Gamma function, Zeta function and the Euler's constant, respectively.

Applications in Probability Theory

For a random variable X and an arbitrary distribution with support on $(-\infty, +\infty)$, it is well known that

$$
E e^X \ge e^{EX}.
$$

Denoting the central moment of order k by $\mu_k = \mu_k(X) := E(X - EX)^k$, we improve the above inequality to the following

Proposition 4. For an arbitrary probability law with support on \mathbb{R} , we have

$$
E e^{X} \ge (1 + (\mu_2/2) \exp{(\mu_3/3\mu_2)})e^{EX}.
$$

Proposition 5. We also have that

$$
\Big(\frac{Ee^{sX}-e^{sEX}}{s^2\sigma_X^2/2}\Big)^{1/s}
$$

is monotone increasing in s.

Especially interesting is studying of the *shifted Stolarsky means* E^* , defined by

$$
E_{r,s}^*(x,y) := \lim_{p \to 0^+} W_{r,s}(p,q;x,y).
$$

Their analytic continuation to the whole (r, s) plane is given by

$$
E_{r,s}^*(x,y) = \begin{cases} \left(\frac{r^2(x^s - y^s(1+s\log(x/y)))}{s^2(x^r - y^r(1+r\log(x/y)))}\right)^{1/(s-r)}, & rs(r-s)(x-y) \neq 0; \\ \left(\frac{2}{s^2}\frac{x^s - y^s(1+s\log(x/y))}{\log^2(x/y)}\right)^{1/s}, & s(x-y) \neq 0, r = 0; \\ \exp\left(\frac{-2}{s} + \frac{(x^s - y^s)\log x - sy^s\log y\log(x/y)}{x^s - y^s(1+s\log(x/y))}\right), & s(x-y) \neq 0, r = s; \\ x^{1/3}y^{2/3}, & r = s = 0; \\ x, & x = y. \end{cases}
$$

Main results concerning the means E^* are the following

Proposition 6. Means $E_{r,s}^*(x,y)$ are monotone increasing in either r or s for each fixed $x, y \in \mathbb{R}^+$.

Proposition 7. Means $E^*_{r,s}(x,y)$ are monotone increasing in either x or y for each $r, s \in \mathbb{R}$.

The well known result of Feng Qi ([11]) states that the means $E_{r,s}(x, y)$ are logarithmically concave for each fixed $x, y > 0$ and $r, s \in [0, +\infty)$; also, they are logarithmically convex for $r, s \in (-\infty, 0]$.

According to this, we propose the following

3. Open question

Is there any compact interval I, $I \subset \mathbb{R}$ such that the means $E_{r,s}^*(x,y)$ are logarithmically convex (concave) for $r, s \in I$ and each $x, y \in \mathbb{R}^+$?

A partial answer to this problem is given in the next

Proposition 8. On any interval I which includes zero and $r, s \in I$,

(i) $E^*_{r,s}(x,y)$ are not logarithmically convex (concave);

(ii) $W_{r,s}(p,q;x,y)$ are logarithmically convex (concave) if and only if $p =$ $q = 1/2$.

4. Proofs

We prove first a global theorem concerning log-convexity of the Jensen's functional with a parameter, which can be very usable (cf [10]).

Theorem 1. Let $f_s(x)$ be a twice continuously differentiable function in x with a parameter s. If $f''_s(x)$ is log-convex in s for $s \in I := (a, b); x \in J := (c, d)$, then the form

$$
\Phi_f(w, x; s) = \Phi(s) := \sum w_i f_s(x_i) - f_s(\sum w_i x_i),
$$

is log-convex in s for $s \in I$, $x_i \in J$, $i = 1, 2, \dots$, where $w = \{w_i\}$ is any positive weight sequence.

At the beginning we need some preliminary lemmas.

Lemma 1. A positive function f is log-convex on I if and only if the relation

$$
f(s)u^{2} + 2f(\frac{s+t}{2})uw + f(t)w^{2} \ge 0,
$$

holds for each real u, w and $s, t \in I$.

This assertion is nothing more than the discriminant test for the nonnegativity of second-order polynomials.

Another well known assertions are the following (cf [12], p. 74, 97-98),

Lemma 2 (Jensen's inequality). If $g(x)$ is twice continuously differentiable and $g''(x) \geq 0$ on J, then $g(x)$ is convex on J and the inequality

$$
\sum w_i g(x_i) - g(\sum w_i x_i) \ge 0
$$

holds for each $x_i \in J$, $i = 1, 2, \cdots$ and any positive weight sequence $\{w_i\}$, $\sum w_i = 1.$

Lemma 3. For a convex f , the expression

$$
\frac{f(s) - f(r)}{s - r}
$$

is increasing in both variables.

Proof of Theorem 1.

Consider the function $F(x)$ defined as

$$
F(x) = F(u, v, s, t; x) := u^2 f_s(x) + 2uv f_{\frac{s+t}{2}}(x) + v^2 f_t(x),
$$

where $u, v \in \mathbb{R}; s, t \in I$ are real parameters independent of the variable $x \in J$. Since

$$
F''(x) = u^2 f_s''(x) + 2uv f_{\frac{s+t}{2}}''(x) + v^2 f_t''(x),
$$

and by the assumption $f''_s(x)$ is log-convex in s, it follows from Lemma 1 that $F''(x) \geq 0, \ x \in J.$

Therefore, by Lemma 2 we get

$$
\sum w_i F(x_i) - F(\sum w_i x_i) \ge 0, \ x_i \in J,
$$

which is equivalent to

$$
u^{2}\Phi(s) + 2uv\Phi(\frac{s+t}{2}) + v^{2}\Phi(t) \ge 0.
$$

According to Lemma 1 again, this is possible only if $\Phi(s)$ is log-convex and \Box \Box

Proof of Proposition 1.

Define the auxiliary function $g_s(x)$ by

$$
g_s(x) := \begin{cases} (e^{sx} - sx - 1)/s^2, & s \neq 0; \\ x^2/2, & s = 0. \end{cases}
$$

Since

$$
g'_{s}(x) = \begin{cases} (e^{sx} - 1)/s, & s \neq 0; \\ x, & s = 0, \end{cases}
$$

and

$$
g_s''(x) = e^{sx}, s \in \mathbb{R},
$$

we see that $g_s(x)$ is twice continuously differentiable and that $g''_s(x)$ is a logconvex function for each real s, x.

Applying Theorem 1, we conclude that the form

$$
\Phi_g(w, x; s) = \Phi(s) := \begin{cases} (\sum w_i e^{sx_i} - e^{s \sum w_i x_i})/s^2, & s \neq 0; \\ (\sum w_i x_i^2 - (\sum w_i x_i)^2)/2, & s = 0, \end{cases}
$$

is log-convex in s.

By Lemma 3, with $f(s) = \log \Phi(s)$, we find out that

$$
\frac{\log \Phi(s) - \log \Phi(r)}{s - r} = \log \left(\frac{\Phi(s)}{\Phi(r)}\right)^{\frac{1}{s - r}},
$$

is monotone increasing either in s or r. Therefore, by changing variable $x_i \rightarrow$ $\log x_i$, we finally obtain the proof of Proposition 1.

Proof of Proposition 2. The assertion of Proposition 2 follows from Proposition 1 by the standard argument (cf [12], pp. 131-134). Details are left to the reader. \Box

Proof of Proposition 3. The proof follows putting $f(t) = t$, $p(t) = e^{-t}$, $t \in$ $(0, +\infty)$ and applying Proposition 2.

Proof of Proposition 4. By Proposition 2, we get

$$
W_{0,1}(\mathbf{p},e^{\mathbf{x}}) \geq W_{0,0}(\mathbf{p},e^{\mathbf{x}}),
$$

i. e.,

$$
\frac{Ee^{X} - e^{EX}}{\mu_{2}/2} \ge \exp(\frac{EX^{3} - (EX)^{3}}{3\mu_{2}}).
$$

Using the identity $EX^3 - (EX)^3 = \mu_3 + 3\mu_2 EX$, we obtain the proof of Proposition 4. \Box

Proof of Proposition 5. This assertion is a straightforward consequence of the fact that $W_{0,s}(\mathbf{p}, e^{\mathbf{x}})$ is monotone increasing in s.

Proof of Proposition 6 Direct consequence of Proposition 1. □

Proof of Proposition 7 This is left as an easy exercise to the readers. \Box

Proof of Proposition 8 We prove only the part (ii). The proof of (i) goes along the same lines.

Suppose that $0 \in (a, b) := I$ and that $E_{r,s}(p,q;x,y)$ are log-convex (concave) for $r, s \in I$ and any fixed $x, y \in \mathbb{R}^+$. Then there should be an $s, s > 0$ such that

$$
F_s(p,q;x,y) := W_{0,s}(p,q;x,y)W_{0,-s}(p,q;x,y) - (W_{0,0}(p,q;x,y))^2
$$

is of constant sign for each $x, y > 0$.

Substituting $(x/y)^s := e^w$, $w \in \mathbb{R}$, after some calculations we get that the above is equivalent to the assertion that $F(p,q; w)$ is of constant sign, where

$$
F(p, q; w) := pe^{w} + q - e^{pw} - e^{\frac{2}{3}(1+p)w}(pe^{-w} + q - e^{-pw}).
$$

Developing in power series in w , we get

$$
F(p,q;w) = \frac{1}{1620}pq(1+p)(2-p)(1-2p)w^{5} + O(w^{6}).
$$

Therefore, $F(p,q;w)$ can be of constant sign for each $w \in \mathbb{R}$ only if $p =$ $1/2(= q).$

Suppose now that I is of the form $I := [0, a)$ or $I := (-a, 0]$. Then there should be an $s, s \neq 0, s \in I$ such that

$$
W_{0,0}(p,q;x,y)W_{0,2s}(p,q;x,y) - (W_{0,s}(p,q;x,y))^2
$$

is of constant sign for each $x, y \in \mathbb{R}^+$.

Proceeding as above, this is equivalent to the assertion that $G(p, q; w)$ is of constant sign with

$$
G(p,q;w) := p^3 q^3 w^6 e^{\frac{2}{3}(p+1)w} (p e^{2w} + q - e^{2pw}) - (p e^w + q - e^{pw})^4.
$$

But,

$$
G(p,q;w) = \frac{2}{405}p^{4}q^{4}(1+p)(1+q)(q-p)w^{11} + O(w^{12}).
$$

Hence we conclude that $G(p, q; w)$ can be of constant sign for a sufficiently small w, $w \in \mathbb{R}$ only if $p = q = 1/2$. Combining this with the Feng Qi theorem, the assertion from Proposition 8 follows. \Box

References

- [1] Stolarsky, K.B., Generalizations of the logarithmic mean. Math. Mag. 48(2) (1975), 87-92.
- [2] Stolarsky, K.B., The power and generalized logarithmic means. Amer. Math. Monthly, 87(7) (1980), 545-548.
- [3] Leach, E.B., Sholander, M.C., Extended mean values. Amer. Math. Monthly 85 (2) (1978), 84-90.
- [4] Leach, E.B., Sholander, M.C., Multi-variable extended mean values. J. Math. Anal. Appl. 104 (1984), 390-407.
- [5] Pales, Z. Inequalities for differences of powers. J. Math. Anal. Appl. 131 (1988), 271-281.
- [6] Neuman, E., Pales, Z., On comparison of Stolarsky and Gini means. J. Math. Anal. Appl. 278 (2003), 274-284.
- [7] Neuman, E., Sandor, J. Inequalities involving Stolarsky and Gini means. Math. Pannonica 14(1) (2003), 29-44.
- [8] Czinder, P., Pales, Z., An extension of the Hermite-Hadamard inequality and an application for Gini and Stolarsky means. J. Ineq. Pure Appl. Math. 5(2) (2004), Art. 42.
- [9] Merikowski, J.K., Extending means of two variables to several variables. J. Ineq. Pure Appl. Math. 5(3) (2004), Art. 65.
- [10] Simić, S. On logarithmic convexity for differences of power meansJ. Ineq. Appl. Article ID 37359, 2007.
- [11] Qi, F., Logarithmic convexity of extended mean values. Proc. Amer. Math. Soc. 130 (6) (2001), 1787-1796.
- [12] Hardy, G.H., Littlewood, J.E., Pólya, G., Inequalities. Cambridge: Cambridge University Press, 1978.

Received by the editors September 16, 2008