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QUASICONFORMAL AND HARMONIC MAPPINGS
BETWEEN SMOOTH JORDAN DOMAINS

David Kalaj1, Miodrag Mateljević2

Abstract. We present some recent results on the topic of quasiconformal
harmonic maps. The main result is that every quasiconformal harmonic
mapping w of C1,µ Jordan domain Ω1 onto C1,µ Jordan domain Ω is Lip-
schitz continuous, which is the property shared with conformal mappings.
In addition, if Ω has C2,µ boundary, then w is bi-Lipschitz continuous.
These results have been considered by the authors in various ways.
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1. Introduction

Let D and G be subdomains of the complex plane C. A homeomorphism
f : D 7→ G, where is said to be K-quasiconformal (K-q.c), K ≥ 1, if f is
absolutely continuous on almost every horizontal and almost every vertical line
and

(1.1)
∣∣∣∂f

∂x

∣∣∣
2

+
∣∣∣∂f

∂y

∣∣∣
2

≤
(

K +
1
K

)
Jf a.e. on D,

where Jf is the Jacobian of f (cf. [1], pp. 23–24). Note that the condition (1.1)
can be written as

|fz̄| ≤ k|fz| a.e. on D where k =
K − 1
K + 1

i.e. K =
1 + k

1− k
.

A function w is called harmonic in a region D if it is of the form w = u + iv
where u and v are real-valued harmonic functions in D. If D is simply-connected,
there exist two analytic functions g and h defined on D such that w has the
representation

w = g + h.

If w is a harmonic univalent function, then by Lewy’s theorem (see [14]), w
has a non-vanishing Jacobian and consequently, according to the inverse map-
ping theorem, w is a diffeomorphism.
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Let

P (r, x− ϕ) =
1− r2

2π(1− 2r cos(x− ϕ) + r2)

denote the Poisson kernel. Then every bounded harmonic function w defined
on the unit disk U := {z : |z| < 1} has the representation

(1.2) w(z) = P [f ](z) =
∫ 2π

0

P (r, x− ϕ)f(eix)dx,

where z = reiϕ and f is a bounded integrable function defined on the unit circle
S1.

Suppose γ is a rectifiable, directed, differentiable curve given by its arc-length
parametrization g(s), 0 ≤ s ≤ l, where l is the length of γ. Then |g′(s)| = 1
and s =

∫ s

0
|g′(t)|dt, for all s ∈ [0, l].

If γ is a twice-differentiable curve, then the curvature of γ at a point p = g(s)
is given by κγ(p) = |g′′(s)|. Let

(1.3) K(s, t) = Re [(g(t)− g(s)) · ig′(s)]

be a function defined on [0, l]× [0, l]. By K(s± l, t ± l) = K(s, t) we extend it
on R×R. Note that ig′(s) is the unit normal vector of γ at g(s) and therefore,
if γ is convex then

(1.4) K(s, t) ≥ 0 for every s and t.

We say that γ ∈ C1,µ, 0 < µ ≤ 1, if g ∈ C1 and

sup
t,s

|g′(t)− g′(s)|
|t− s|µ < ∞.

Let γ ∈ C1,µ be a Jordan curve such that the interior of γ contains the origin.
Let f be a C1,µ function from the unit circle onto γ and let F (x) = f(eix),
x ∈ [0, 2π). Then the functions ρ(x) = |F (x)| and θ(x) = arg F (x) mod 2π on
(0, 2π] have C1,µ extension on R. In the remainder of this paper we will use f
and F interchangeably and will write f ′(x) instead of F ′(x).

Suppose now that f : R 7→ γ is an arbitrary 2π periodic C1 function such
that f |[0,2π) : [0, 2π) 7→ γ is an orientation preserving bijective function.

Then there exists an increasing continuous function s : [0, 2π] 7→ [0, l] such
that

(1.5) f(ϕ) = g(s(ϕ)).

Hence
f ′(ϕ) = g′(s(ϕ)) · s′(ϕ),

and therefore
|f ′(ϕ)| = |g′(s(ϕ))| · |s′(ϕ)| = s′(ϕ).
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Along with the function K we will also consider the function Kf defined by

Kf (ϕ, x) = Re [(f(x)− f(ϕ)) · if ′(ϕ)].

It is easy to see that

(1.6) Kf (ϕ, x) = s′(ϕ)Re [(g(s(x))− g(s(ϕ)))·ig′(s(ϕ))] = s′(ϕ)K(s(ϕ), s(x)).

2. The Lipschitz continuity of q.c. harmonic mapping

The following lemma is a slight modifications of the corresponding lemma
in [8].

Lemma 2.1. Let γ be a C1,µ Jordan curve. Let g : [0, l] 7→ γ be a natural
parametrization and f : [0, 2π] 7→ γ, be arbitrary parametrization of γ. Then

(2.1) |K(s, t)| ≤ Cγ min{|s− t|1+µ, (l − |s− t|)1+µ}
and

(2.2) |Kf (ϕ, x)| ≤ Cγs′(ϕ)min{|s(ϕ)− s(x)|1+µ, (l − |s(ϕ)− s(x)|)1+µ},
where

Cγ =
1

1 + µ
sup

0≤t6=s≤l

|g′(t)− g′(s)|
|t− s|µ .

Here dγ(f(eiϕ), f(eix)) := min{|s(ϕ)− s(x)|, (l− |s(ϕ)− s(x)|)} is the distance
(shorter) between f(eiϕ) and f(eix) along γ which satisfies the relation

|f(eiϕ)− f(eix))| ≤ dγ(f(eiϕ), f(eix)) ≤ cγ |(f(eiϕ)− f(eix)|.
Moreover if γ has a bounded curvature then the relations (2.1) and (2.2) are

true for
Cγ = sup {|κγ(g(s))|/2 : s ∈ [0, l]}

and µ = 1. In this case

lim
t→s

K(s, t)
(s− t)2

=
|κγ(g(s))|

2
and lim

x→ϕ

Kf (ϕ, x)
(s(x)− s(ϕ))2

=
|κγ(g(s))|

2
s′(ϕ),

and the constant Cγ is the best possible.

Proof. Note that

K(s, t) = Re[(g(t)− g(s)) · ig′(s)]

= Re
[
(g(t)− g(s)) · i

(
g′(s)− g(t)− g(s)

t− s

)]
,

and

g′(s)− g(t)− g(s)
t− s

=
∫ t

s

g′(s)− g′(τ)
t− s

dτ.
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If γ has a bounded curvature then g′′ is bounded and
∣∣∣∣g′(s)−

g(t)− g(s)
t− s

∣∣∣∣ ≤
∫ t

s

|g′(s)− g′(τ)|
t− s

dτ

≤ sup
s≤x≤t

|g′′(x)| ·
∫ t

s

τ − s

t− s
dτ =

1
2

sup
s≤x≤t

|g′′(x)|(t− s).

On the other hand

|g(t)− g(s)| ≤ sup
s≤x≤t

|g′(x)|(t− s) = (t− s),

and thus

|K(s, t)| ≤ 1
2

sup
s≤x≤t

|g′′(x)|(s− t)2.

It follows that the inequality (2.1) holds for Cγ = supp |κγ(p)|/2 and µ = 1.
From (2.1) and (1.6) we obtain (2.2). Since

∂

∂s
K(s, t) = Re [(g(t)− g(s)) · ig′′(s)],

it follows that

lim
t→s

Kg(s, t)
(s− t)2

= lim
t→s

Re [(g(t)− g(s)) · ig′′(s)]
2(s− t)

= Re [−g′(s) · ig′′(s)]/2 = ε|g′′(s)|/2 = κγ(s)/2.

Here ε = 1 if κγ > 0 and ε = −1 if κγ < 0. Similarly we can prove the case
γ ∈ C1,µ. 2

Lemma 2.2. [8] Let w = u+iv be a differentiable function defined on U. Then:

(2.3) Jw(reiϕ) = uxvy − uyvx = |wz|2 − |wz|2 =
1
r
(urvϕ − uϕvr)

and

(2.4) D(w)(reiϕ) := |wz|2 + |wz|2 =
|∂rw|2

2
+
|∂ϕw|2

2r2
.

If in addition we suppose that w = P [f ](z), where f ∈ C1,µ, f : S1 7→ γ, then
there exist continuous functions Jw and D(w) on the unit circle defined by:

(2.5) Jw(eiϕ) = lim
r→1

Jw(reiϕ)

and

(2.6) D(w)(eiϕ) = lim
r→1

D(w)(eiϕ) = lim
r→1

|∂rw(reiϕ)|2
2

+
|f ′(ϕ)|2

2
.
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Proposition 2.3 (Kellogg). Let γ ∈ C1,µ be a Jordan curve and let Ω = Int(Γ).
If ω is a conformal mapping of U onto Ω, then ω′ and ln ω′ are in Lipµ. In
particular, |ω′| is bounded from above and below by positive constants on U.

For the proof, see for example [12].
The following lemma is a generalization of Mori’s Theorem, (cf. [1]).

Lemma 2.4. If w is a K quasiconformal function between the unit disk and
a Jordan domain Ω with C1,µ boundary γ, then there exists a constant CK

depending only on γ and on w(0) such that

|w(z1)− w(z2)| ≤ CK |z1 − z2|α, α =
1− k

1 + k
, z1, z2 ∈ U .

Note that the constant α is the best possible (in general case).
In the following lemma, we give some estimates for the Jacobian of a har-

monic univalent function. It is a slight improvement of [8, Lemma 2.7].

Lemma 2.5. Let w = P [f ](z) be a harmonic function between the unit disk U
and the Jordan domain Ω, such that f is injective, f ∈ C1,µ, and ∂Ω = f(S1) ∈
C1,µ. Then for

C1 =
π

4(1 + µ)
sup
s6=t

|g′(s)− g′(t)|
(s− t)µ

one has

(2.7) lim
z→eiϕ

Jw(z) ≤ C1|f ′(ϕ)|
∫ π

−π

dγ(f(ei(ϕ+x)), f(eiϕ))1+µ

x2
dx

for all eiϕ ∈ S1.

Proof. Since f ∈ C1,µ, by the proof of the Lemma 2.2 it follows that the partial
derivatives of the function w have continuous extensions on the boundary. Since

F (x) = ρ(x)eiθ(x),

we obtain
ur(eiϕ) = lim

z→eiϕ
ur(z), vr(eiϕ) = lim

z→eiϕ
vr(z),

lim
z→eiϕ

uϕ(z) = Re
∂

∂ϕ

(
ρ(ϕ)eiθ(ϕ)

)
= ρ′(ϕ) cos θ(ϕ)− ρ(ϕ)θ′(ϕ) sin θ(ϕ)

and

lim
z→eiϕ

vϕ(z) = Im
∂

∂ϕ

(
ρ(ϕ)eiθ(ϕ)

)
= ρ′(ϕ) sin θ(ϕ) + ρ(ϕ)θ′(ϕ) cos θ(ϕ).
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Observe that u(eiϕ) = ρ(ϕ) cos θ(ϕ) and v(eiϕ) = ρ(ϕ) sin θ(ϕ). Thus:

lim
z→eiϕ

Jw(reiϕ) = lim
r→1

1
r
(urvϕ − uϕvr)

= lim
r→1

(
u(reiϕ)− u(eiϕ)

1− r

)
(ρ′(ϕ) sin θ(ϕ) + ρ(ϕ)θ′(ϕ) cos θ(ϕ))

− lim
r→1

(
v(reiϕ)− v(eiϕ)

1− r

)
(ρ′(ϕ) cos θ(ϕ)− ρ(ϕ)θ′(ϕ) sin θ(ϕ))

= lim
r→1

∫ π

−π

Kf (x, ϕ)
P (r, ϕ− x)

1− r
dx

= lim
r→1

∫ π

−π

Kf (x + ϕ, ϕ)
P (r, x)
1− r

dx.

According to (2.2)

|Kf (x + ϕ,ϕ)| ≤ Cγ |f ′(ϕ)|dγ(f(ei(ϕ+x)), f(eiϕ))1+µ.

On the other hand, using the inequality |t| ≤ π/2| sin t| for −π/2 ≤ t ≤ π/2, we
obtain

P (r, x)
1− r

=
1 + r

2π(1 + r2 − 2r cosx)
≤ 1

π((1− r)2 + 4r sin2 x/2)
≤ π

4rx2

for 0 < r < 1 and x ∈ [−π, π]. Thus,

lim
r→1

∫ π

−π

K(x, ϕ)
P (r, ϕ− x)

1− r
dx ≤ πCγ

4
|f ′(ϕ)|

∫ π

−π

dγ(f(ei(ϕ+x)), f(eiϕ))1+µ

x2
dx.

The inequality now holds for

C1 =
π

4(1 + µ)
sup
s6=t

|g′(s)− g′(t)|
(s− t)µ

.

2

Using Lemma 2.2, Proposition 2.3, Lemma 2.4 and Lemma 2.5 we obtain:

Theorem 2.6. [8] Let w = P [f ](z) be a K q.c. harmonic function between the
unit disk and a Jordan domain Ω, such that w(0) = 0. If γ = ∂Ω ∈ C1,µ, then
there exists a constant C ′ = C ′(γ,K) such that

(2.8) |f ′(ϕ)| ≤ C ′ for almost every ϕ ∈ [0, 2π],

and

(2.9) |w(z1)− w(z2)| ≤ KC ′|z1 − z2| for z1, z2 ∈ U.
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Notice that Theorem 2.6 is a generalization of the corresponding result for
the harmonic q.c. of the unit disk onto itself, see [19]. Theorem 2.6 has its
extension to the class of q.c. mappings satisfying the differential inequality
|∆w| ≤ M |wz||wz̄| (see [11]).

Example 2.7 ([3]). Let Pn be a regular n−polygon. Then the function

w(z) =
∫ z

0

(1− zn)−2/ndz

is a conformal mapping of the unit disk onto the polygon Pn. However w′(z) =
(1− zn)−2/n is an unbounded function on the unit disk and thus the condition
γ ∈ C1,µ in Theorem 2.6 is important.

Corollary 2.8. [8] Let w be a quasiconformal harmonic mapping between Jor-
dan domains Ω and Ω1, such that w(0) = 0. If γ = ∂Ω ∈ C1,µ and γ1 = ∂Ω1 ∈
C1,µ1 , 0 < µ, µ1 ≤ 1, then there exist the constants C and C1 depending on γ
and γ1 such that

(2.10) |w(z1)− w(z2)| ≤ C|z1 − z2|

and

(2.11) D(w)(z) = |wz(z)|2 + |wz̄(z)|2 ≤ C1.

3. The bi-Lipschitz continuity of q.c. harmonic mappings

The following theorem provides a necessary and sufficient condition for the
q.c. harmonic extension of a homeomorphism from the unit circle to a C1,µ

convex Jordan curve. It is an extension of the corresponding theorem of Pavlović
([19]):

Theorem 3.1. [8] Let f : S1 7→ γ be an orientation preserving absolutely
continuous homeomorphism of the unit circle onto a convex Jordan curve γ ∈
C1,µ. Then w = P [f ] is a quasiconformal mapping if and only if

(3.1) 0 < ess inf |f ′(ϕ)|,

(3.2) ess sup |f ′(ϕ)| < ∞

and

(3.3) ess sup
ϕ

∣∣∣∣
∫ π

0

f ′(ϕ + t)− f ′(ϕ− t)
tan t/2

dt

∣∣∣∣ < ∞.

Let us note that the hypothesis ”absolutely continuous” in the previous the-
orem is needed, although this theorem appeared in [8] without this hypothesis.
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Example 3.2 ([7]). Let

θ(ϕ) =
2 + b(cos(log |ϕ|)− sin(log |ϕ|))
2 + b(cos(log π)− sin(log π))

ϕ, ϕ ∈ [−π, π],

where 0 < b < 1. Then the function w(z) = P [f ](z) = P [eiθ(ϕ)](z) is a qua-
siconformal mapping of the unit disk onto itself such that f ′(ϕ) does not exist
for ϕ = 0.

Hence a q.c. harmonic function does not have necessarily a C1 extension to
the boundary as in conformal case.

Corollary 3.3. [8] Let w be a K quasiconformal harmonic function between
a Jordan domain Ω and a convex Jordan domain Ω1, such that w(0) = 0 and
∂Ω, ∂Ω1 ∈ C1,µ. Then w is bi-Lipschitz, i.e. there exists a constant L ≥ 1 such
that

(3.4) L−1|z1 − z2| < |w(z1)− w(z2)| < L|z1 − z2|, z1, z2 ∈ Ω.

Moreover, there exists CD = C(K, Ω, Ω1) ≥ 1 such that

(3.5) 1/CD ≤ |D(w)(z)| ≤ CD, for z ∈ Ω.

One of the recent results of the first author is the following theorem. It is
an extension of Corollary 3.3 for a nonconvex case.

Theorem 3.4. [9] Let w = f(z) be a K quasiconformal harmonic mapping
between a Jordan domain Ω with C1,µ boundary and a Jordan domain Ω1 with
C2,µ boundary. Let in addition a ∈ Ω and b = f(a). Then w is bi-Lipschitz.
Moreover there exists a positive constant c = c(K, Ω, Ω1, a, b) ≥ 1 such that

(3.6)
1
c
|z1 − z2| ≤ |f(z1)− f(z2)| ≤ c|z1 − z2|, z1, z2 ∈ Ω.

First, we need to introduce some notations:
We write Lf = Lf (z) = |∂f(z)|+ |∂̄f(z)| and lf = lf (z) = |∂f(z)| − |∂̄f(z)|, if
∂f(z) and ∂̄f(z) exist.

In [13], the following results have been obtained (see also [15]) :

Theorem 3.5. Let f be a k-qc euclidean harmonic diffeomorphism from the
upper half-plane H onto itself and K = 1+k

1−k . Then f is a (1/K, K) quasi-
isometry with respect to the Poincaré distance dh.

Outline of the proof: Precomposing f with a linear fractional transformation,
we can suppose that f(∞) = ∞ and therefore we can write f in the form
f = u + iy = 1

2 (F (z) + z + F (z)− z), where F is a holomorphic function in H.
Hence the complex dilatation µf = F ′(z)−1

F ′(z)+1 , Lf (z) = 1
2 (|F ′(z)+1|+ |F ′(z)−1|)

and lf (z) = 1
2 (|F ′(z) + 1| − |F ′(z)− 1|); which yields

1 + 1/K 6 |F ′(z) + 1| 6 K + 1, 1− 1/K 6 |F ′(z)− 1| 6 K − 1
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and therefore it follows

1 6 Lf (z) =
1
2
(|F ′(z) + 1|+ |F ′(z)− 1|) 6 K,

and consequently
lf (z) ≥ Lf (z)/K ≥ 1/K.

Now using a known procedure, we obtain

(3.7)
1
K
|z2 − z1| ≤ |f(z2)− f(z1)| ≤ K |z2 − z1| z1, z2 ∈ H,

(3.8)
1− k

1 + k
dh(z1, z2) 6 dh(f(z1), f(z2)) 6 1 + k

1− k
dh(z1, z2) z1, z2 ∈ H.

Both estimates are sharp (see also [4], [6] for an estimate with some constant
c(K) in (3.7)). 2

The following generalization of Theorem 3.4 will appear in [18].
Ii is partially based on the results obtained in [9] and on Bochner formula

for harmonic maps.

Theorem 3.6. [18] Let w be a C2 K quasiconformal mapping of the unit disk
onto a C2,α Jordan domain. Let ρ be a C1 metric on Ω of non-negative curvature
and w ρ-harmonic, that is

wzz̄ + (log ρ)wwzwz̄ = 0.

Then Jw 6= 0 and w is bi-Lipschitz.

Finally, notice that the proof of Theorem 3.1, which was published in [8],
can be also based on the results presented in [16] and [17].
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