SOME RESULTS FOR UNIVALENT FUNCTIONS DEFINED WITH RESPECT TO N-SYMMETRIC POINTS ${ }^{11}$

Nikola Tuneski ${ }^{2}$

Abstract

The criteria that embed a normalized analytic function in the class of functions that are starlike with respect to N -symmetric points are presented. The criteria are based on the quotient of analytical representations of starlikeness and convexity with respect to N-symmetric points.

AMS Mathematics Subject Classification (2000): 30C45
Key words and phrases: analytic, univalent, N-symmetric points, starlike, criteria

1. Introduction and preliminaries

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathcal{U}=\{z:|z|<1\}$ normalized so that $f(0)=f^{\prime}(0)-1=0$, i.e., of type $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$. Also let \mathcal{S} be the class of functions in \mathcal{A} that are univalent in \mathcal{U}.

In [5], K. Sakaguchi introduced the class of functions that are starlike with respect to N-symmetric points, $N=1,2,3, \ldots$, as follows

$$
\mathcal{S S P}_{N}=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f_{N}(z)}>0, z \in \mathcal{U}\right\}
$$

where

$$
f_{N}(z)=z+\sum_{m=2}^{\infty} a_{m \cdot N+1} z^{m \cdot N+1}
$$

In order to give geometric characterization of the class $\mathcal{S S P}_{N}$ for $N \geq 2$ we define $\varepsilon:=\exp (2 \pi i / N)$ and consider the weighted mean of $f \in \mathcal{A}$,

$$
M_{f, N}(z)=\frac{1}{\sum_{j=1}^{N-1} \varepsilon^{-j}} \cdot \sum_{j=1}^{N-1} \varepsilon^{-j} \cdot f\left(\varepsilon^{j} z\right) .
$$

[^0]It is easy to verify that

$$
\frac{f(z)-M_{f, N}(z)}{N}=\frac{1}{N} \cdot \sum_{j=0}^{N-1} \varepsilon^{-j} \cdot f\left(\varepsilon^{j} z\right)=f_{N}(z)
$$

and further

$$
\begin{aligned}
f_{N}\left(\varepsilon^{j} z\right) & =\varepsilon^{j} f_{N}(z) \\
f_{N}^{\prime}\left(\varepsilon^{j} z\right) & =f_{N}^{\prime}(z)=\frac{1}{N} \sum_{j=0}^{N-1} f^{\prime}\left(\varepsilon^{j} z\right) \\
\varepsilon^{j} f_{N}^{\prime \prime}\left(\varepsilon^{j} z\right) & =f_{N}^{\prime \prime}(z)=\frac{1}{N} \sum_{j=0}^{N-1} \varepsilon^{j} f^{\prime \prime}\left(\varepsilon^{j} z\right) .
\end{aligned}
$$

Now, the class $\mathcal{S S P}_{N}$ is collection of functions $f \in \mathcal{A}$ such that for any r close to $1, r<1$, the angular velocity of $f(z)$ about the point $M_{f, N}\left(z_{0}\right)$ is positive at $z=z_{0}$ as z traverses the circle $|z|=r$ in the positive direction.

For $N=1$ we obtain the well-known class of starlike functions, $S^{*} \equiv \mathcal{S S} \mathcal{P}_{1}$, such that $f(\mathcal{U})$ is a starlike region with respect to the origin, i.e., $t \omega \in f(\mathcal{U})$ whenever $\omega \in f(\mathcal{U})$ and $t \in[0,1]$ (for more details see [1]). One of its subclasses is the class of strongly starlike functions of order $\alpha, 0<\alpha \leq 1$, defined by

$$
\widetilde{S}^{*}(\alpha)=\left\{f \in \mathcal{A}:\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\alpha \pi}{2}, z \in \mathcal{U}\right\}
$$

For $N=2$ we obtain $2 f_{2}(z)=f(z)-f(-z), M_{f, 2}(z)=f(-z)$ and

$$
\mathcal{S S P} \equiv \mathcal{S S P}_{2}=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)-f(-z)}>0, z \in \mathcal{U}\right\}
$$

is the class of starlike functions with respect to symmetric points.
As for the inclusion properties of the class $\mathcal{S S P}_{N}$, in [3] it is shown that $\mathcal{S S P}_{N} \nsubseteq S^{*}$ and $S^{*} \nsubseteq \mathcal{S S} \mathcal{P}_{N}$ for $N \geq 2$. Coefficient estimates for $f \in \mathcal{S S P}_{N}$ are obtained in [5] and [7] and two-sided estimates for $|f(z)|$ and $\left|f^{\prime}(z)\right|$ in [3] and [7].

Further, a function $f \in \mathcal{A}$ belongs to the class \mathcal{K}_{N} of convex functions with respect to N-symmetric points if

$$
\operatorname{Re} \frac{\left[z f^{\prime}(z)\right]^{\prime}}{f_{N}^{\prime}(z)}>0, \quad z \in \mathcal{U}
$$

For $N=1$ we obtain the usual class of convex functions

$$
K \equiv \mathcal{K}_{1}=\left\{f \in \mathcal{A}: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in \mathcal{U}\right\}
$$

In this paper we study the classes defined above and obtain sufficient conditions for starlikeness with respect to N-symmetric points in terms of the operator

$$
I(f, N, a, b ; z)=\frac{a+b z f^{\prime \prime}(z) / f^{\prime}(z)}{z f_{N}^{\prime}(z) / f_{N}(z)}
$$

For $a=b=1$ we receive

$$
I(f, N, 1,1 ; z)=\frac{1+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f_{N}^{\prime}(z) / f_{N}(z)}=\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}
$$

which is the quotient of analytical representations of starlikeness and convexity with respect to N-symmetric points. The classical case when $N=1$ is studied in the following papers: $N=a=b=1$ in [6, [4], 10]; $N=b=1$ and a real in [8, 9]; and the most general case when $N=1$ and a, b real in [11].

2. Main result and consequences

To prove the main result of this section we need the following lemmas.
Lemma 2.1. [2] Let Ω be a subset of the complex plane \mathbb{C} and let function $\psi: \mathbb{C}^{2} \times \mathcal{U} \rightarrow \mathbb{C}$ satisfies $\psi(i x, y ; z) \notin \Omega$ for all real $x, y \leq-\frac{1+x^{2}}{2}$ and for all $z \in \mathcal{U}$. If the function $p(z)$ is analytic in $\mathcal{U}, p(0)=1$ and $\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega$ for all $z \in \mathcal{U}$ then $\operatorname{Re} p(z)>0, z \in \mathcal{U}$.

Lemma 2.2. Let $f \in \mathcal{A}$ and let a and b be real numbers. Also, let $\Omega=\mathbb{C} \backslash \Omega_{1}$, where

$$
\Omega_{1}=\left\{b+\frac{f_{N}(z)}{z f_{N}^{\prime}(z)}(a-b+b u i): z \in \mathcal{U}, u \in \mathbb{R},|u| \geq 1\right\}
$$

If $I(f, N, a, b ; z) \in \Omega, z \in \mathcal{U}$, then $f \in \mathcal{S S P}{ }_{N}$.
Proof. If we let $p(z)=\frac{z f^{\prime}(z)}{f_{N}(z)}$ then $p(z)$ is analytic in \mathcal{U} and $p(0)=1$. Further, for the function $\psi(r, s ; z)=b+\frac{f_{N}(z)}{z f_{N}^{\prime}(z)}\left(a-b+b \frac{s}{r}\right)$ we have

$$
\psi\left(p(z), z p^{\prime}(z) ; z\right)=b+\frac{f_{N}(z)}{z f_{N}^{\prime}(z)}\left(a-b+b \frac{z p^{\prime}(z)}{p(z)}\right)=I(f, N, a, b ; z)
$$

So, by Lemma 2.1, for proving $f \in \mathcal{S S P}_{N}$, or equivalently $\operatorname{Re} p(z)>0, z \in \mathcal{U}$, it is enough to show that $\psi(i x, y ; z) \in \Omega_{1}$ for all real $x, y \leq-\frac{1+x^{2}}{2}$ and for all $z \in \mathcal{U}$. Indeed

$$
\psi(i x, y ; z)=b+\frac{f_{N}(z)}{z f_{N}^{\prime}(z)}\left(a-b-b \frac{y}{x} i\right) \in \Omega_{1}
$$

because y / x attains all real numbers with absolute value greater than or equal to 1 .

This lemma leads to the following criteria for starlikeness with respect to N-symmetric points.

Theorem 2.1. Let $f \in \mathcal{A}, N \in \mathbb{N} \backslash\{1\}$ and let a and b be real numbers.
(i) If $f_{N} \in \widetilde{S}^{*}(\alpha)(0<\alpha<1), \frac{|b|}{a-b}>\tan \frac{\alpha \pi}{2}$ when $a-b>0$ and if

$$
|\arg [I(f, N, a, b ; z)-b]|<\lambda_{1} \equiv\left\{\begin{array}{cc}
\arctan \frac{|b|}{a-b}-\alpha \frac{\pi}{2}, & a-b>0 \\
(1-\alpha) \frac{\pi}{2}, & a-b \leq 0
\end{array}\right.
$$

for all $z \in \mathcal{U}$ then $f \in \mathcal{S S P}_{N}$.
(ii) If $\left|\frac{z f_{N}^{\prime}(z)}{f_{N}(z)}\right|>\frac{1}{\mu}(\mu>1)$ and

$$
\mid\left(I(f, N, a, b ; z)-b \mid<\lambda_{2} \equiv \mu \sqrt{(a-b)^{2}+b^{2}}\right.
$$

for all $z \in \mathcal{U}$ then $f \in \mathcal{S S P}_{N}$.
Proof. Let define two sets of complex numbers $\Sigma_{1}=\left\{w:|\arg (w-b)|<\lambda_{1}\right\}$ and $\Sigma_{2}=\left\{w:|w-b|<\lambda_{2}\right\}$. In view of Lemma 2.2, for proving (i) and (ii) it is enough to show that $\Sigma_{1} \subseteq \Omega$ and $\Sigma_{2} \subseteq \Omega$, respectively.
(i) We will show that $\Sigma_{1} \subseteq \Omega$ by verifying $\Sigma_{1} \cap \Omega_{1}=\emptyset$. If $w \in \Omega_{1}$ then for some $z \in \mathcal{U}, u \in \mathbb{R}$ and $|u| \geq 1$, we have

We continue with the proof having in mind that $f_{N} \in \widetilde{S}^{*}(\alpha)$ implies $\left|\arg \frac{f_{N}(z)}{z f_{N}^{\prime}(z)}\right|<$ $\alpha \frac{\pi}{2}, z \in \mathcal{U}$. In the case when $a-b>0$ we obtain

$$
\arctan \frac{|b|}{a-b}<|\arg (a-b+b u i)|<\frac{\pi}{2}
$$

and further

$$
|\arg (w-b)| \geq \arctan \frac{|b|}{a-b}-\alpha \frac{\pi}{2}=\lambda_{1}
$$

i.e., $w \notin \Sigma_{1}$. In the case $a-b \leq 0$ we have $w \notin \Sigma_{2}$ because

$$
|\arg (w-b)| \geq\left|\alpha \frac{\pi}{2}-\left(\frac{\pi}{2}+\arctan \frac{|a-b|}{\left|b_{n}\right|}\right)\right| \geq(1-\alpha) \frac{\pi}{2}=\lambda_{1}
$$

(ii) The proof of $\Sigma_{2} \subseteq \Omega$, i.e., $\Sigma_{2} \cap \Omega_{1}=\emptyset$ goes in a similar manner as in (i). If $w \in \Omega_{1}$ then $w \notin \Sigma_{2}$ because of

$$
\begin{aligned}
|w-b| & =\left|\frac{f_{N}(z)}{z f_{N}^{\prime}(z)} \cdot(a-b+b u i)\right|=\left|\frac{f_{N}(z)}{z f_{N}^{\prime}(z)}\right| \cdot \sqrt{(a-b)^{2}+b^{2} u^{2}} \\
& \geq \mu \sqrt{(a-b)^{2}+b^{2}}=\lambda_{2}
\end{aligned}
$$

Remark 2.1. In the statement of the theorem we impose $N \in \mathbb{N} \backslash\{1\}$ since for $N=1$ the statement has no sense.

For $a=b=1$ we obtain the following
Colorallary 2.1. Let $f \in \mathcal{A}$ and $N \in \mathbb{N} \backslash\{1\}$.
(i) If $f_{N} \in \widetilde{S}^{*}(\alpha)$ for some $0<\alpha<1$ and

$$
\left|\arg \left[\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}-1\right]\right|<(1-\alpha) \frac{\pi}{2}
$$

for all $z \in \mathcal{U}$ then $f \in \mathcal{S S} \mathcal{P}_{N}$.
(ii) If $\left|\frac{z f_{N}^{\prime}(z)}{f_{N}(z)}\right|>\frac{1}{\mu}$ for some $\mu>1$ and

$$
\left|\frac{\left[z f^{\prime}(z)\right]^{\prime} / f_{N}^{\prime}(z)}{z f^{\prime}(z) / f_{N}(z)}-1\right|<\mu
$$

for all $z \in \mathcal{U}$ then $f \in \mathcal{S S P}_{N}$.
For $a=0$ and $b=1$ we obtain
Colorallary 2.2. Let $f \in \mathcal{A}$ and $N \in \mathbb{N} \backslash\{1\}$.
(i) If $f_{N} \in \widetilde{S}^{*}(\alpha)$ for some $0<\alpha<1$ and

$$
\left|\arg \left[\frac{f_{N}(z) f^{\prime \prime}(z)}{f_{N}^{\prime}(z) f^{\prime}(z)}-1\right]\right|<(1-\alpha) \frac{\pi}{2}
$$

for all $z \in \mathcal{U}$ then $f \in \mathcal{S S} \mathcal{P}_{N}$.
(ii) If $\left|\frac{z f_{N}^{\prime}(z)}{f_{N}(z)}\right|>\frac{1}{\mu}$ for some $\mu>1$ and

$$
\left|\frac{f_{N}(z) f^{\prime \prime}(z)}{f_{N}^{\prime}(z) f^{\prime}(z)}-1\right|<\mu \sqrt{2}
$$

for all $z \in \mathcal{U}$ then $f \in \mathcal{S S} \mathcal{P}_{N}$.
For $a=1$ and $b=-1$ we receive
Colorallary 2.3. Let $f \in \mathcal{A}$ and $N \in \mathbb{N} \backslash\{1\}$.
(i) If $f_{N} \in \widetilde{S}^{*}(\alpha)$ for some $0<\alpha<1$ such that $\tan \frac{\alpha \pi}{2}<\frac{1}{2}$ and if

$$
\left|\arg \left[\frac{1-z f^{\prime \prime}(z) / f^{\prime}(z)}{z f_{N}^{\prime}(z) / f_{N}(z)}+1\right]\right|<\arctan \frac{1}{2}-\frac{\alpha \pi}{2}
$$

for all $z \in \mathcal{U}$ then $f \in \mathcal{S S P}_{N}$.
(ii) If $\left|\frac{z f_{N}^{\prime}(z)}{f_{N}(z)}\right|>\frac{1}{\mu}$ for some $\mu>1$ and

$$
\left|\frac{1-z f^{\prime \prime}(z) / f^{\prime}(z)}{z f_{N}^{\prime}(z) / f_{N}(z)}+1\right|<\mu \sqrt{5}
$$

for all $z \in \mathcal{U}$ then $f \in \mathcal{S S P}_{N}$.

References

[1] Duren, P.L., Univalent functions. New York: Springer-Verlag 1983.
[2] Miller, S., Mocanu P.T., Differential Subordinations. Theory and Applications. New and York-Basel: Marcel Dekker 2000.
[3] Nezhmetdinov, I.R., Ponnusamy, S., On the class of univalent functions starlike with respect to N-symmetric points. Hokkaido Math. J. 31 (1) (2002), 61-77.
[4] Obradović, M., Tuneski, N, On the starlike criteria defined by Silverman. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 24181 (2000), 59-64.
[5] Sakaguchi, K., On a certain univalent mapping. J. Math. Soc. Japan 11 (1959), 72-75.
[6] Silverman, H., Convex and starlike criteria. Int. J. Math. Math. Sci. 22 (1) (1999), 75-79.
[7] Singh, P., Tugel, M., On some univalent functions in the unit disk. Indian J. Pure Apl. Math. 12 (4) (1981), 513-520.
[8] Singh, V., Tuneski, N., On a Criteria for Starlikeness and Convexity of Analytic Functions. Acta Math. Sci. 24 (B4) (2004), 597-602.
[9] Tuneski, N., On a Criteria for Starlikeness of Analytic Functions. Integral Transform. Spec. Funct. 14 (3) (2003), 263-270.
[10] Tuneski, N., On the Quotient of the Representations of Convexity and Starlikeness. Math. Nach. 248-249 (2003), 200-203.
[11] Tuneski, N., Irmak, H., Starlikeness and convexity of a class of analytic functions. Internat. J. Math. Math. Sci. 2006, Art. ID 38089, 8 pp.

Received by the editors September 1, 2008

[^0]: ${ }^{1}$ The work on this paper was supported by the Joint Research Project financed by The Ministry of Education and Science of the Republic of Macedonia (MESRM) (Project No.171383/1) and The Scientific and Technical Research Council of Turkey (TUBITAK) (Project No. TBGA-U-105T056).
 ${ }^{2}$ Faculty of Mechanical Engineering, Karpoš II b.b., 1000 Skopje, Republic of Macedonia e-mail: nikolat@mf.edu.mk

