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ON THE NON-COMMUTATIVE NEUTRIX PRODUCT
INVOLVING SLOWLY VARYING FUNCTIONS1

Biljana Jolevska-Tuneska2

Abstract. Let L(x) be a slowly varying function at both zero and infin-
ity. The existence of the non-commutative neutrix convolution product of
the distributions xλ

+L(x) and xµ
− is proved, where λ, µ are real numbers

such that λ, µ /∈ −N and λ+µ /∈ −Z . Some other products of distributions
are obtained.
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1. Introduction

In the following we let D be the space of infinitely differentiable functions
with compact support and let D′ be the space of distributions defined on D.
The convolution product f ∗ g of two distributions f and g in D′ is then usually
defined as follows, see [2].

Definition 1.1. Let f and g be distributions in D′, satisfying at least one of
the following conditions:
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.
Then the convolution product f ∗ g is defined by

〈(f ∗ g)(x), ϕ(x)〉 = 〈f(y), 〈g(x), ϕ(x + y)〉〉
for an arbitrary ϕ in D.

It follows that if the convolution product f ∗g exists by this definition then

(1) f ∗ g = g ∗ f,

(2) (f ∗ g)′ = f ∗ g′ = f ′ ∗ g.

The convolution product of distributions may be defined in a more general
way yet, without the restrictions on the supports given above in a) or b). How-
ever, the convolution product in the sense of any of these definitions does not
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exist for many pairs of distributions. In [3] (and other papers) the neutrix con-
volution product was defined so it exists for a considerably larger class of pairs of
distributions. In that definition unit sequences of functions in D are used, which
allows one to approximate a given distribution by a sequence of distributions of
bounded support.

To recall the definition of the neutrix convolution product we, first of all, let
τ be a fixed function in D with the following properties:

(i) τ(x) = τ(−x),
(ii) 0 ≤ τ(x) ≤ 1,
(iii) τ(x) = 1, for |x| ≤ 1

2 ,
(iv) τ(x) = 0, for |x| ≥ 1.

Next we define the unit sequence {τn}n∈N of functions, setting

τn(x) =





1, |x| ≤ n,
τ(nnx− nn+1), x > n,
τ(nnx + nn+1), x < −n.

In order to define the neutrix convolution product, we need the following
definition given by Van der Corput (see [1]):

Definition 1.2. A neutrix N is a commutative additive group of functions
ν : N

′ → N
′′

(where the domain N
′
is a set and the range N

′′
is a commutative

additive group) with the property that if ν is in N and ν(ξ) = γ for all ξ in N
′

then γ = 0. The functions in N are said to be negligible.

Now suppose that N
′
is contained in a topological space with a limit point

b which is not in N
′
, and let N be a commutative additive group of functions

ν : N
′ → N

′′
with the property that if N contains a function of ξ which tends

to a finite limit γ as ξ tends to b, then γ = 0. It follows that N is a neutrix. If
now f : N

′ → N
′′

and there exists a constant β such that f(ξ)− β is negligible
in N, then β is called the neutrix limit of f(ξ) as ξ tends to b and we write
N−limξ→b f(ξ) = β. Note that if a neutrix limit exists, then it is unique, since
if f(ξ) = β and f(ξ) = β

′
are in N, then the constant function β − β

′
is also in

N and so β = β
′
.

In the following we let N be the neutrix having domain N
′

= N
= {1, 2, . . . , n, . . . } , range the real numbers, with negligible functions finite lin-
ear sums of the functions

nλ lnr−1 n, lnr n, (λ 6= 0, r = 1, 2, . . .)

and all functions which converge to zero in the usual sense as n tends to infinity.

Definition 1.3. Let f and g be distributions in D′ and let fn = fτn for n =
1, 2, . . . . Then the non-commutative neutrix convolution product f©∗ g is defined
as the neutrix limit of the sequence {fn ∗ g}n∈N, provided that the limit h exists
in the sense that

N−lim
n→∞

〈fn ∗ g, ϕ〉 = 〈h, ϕ〉,
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for all ϕ in D, where N is the neutrix described in Definition 1.2

Note that in this definition the convolution product fn ∗ g is in the sense of
Definition 1.1. Namely, the distribution fn has bounded support since the sup-
port of τn is contained in the interval [−n− n−n, n + n−n] . From the following
theorem, proved in [3], (see also [4]), it follows that the neutrix convolution prod-
uct from Definition 1.3 is a proper generalization of the ”classical” convolution
product of distributions from Definition 1.1.

Theorem 1.1. Let f and g be distributions in D′ satisfying either condition (a)
or condition (b) of Definition 1.1. Then the neutrix convolution product f ©∗ g
exists and

f ©∗ g = f ∗ g.

On using Definition 1.3, one can find several important neutrix products of
distributions, see [4].

Theorem 1.2. Let f and g be distributions in D′ and suppose that the neutrix
convolution f ©∗ g exists. Then the neutrix convolution f ©∗ g′exists and

(f ©∗ g)′ = f ©∗ g′.

If N−lim
n→∞

〈(fτ ′n) ∗ g, ϕ〉 exists and equals 〈h, ϕ〉 for all ϕ in D, then f ′©∗ g exists

and
(f ©∗ g)′ = f ′©∗ g + h.

Here and also throughout this paper L : (0,∞) → (0,∞) is a given locally
integrable function which satisfies the following condition:

(3) lim
x→0+

L(kx)
L(x)

= 1, for any k > 0,

(4) lim
x→∞

L(kx)
L(x)

= 1, for any k > 0.

A positive locally integrable function satisfying (3), (resp.(4)) is called resp.
slowly varying at zero (slowly varying at infinity). The first example of a func-
tion satisfying the relations (3) and (4) is the logarithm; other examples are
the positive powers and the iterations of the logarithm, e.g., ln3 and ln ln . An
exposition of the theory of slowly varying functions can be found in [6].

The distribution xλ
+L(x) is defined for different values of the real parameter

λ by:

〈xλ
+L(x), ϕ(x)〉 =

∫ ∞

0

xλL(x)ϕ(x)dx, if λ > −1,(5)

〈xλ
+L(x), ϕ(x)〉 =

∫ ∞

0

xλL(x)

[
ϕ(x)−

k−1∑

i=0

xi

i!
ϕi(0)

]
dx,
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if −k − 1 < λ < −k and k ∈ N.
The aim of this paper is to analyze several neutrix product involving slowly

varying functions. For that reason we now take the set of negligible functions
obtained by replacing the logarithmic function ln with the slowly varying func-
tion L. More precisely, our new neutrix, again denoted by N, will have the
domain N ′ = {1, 2, . . . , n, . . . } , the range of the real numbers R, with negligible
functions finite linear sums of the functions

nλ, nλL(n), Lr(n)

for all real λ 6= 0 and r ∈ N and all functions which converge to zero in the
usual sense, as n tends to infinity. In this way, we obtain a wide range of neutrix
products, involving the corresponding slowly varying functions.

2. Main Results

Before we turn to the announced neutrix products, we cite three statements
that we need later on.

Lemma 2.1. Let L(x) be a slowly varying function at infinity. Then
K(x) = L( 1

x ) is a slowly varying function at zero.

Theorem 2.1. Let L be a slowly varying function at infinity and let f be a
locally integrable function on the interval [a, b] with the property that

∫ b

a

xδ|f(x)| dx < ∞ for some δ > 0.

Then the integral

Φ(t) =
∫ b

a

f(x)L(tx) dx

exists and

Φ(t) ∼ L(t)
∫ b

a

f(x) dx as t → +∞.

Theorem 2.2. Let xλ
+L(x) be given by (5) for −k − 1 < λ < −k, k ∈ N and

L a slowly varying function at zero and at infinity. Then there exists a locally
integrable function K : (0,∞) → R which is both slowly varying at zero and at
infinity, and satisfies the following conditions:

(
xλ+k

+ K(x)
)(k)

= xλ
+L(x), K(x) ∼ ((λ + 1) · · · (λ + k))−1L(x),

as x → 0+ and as x → +∞.

Theorem 2.2 was proved in [7].
We now give our main theorem, which proves the existence of a neutrix con-

volution product involving a slowly varying function. Similar results involving
commutative neutrix convolution product were proved in [5].
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Theorem 2.3. Let L be a slowly varying function both at zero and at infinity,
with the parameters λ and µ satisfying the conditions

(6) λ, µ 6= −1,−2, . . . and λ + µ 6= 0,±1,±2, . . . .

Then the non-commutative neutrix convolution product

(7) xλ
+L(x)©∗ xµ

−

exists, and

(8)
[
xλ

+L(x)©∗ xµ
−

]′
=

[
xλ

+L(x)
]′©∗ xµ

−.

Proof. We will first suppose that λ, µ > −1 and λ + µ 6= −1, 0, 1, 2, . . . so
that xλ

+L(x) and xµ
− are locally summable functions. Put

[
xλ

+L(x)
]
n

= xλ
+L(x)τn(x) .

Then the convolution product
[
xλ

+L(x)
]
n
∗ xµ

− exists by Definition 1.1 and so:

[
xλ

+L(x)
]
n
∗ xµ

− =
∫ ∞

−∞

[
tλ+L(t)

]
n

(x− t)µ
− dt

=
∫ ∞

0

tλL(t)(x− t)µ
−τn(t) dt.

For 0 ≤ x ≤ n we have
∫ ∞

0

tλL(t)(x− t)µ
−τn(t) dt =

∫ n

x

tλL(t)(t− x)µ dt

+
∫ n+n−n

n

tλL(t)(t− x)µτn(t) dt.(9)

Making the substitution t = xnu, we have:

∫ n

x

tλL(t)(t− x)µ dt = xλ+µ+1nλ+1

∫ 1
x

1
n

uλ(nu− 1)µL(xnu) du.

On using Theorem 2 we can see that the right-hand side behaves as:

L(xn)n1+λ
[
(1 + λ + µ)n−λ−µx(1+λ+µ)Γ(−1− λ− µ)Γ(1 + µ)+

+ nΓ(−λ)2F1(−1− λ− µ,−µ;−λ− µ; x/n)] /(1 + λ + µ)Γ(−λ)

where 2F1(a, b; c; z) =
∞∑

k=0

akbk

ck

zk

k!
is the hypergeometric function. Now we have:

(10) N−lim
n→∞

∫ n

x

tλL(t)(t− x)µ dt = 0.
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When −n ≤ x ≤ 0, we have

∫ ∞

0

tλL(t)(x− t)µ
−τn(t) dt =

∫ x+n

0

tλL(t)(t− x)µ dt

+
∫ n+n−n

n

tλL(t)(t− x)µτn(t) dt.(11)

Making the substitution t = xn(1− u), we have:

∫ x+n

0
tλL(t)(t− x)µ dt =

= nλ+1xλ+µ+1
∫ 1

1− 1
n− 1

x
(1− u)λ(n− nu− 1)µL (xn(1− u)) du.

It follows as above that

(12) N−lim
n→∞

∫ x+n

0

tλL(t)(t− x)µ dt = 0.

Further, it is easily seen that∫ n+n−n

n

tλL(t)(t− x)µτn(t)τn(x− t)dt = O(n−n+λ+µL(n + n−n)) and so

(13) lim
n→∞

∫ n+n−n

n

tλL(t)(t− x)µτn(t)dt = 0.

Now it follows from equations (9), (10), (11), (12) and (13) that the neutrix
convolution product xλ

+L(x) ©∗ xµ
− exists and it is equal to zero, proving the

theorem for the case λ, µ > −1 and λ + µ 6= −1, 0, 1, 2, . . . .

In order to finish the proof of Theorem 2.3 we still have to consider the case
of arbitrary λ < −1 and µ < −1, satisfying (6).

To that end, let us assume that equation (8) holds and that the product
xλ

+L(x)©∗ xµ
− exists when −k < λ < −k+1 and any µ such that µ > −1, λ+µ 6=

−1, 0, 1, . . . . This is certainly true from what we have for k = 1. If −k − 1 <
λ < −k then the product

xλ
+K(x)©∗ xµ

− =
[
xλ+1

+ L(x)©∗ xµ
−

]′

exists and it follows from induction that xλ
+L(x)©∗ xµ

− exists for λ 6= −1,−2, . . . ,
µ > −1 and λ+µ 6= −1, 0, 1, . . . . Similar induction arguments on µ finally prove
the existence of the neutrix convolution product (7).

We still have to prove equation (8). First, integrating by parts we have
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[
xλ

+L(x)τ
′
n(x)

]
n
∗ [

xµ
−

]
=

∫ n+n−n

n

tλL(t)(t− x)µdτn(t)

= −nλL(n)(n− x)µ +

−λ

∫ n+n−n

n

tλ−1L(t)(t− x)µτn(t)dt

−
∫ n+n−n

n

tλL′(t)(t− x)µτn(t)dt

−µ

∫ n+n−n

n

tλL(t)(t− x)µ−1τn(t)dt.

First we have N−lim
n→∞

nλL(n)(n− x)µ = 0 .

Next

∣∣∣∣∣
∫ n+n−n

n

tλ−1L(t)(t− x)µτn(t)dt

∣∣∣∣∣ ≤ Cn−n+λ(|x|+ 2n)µ and so

lim
n→∞

∫ n+n−n

n

tλ−1L(t)(t− x)µτn(t)dt = 0.

Here C is a constant that we get estimating L(x) and using the property that
L(x) is a slowly varying function.

Similarly we have that
∣∣∣∣∣
∫ n+n−n

n

tλL′(t)(t− x)µτn(t)dt

∣∣∣∣∣ ≤ C1n
−n+λ(|x|+ 2n)µ, and

∣∣∣∣∣
∫ n+n−n

n

tλL(t)(t− x)µ−1τn(t)dt

∣∣∣∣∣ ≤ C2n
−n+λ(|x|+ 2n)µ−1 .

So

lim
n→∞

∫ n+n−n

n

tλL′(t)(t− x)µτn(t)dt = 0,

lim
n→∞

∫ n+n−n

n

tλL(t)(t− x)µ−1τn(t)dt = 0.

Using Theorem 1.2 and Theorem 2.2 it follows that
[
xλ

+L(x)©∗ xµ
−

]′
=

[
xλ

+L(x)
]′©∗ xµ

− = xλ−1
+ K(x)©∗ xµ

−

proving equation (8).
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