QUASICONFORMAL AND HARMONIC MAPPINGS BETWEEN SMOOTH JORDAN DOMAINS

David Kalaj ${ }^{11}$, Miodrag Mateljevic ${ }^{[2]}$

Abstract

We present some recent results on the topic of quasiconformal harmonic maps. The main result is that every quasiconformal harmonic mapping w of $C^{1, \mu}$ Jordan domain Ω_{1} onto $C^{1, \mu}$ Jordan domain Ω is Lipschitz continuous, which is the property shared with conformal mappings. In addition, if Ω has $C^{2, \mu}$ boundary, then w is bi-Lipschitz continuous. These results have been considered by the authors in various ways.

AMS Mathematics Subject Classification (2000): Primary 30C55, Secondary 31C05
Key words and phrases: Planar harmonic mappings, Quasiconformal mappings, Planar domains

1. Introduction

Let D and G be subdomains of the complex plane C. A homeomorphism $f: D \mapsto G$, where is said to be K-quasiconformal (K-q.c), $K \geq 1$, if f is absolutely continuous on almost every horizontal and almost every vertical line and

$$
\begin{equation*}
\left|\frac{\partial f}{\partial x}\right|^{2}+\left|\frac{\partial f}{\partial y}\right|^{2} \leq\left(K+\frac{1}{K}\right) J_{f} \quad \text { a.e. on } D \tag{1.1}
\end{equation*}
$$

where J_{f} is the Jacobian of f (cf. [1], pp. 23-24). Note that the condition (1.1) can be written as

$$
\left|f_{\bar{z}}\right| \leq k\left|f_{z}\right| \quad \text { a.e. on } D \text { where } k=\frac{K-1}{K+1} \text { i.e. } K=\frac{1+k}{1-k} .
$$

A function w is called harmonic in a region D if it is of the form $w=u+i v$ where u and v are real-valued harmonic functions in D. If D is simply-connected, there exist two analytic functions g and h defined on D such that w has the representation

$$
w=g+\bar{h}
$$

If w is a harmonic univalent function, then by Lewy's theorem (see [14]), w has a non-vanishing Jacobian and consequently, according to the inverse mapping theorem, w is a diffeomorphism.

[^0]Let

$$
P(r, x-\varphi)=\frac{1-r^{2}}{2 \pi\left(1-2 r \cos (x-\varphi)+r^{2}\right)}
$$

denote the Poisson kernel. Then every bounded harmonic function w defined on the unit disk $\mathbf{U}:=\{z:|z|<1\}$ has the representation

$$
\begin{equation*}
w(z)=P[f](z)=\int_{0}^{2 \pi} P(r, x-\varphi) f\left(e^{i x}\right) d x \tag{1.2}
\end{equation*}
$$

where $z=r e^{i \varphi}$ and f is a bounded integrable function defined on the unit circle S^{1}.

Suppose γ is a rectifiable, directed, differentiable curve given by its arc-length parametrization $g(s), 0 \leq s \leq l$, where l is the length of γ. Then $\left|g^{\prime}(s)\right|=1$ and $s=\int_{0}^{s}\left|g^{\prime}(t)\right| d t$, for all $s \in[0, l]$.

If γ is a twice-differentiable curve, then the curvature of γ at a point $p=g(s)$ is given by $\kappa_{\gamma}(p)=\left|g^{\prime \prime}(s)\right|$. Let

$$
\begin{equation*}
K(s, t)=\operatorname{Re}\left[\overline{(g(t)-g(s))} \cdot i g^{\prime}(s)\right] \tag{1.3}
\end{equation*}
$$

be a function defined on $[0, l] \times[0, l]$. By $K(s \pm l, t \pm l)=K(s, t)$ we extend it on $\mathbb{R} \times \mathbb{R}$. Note that $i g^{\prime}(s)$ is the unit normal vector of γ at $g(s)$ and therefore, if γ is convex then

$$
\begin{equation*}
K(s, t) \geq 0 \text { for every } s \text { and } t \tag{1.4}
\end{equation*}
$$

We say that $\gamma \in C^{1, \mu}, 0<\mu \leq 1$, if $g \in C^{1}$ and

$$
\sup _{t, s} \frac{\left|g^{\prime}(t)-g^{\prime}(s)\right|}{|t-s|^{\mu}}<\infty
$$

Let $\gamma \in C^{1, \mu}$ be a Jordan curve such that the interior of γ contains the origin. Let f be a $C^{1, \mu}$ function from the unit circle onto γ and let $F(x)=f\left(e^{i x}\right)$, $x \in[0,2 \pi)$. Then the functions $\rho(x)=|F(x)|$ and $\theta(x)=\arg F(x) \bmod 2 \pi$ on $(0,2 \pi]$ have $C^{1, \mu}$ extension on \mathbb{R}. In the remainder of this paper we will use f and F interchangeably and will write $f^{\prime}(x)$ instead of $F^{\prime}(x)$.

Suppose now that $f: \mathbb{R} \mapsto \gamma$ is an arbitrary 2π periodic C^{1} function such that $\left.f\right|_{[0,2 \pi)}:[0,2 \pi) \mapsto \gamma$ is an orientation preserving bijective function.

Then there exists an increasing continuous function $s:[0,2 \pi] \mapsto[0, l]$ such that

$$
\begin{equation*}
f(\varphi)=g(s(\varphi)) \tag{1.5}
\end{equation*}
$$

Hence

$$
f^{\prime}(\varphi)=g^{\prime}(s(\varphi)) \cdot s^{\prime}(\varphi)
$$

and therefore

$$
\left|f^{\prime}(\varphi)\right|=\left|g^{\prime}(s(\varphi))\right| \cdot\left|s^{\prime}(\varphi)\right|=s^{\prime}(\varphi)
$$

Along with the function K we will also consider the function K_{f} defined by

$$
K_{f}(\varphi, x)=\operatorname{Re}\left[\overline{(f(x)-f(\varphi))} \cdot i f^{\prime}(\varphi)\right]
$$

It is easy to see that
(1.6) $K_{f}(\varphi, x)=s^{\prime}(\varphi) \operatorname{Re}\left[\overline{(g(s(x))-g(s(\varphi)))} \cdot i g^{\prime}(s(\varphi))\right]=s^{\prime}(\varphi) K(s(\varphi), s(x))$.

2. The Lipschitz continuity of q.c. harmonic mapping

The following lemma is a slight modifications of the corresponding lemma in [8].

Lemma 2.1. Let γ be a $C^{1, \mu}$ Jordan curve. Let $g:[0, l] \mapsto \gamma$ be a natural parametrization and $f:[0,2 \pi] \mapsto \gamma$, be arbitrary parametrization of γ. Then

$$
\begin{equation*}
|K(s, t)| \leq C_{\gamma} \min \left\{|s-t|^{1+\mu},(l-|s-t|)^{1+\mu}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|K_{f}(\varphi, x)\right| \leq C_{\gamma} s^{\prime}(\varphi) \min \left\{|s(\varphi)-s(x)|^{1+\mu},(l-|s(\varphi)-s(x)|)^{1+\mu}\right\} \tag{2.2}
\end{equation*}
$$

where

$$
C_{\gamma}=\frac{1}{1+\mu} \sup _{0 \leq t \neq s \leq l} \frac{\left|g^{\prime}(t)-g^{\prime}(s)\right|}{|t-s|^{\mu}}
$$

Here $d_{\gamma}\left(f\left(e^{i \varphi}\right), f\left(e^{i x}\right)\right):=\min \{|s(\varphi)-s(x)|,(l-|s(\varphi)-s(x)|)\}$ is the distance (shorter) between $f\left(e^{i \varphi}\right)$ and $f\left(e^{i x}\right)$ along γ which satisfies the relation

$$
\left.\mid f\left(e^{i \varphi}\right)-f\left(e^{i x}\right)\right)\left|\leq d_{\gamma}\left(f\left(e^{i \varphi}\right), f\left(e^{i x}\right)\right) \leq c_{\gamma}\right|\left(f\left(e^{i \varphi}\right)-f\left(e^{i x}\right) \mid\right.
$$

Moreover if γ has a bounded curvature then the relations (2.1) and (2.2) are true for

$$
C_{\gamma}=\sup \left\{\left|\kappa_{\gamma}(g(s))\right| / 2: s \in[0, l]\right\}
$$

and $\mu=1$. In this case

$$
\lim _{t \rightarrow s} \frac{K(s, t)}{(s-t)^{2}}=\frac{\left|\kappa_{\gamma}(g(s))\right|}{2} \text { and } \lim _{x \rightarrow \varphi} \frac{K_{f}(\varphi, x)}{(s(x)-s(\varphi))^{2}}=\frac{\left|\kappa_{\gamma}(g(s))\right|}{2} s^{\prime}(\varphi)
$$

and the constant C_{γ} is the best possible.
Proof. Note that

$$
\begin{aligned}
K(s, t) & =\operatorname{Re}\left[\overline{(g(t)-g(s))} \cdot i g^{\prime}(s)\right] \\
& =\operatorname{Re}\left[\overline{(g(t)-g(s))} \cdot i\left(g^{\prime}(s)-\frac{g(t)-g(s)}{t-s}\right)\right]
\end{aligned}
$$

and

$$
g^{\prime}(s)-\frac{g(t)-g(s)}{t-s}=\int_{s}^{t} \frac{g^{\prime}(s)-g^{\prime}(\tau)}{t-s} d \tau
$$

If γ has a bounded curvature then $g^{\prime \prime}$ is bounded and

$$
\begin{aligned}
\left|g^{\prime}(s)-\frac{g(t)-g(s)}{t-s}\right| & \leq \int_{s}^{t} \frac{\left|g^{\prime}(s)-g^{\prime}(\tau)\right|}{t-s} d \tau \\
& \leq \sup _{s \leq x \leq t}\left|g^{\prime \prime}(x)\right| \cdot \int_{s}^{t} \frac{\tau-s}{t-s} d \tau=\frac{1}{2} \sup _{s \leq x \leq t}\left|g^{\prime \prime}(x)\right|(t-s)
\end{aligned}
$$

On the other hand

$$
|\overline{g(t)-g(s)}| \leq \sup _{s \leq x \leq t}\left|g^{\prime}(x)\right|(t-s)=(t-s)
$$

and thus

$$
|K(s, t)| \leq \frac{1}{2} \sup _{s \leq x \leq t}\left|g^{\prime \prime}(x)\right|(s-t)^{2}
$$

It follows that the inequality (2.1) holds for $C_{\gamma}=\sup _{p}\left|\kappa_{\gamma}(p)\right| / 2$ and $\mu=1$. From (2.1) and (1.6) we obtain (2.2). Since

$$
\frac{\partial}{\partial s} K(s, t)=\operatorname{Re}\left[\overline{(g(t)-g(s))} \cdot i g^{\prime \prime}(s)\right]
$$

it follows that

$$
\begin{aligned}
\lim _{t \rightarrow s} \frac{K_{g}(s, t)}{(s-t)^{2}} & =\lim _{t \rightarrow s} \frac{\operatorname{Re}\left[\overline{(g(t)-g(s))} \cdot i g^{\prime \prime}(s)\right]}{2(s-t)} \\
& =\operatorname{Re}\left[\overline{-g^{\prime}(s)} \cdot i g^{\prime \prime}(s)\right] / 2=\varepsilon\left|g^{\prime \prime}(s)\right| / 2=\kappa_{\gamma}(s) / 2
\end{aligned}
$$

Here $\varepsilon=1$ if $\kappa_{\gamma}>0$ and $\varepsilon=-1$ if $\kappa_{\gamma}<0$. Similarly we can prove the case $\gamma \in C^{1, \mu}$.

Lemma 2.2. [8] Let $w=u+i v$ be a differentiable function defined on \mathbf{U}. Then:

$$
\begin{equation*}
J_{w}\left(r e^{i \varphi}\right)=u_{x} v_{y}-u_{y} v_{x}=\left|w_{z}\right|^{2}-\left|w_{\bar{z}}\right|^{2}=\frac{1}{r}\left(u_{r} v_{\varphi}-u_{\varphi} v_{r}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
D(w)\left(r e^{i \varphi}\right):=\left|w_{z}\right|^{2}+\left|w_{\bar{z}}\right|^{2}=\frac{\left|\partial_{r} w\right|^{2}}{2}+\frac{\left|\partial_{\varphi} w\right|^{2}}{2 r^{2}} \tag{2.4}
\end{equation*}
$$

If in addition we suppose that $w=P[f](z)$, where $f \in C^{1, \mu}, f: S^{1} \mapsto \gamma$, then there exist continuous functions J_{w} and $D(w)$ on the unit circle defined by:

$$
\begin{equation*}
J_{w}\left(e^{i \varphi}\right)=\lim _{r \rightarrow 1} J_{w}\left(r e^{i \varphi}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
D(w)\left(e^{i \varphi}\right)=\lim _{r \rightarrow 1} D(w)\left(e^{i \varphi}\right)=\lim _{r \rightarrow 1} \frac{\left|\partial_{r} w\left(r e^{i \varphi}\right)\right|^{2}}{2}+\frac{\left|f^{\prime}(\varphi)\right|^{2}}{2} \tag{2.6}
\end{equation*}
$$

Proposition 2.3 (Kellogg). Let $\gamma \in C^{1, \mu}$ be a Jordan curve and let $\Omega=\operatorname{Int}(\Gamma)$. If ω is a conformal mapping of \mathbf{U} onto Ω, then ω^{\prime} and $\ln \omega^{\prime}$ are in Lip . In particular, $\left|\omega^{\prime}\right|$ is bounded from above and below by positive constants on \mathbf{U}.

For the proof, see for example [12].
The following lemma is a generalization of Mori's Theorem, (cf. [1]).
Lemma 2.4. If w is a K quasiconformal function between the unit disk and a Jordan domain Ω with $C^{1, \mu}$ boundary γ, then there exists a constant C_{K} depending only on γ and on $w(0)$ such that

$$
\left|w\left(z_{1}\right)-w\left(z_{2}\right)\right| \leq C_{K}\left|z_{1}-z_{2}\right|^{\alpha}, \quad \alpha=\frac{1-k}{1+k}, \quad z_{1}, z_{2} \in \mathbf{U}
$$

Note that the constant α is the best possible (in general case).
In the following lemma, we give some estimates for the Jacobian of a harmonic univalent function. It is a slight improvement of [8, Lemma 2.7].

Lemma 2.5. Let $w=P[f](z)$ be a harmonic function between the unit disk \mathbf{U} and the Jordan domain Ω, such that f is injective, $f \in C^{1, \mu}$, and $\partial \Omega=f\left(S^{1}\right) \in$ $C^{1, \mu}$. Then for

$$
C_{1}=\frac{\pi}{4(1+\mu)} \sup _{s \neq t} \frac{\left|g^{\prime}(s)-g^{\prime}(t)\right|}{(s-t)^{\mu}}
$$

one has

$$
\begin{equation*}
\lim _{z \rightarrow e^{i \varphi}} J_{w}(z) \leq C_{1}\left|f^{\prime}(\varphi)\right| \int_{-\pi}^{\pi} \frac{d_{\gamma}\left(f\left(e^{i(\varphi+x)}\right), f\left(e^{i \varphi}\right)\right)^{1+\mu}}{x^{2}} d x \tag{2.7}
\end{equation*}
$$

for all $e^{i \varphi} \in S^{1}$.

Proof. Since $f \in C^{1, \mu}$, by the proof of the Lemma[2.2 it follows that the partial derivatives of the function w have continuous extensions on the boundary. Since

$$
F(x)=\rho(x) e^{i \theta(x)}
$$

we obtain

$$
\begin{gathered}
u_{r}\left(e^{i \varphi}\right)=\lim _{z \rightarrow e^{i \varphi}} u_{r}(z), \quad v_{r}\left(e^{i \varphi}\right)=\lim _{z \rightarrow e^{i \varphi}} v_{r}(z) \\
\lim _{z \rightarrow e^{i \varphi}} u_{\varphi}(z)=\operatorname{Re} \frac{\partial}{\partial \varphi}\left(\rho(\varphi) e^{i \theta(\varphi)}\right)=\rho^{\prime}(\varphi) \cos \theta(\varphi)-\rho(\varphi) \theta^{\prime}(\varphi) \sin \theta(\varphi)
\end{gathered}
$$

and

$$
\lim _{z \rightarrow e^{i \varphi}} v_{\varphi}(z)=\operatorname{Im} \frac{\partial}{\partial \varphi}\left(\rho(\varphi) e^{i \theta(\varphi)}\right)=\rho^{\prime}(\varphi) \sin \theta(\varphi)+\rho(\varphi) \theta^{\prime}(\varphi) \cos \theta(\varphi)
$$

Observe that $u\left(e^{i \varphi}\right)=\rho(\varphi) \cos \theta(\varphi)$ and $v\left(e^{i \varphi}\right)=\rho(\varphi) \sin \theta(\varphi)$. Thus:

$$
\begin{aligned}
\lim _{z \rightarrow e^{i \varphi}} J_{w}\left(r e^{i \varphi}\right) & =\lim _{r \rightarrow 1} \frac{1}{r}\left(u_{r} v_{\varphi}-u_{\varphi} v_{r}\right) \\
& =\lim _{r \rightarrow 1}\left(\frac{u\left(r e^{i \varphi}\right)-u\left(e^{i \varphi}\right)}{1-r}\right)\left(\rho^{\prime}(\varphi) \sin \theta(\varphi)+\rho(\varphi) \theta^{\prime}(\varphi) \cos \theta(\varphi)\right) \\
& -\lim _{r \rightarrow 1}\left(\frac{v\left(r e^{i \varphi}\right)-v\left(e^{i \varphi}\right)}{1-r}\right)\left(\rho^{\prime}(\varphi) \cos \theta(\varphi)-\rho(\varphi) \theta^{\prime}(\varphi) \sin \theta(\varphi)\right) \\
& =\lim _{r \rightarrow 1} \int_{-\pi}^{\pi} K_{f}(x, \varphi) \frac{P(r, \varphi-x)}{1-r} d x \\
& =\lim _{r \rightarrow 1} \int_{-\pi}^{\pi} K_{f}(x+\varphi, \varphi) \frac{P(r, x)}{1-r} d x
\end{aligned}
$$

According to (2.2)

$$
\left|K_{f}(x+\varphi, \varphi)\right| \leq C_{\gamma}\left|f^{\prime}(\varphi)\right| d_{\gamma}\left(f\left(e^{i(\varphi+x)}\right), f\left(e^{i \varphi}\right)\right)^{1+\mu}
$$

On the other hand, using the inequality $|t| \leq \pi / 2|\sin t|$ for $-\pi / 2 \leq t \leq \pi / 2$, we obtain

$$
\frac{P(r, x)}{1-r}=\frac{1+r}{2 \pi\left(1+r^{2}-2 r \cos x\right)} \leq \frac{1}{\pi\left((1-r)^{2}+4 r \sin ^{2} x / 2\right)} \leq \frac{\pi}{4 r x^{2}}
$$

for $0<r<1$ and $x \in[-\pi, \pi]$. Thus,

$$
\lim _{r \rightarrow 1} \int_{-\pi}^{\pi} K(x, \varphi) \frac{P(r, \varphi-x)}{1-r} d x \leq \frac{\pi C_{\gamma}}{4}\left|f^{\prime}(\varphi)\right| \int_{-\pi}^{\pi} \frac{d_{\gamma}\left(f\left(e^{i(\varphi+x)}\right), f\left(e^{i \varphi}\right)\right)^{1+\mu}}{x^{2}} d x
$$

The inequality now holds for

$$
C_{1}=\frac{\pi}{4(1+\mu)} \sup _{s \neq t} \frac{\left|g^{\prime}(s)-g^{\prime}(t)\right|}{(s-t)^{\mu}}
$$

Using Lemma 2.2, Proposition 2.3, Lemma 2.4 and Lemma 2.5 we obtain:
Theorem 2.6. [8] Let $w=P[f](z)$ be a K q.c. harmonic function between the unit disk and a Jordan domain Ω, such that $w(0)=0$. If $\gamma=\partial \Omega \in C^{1, \mu}$, then there exists a constant $C^{\prime}=C^{\prime}(\gamma, K)$ such that

$$
\begin{equation*}
\left|f^{\prime}(\varphi)\right| \leq C^{\prime} \text { for almost every } \varphi \in[0,2 \pi] \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|w\left(z_{1}\right)-w\left(z_{2}\right)\right| \leq K C^{\prime}\left|z_{1}-z_{2}\right| \text { for } z_{1}, z_{2} \in \mathbf{U} \tag{2.9}
\end{equation*}
$$

Notice that Theorem 2.6 is a generalization of the corresponding result for the harmonic q.c. of the unit disk onto itself, see [19. Theorem [2.6 has its extension to the class of q.c. mappings satisfying the differential inequality $|\Delta w| \leq M\left|w_{z}\right|\left|w_{\bar{z}}\right|$ (see [11]).

Example 2.7 ([3). Let P_{n} be a regular n-polygon. Then the function

$$
w(z)=\int_{0}^{z}\left(1-z^{n}\right)^{-2 / n} d z
$$

is a conformal mapping of the unit disk onto the polygon P_{n}. However $w^{\prime}(z)=$ $\left(1-z^{n}\right)^{-2 / n}$ is an unbounded function on the unit disk and thus the condition $\gamma \in C^{1, \mu}$ in Theorem 2.6 is important.

Corollary 2.8. [8] Let w be a quasiconformal harmonic mapping between Jordan domains Ω and Ω_{1}, such that $w(0)=0$. If $\gamma=\partial \Omega \in C^{1, \mu}$ and $\gamma_{1}=\partial \Omega_{1} \in$ $C^{1, \mu_{1}}, 0<\mu, \mu_{1} \leq 1$, then there exist the constants C and C_{1} depending on γ and γ_{1} such that

$$
\begin{equation*}
\left|w\left(z_{1}\right)-w\left(z_{2}\right)\right| \leq C\left|z_{1}-z_{2}\right| \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
D(w)(z)=\left|w_{z}(z)\right|^{2}+\left|w_{\bar{z}}(z)\right|^{2} \leq C_{1} \tag{2.11}
\end{equation*}
$$

3. The bi-Lipschitz continuity of q.c. harmonic mappings

The following theorem provides a necessary and sufficient condition for the q.c. harmonic extension of a homeomorphism from the unit circle to a $C^{1, \mu}$ convex Jordan curve. It is an extension of the corresponding theorem of Pavlović (19]):

Theorem 3.1. [8] Let $f: S^{1} \mapsto \gamma$ be an orientation preserving absolutely continuous homeomorphism of the unit circle onto a convex Jordan curve $\gamma \in$ $C^{1, \mu}$. Then $w=P[f]$ is a quasiconformal mapping if and only if

$$
\begin{equation*}
0<\operatorname{ess} \inf \left|f^{\prime}(\varphi)\right| \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{ess} \sup \left|f^{\prime}(\varphi)\right|<\infty \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ess} \sup _{\varphi}\left|\int_{0}^{\pi} \frac{f^{\prime}(\varphi+t)-f^{\prime}(\varphi-t)}{\tan t / 2} d t\right|<\infty \tag{3.3}
\end{equation*}
$$

Let us note that the hypothesis "absolutely continuous" in the previous theorem is needed, although this theorem appeared in [8] without this hypothesis.

Example 3.2 ([7]). Let

$$
\theta(\varphi)=\frac{2+b(\cos (\log |\varphi|)-\sin (\log |\varphi|))}{2+b(\cos (\log \pi)-\sin (\log \pi))} \varphi, \varphi \in[-\pi, \pi]
$$

where $0<b<1$. Then the function $w(z)=P[f](z)=P\left[e^{i \theta(\varphi)}\right](z)$ is a quasiconformal mapping of the unit disk onto itself such that $f^{\prime}(\varphi)$ does not exist for $\varphi=0$.

Hence a q.c. harmonic function does not have necessarily a C^{1} extension to the boundary as in conformal case.

Corollary 3.3. [8] Let w be a K quasiconformal harmonic function between a Jordan domain Ω and a convex Jordan domain Ω_{1}, such that $w(0)=0$ and $\partial \Omega, \partial \Omega_{1} \in C^{1, \mu}$. Then w is bi-Lipschitz, i.e. there exists a constant $L \geq 1$ such that

$$
\begin{equation*}
L^{-1}\left|z_{1}-z_{2}\right|<\left|w\left(z_{1}\right)-w\left(z_{2}\right)\right|<L\left|z_{1}-z_{2}\right|, z_{1}, z_{2} \in \Omega \tag{3.4}
\end{equation*}
$$

Moreover, there exists $C_{D}=C\left(K, \Omega, \Omega_{1}\right) \geq 1$ such that

$$
\begin{equation*}
1 / C_{D} \leq|D(w)(z)| \leq C_{D}, \text { for } z \in \Omega \tag{3.5}
\end{equation*}
$$

One of the recent results of the first author is the following theorem. It is an extension of Corollary 3.3 for a nonconvex case.

Theorem 3.4. [9] Let $w=f(z)$ be a K quasiconformal harmonic mapping between a Jordan domain Ω with $C^{1, \mu}$ boundary and a Jordan domain Ω_{1} with $C^{2, \mu}$ boundary. Let in addition $a \in \Omega$ and $b=f(a)$. Then w is bi-Lipschitz. Moreover there exists a positive constant $c=c\left(K, \Omega, \Omega_{1}, a, b\right) \geq 1$ such that

$$
\begin{equation*}
\frac{1}{c}\left|z_{1}-z_{2}\right| \leq\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq c\left|z_{1}-z_{2}\right|, \quad z_{1}, z_{2} \in \Omega \tag{3.6}
\end{equation*}
$$

First, we need to introduce some notations:
We write $L_{\underline{f}}=L_{f}(z)=|\partial f(z)|+|\bar{\partial} f(z)|$ and $l_{f}=l_{f}(z)=|\partial f(z)|-|\bar{\partial} f(z)|$, if $\partial f(z)$ and $\bar{\partial} f(z)$ exist.

In [13], the following results have been obtained (see also [15]) :
Theorem 3.5. Let f be a k-qc euclidean harmonic diffeomorphism from the upper half-plane \mathbb{H} onto itself and $K=\frac{1+k}{1-k}$. Then f is a $(1 / K, K)$ quasiisometry with respect to the Poincaré distance d_{h}.

Outline of the proof: Precomposing f with a linear fractional transformation, we can suppose that $f(\infty)=\infty$ and therefore we can write f in the form $f=u+i y=\frac{1}{2}(F(z)+z+\overline{F(z)-z})$, where F is a holomorphic function in \mathbb{H}. Hence the complex dilatation $\mu_{f}=\frac{F^{\prime}(z)-1}{F^{\prime}(z)+1}, L_{f}(z)=\frac{1}{2}\left(\left|F^{\prime}(z)+1\right|+\left|F^{\prime}(z)-1\right|\right)$ and $l_{f}(z)=\frac{1}{2}\left(\left|F^{\prime}(z)+1\right|-\left|F^{\prime}(z)-1\right|\right)$; which yields

$$
1+1 / K \leqslant\left|F^{\prime}(z)+1\right| \leqslant K+1, \quad 1-1 / K \leqslant\left|F^{\prime}(z)-1\right| \leqslant K-1
$$

and therefore it follows

$$
1 \leqslant L_{f}(z)=\frac{1}{2}\left(\left|F^{\prime}(z)+1\right|+\left|F^{\prime}(z)-1\right|\right) \leqslant K
$$

and consequently

$$
l_{f}(z) \geq L_{f}(z) / K \geq 1 / K
$$

Now using a known procedure, we obtain

$$
\begin{gather*}
\frac{1}{K}\left|z_{2}-z_{1}\right| \leq\left|f\left(z_{2}\right)-f\left(z_{1}\right)\right| \leq K\left|z_{2}-z_{1}\right| \quad z_{1}, z_{2} \in H \tag{3.7}\\
\frac{1-k}{1+k} d_{h}\left(z_{1}, z_{2}\right) \leqslant d_{h}\left(f\left(z_{1}\right), f\left(z_{2}\right)\right) \leqslant \frac{1+k}{1-k} d_{h}\left(z_{1}, z_{2}\right) \quad z_{1}, z_{2} \in H
\end{gather*}
$$

Both estimates are sharp (see also [4], [6] for an estimate with some constant $c(K)$ in (3.7)).

The following generalization of Theorem 3.4 will appear in 18 .
Ii is partially based on the results obtained in 9] and on Bochner formula for harmonic maps.

Theorem 3.6. [18] Let w be a $C^{2} K$ quasiconformal mapping of the unit disk onto a $C^{2, \alpha}$ Jordan domain. Let ρ be a C^{1} metric on $\bar{\Omega}$ of non-negative curvature and $w \rho$-harmonic, that is

$$
w_{z \bar{z}}+(\log \rho)_{w} w_{z} w_{\bar{z}}=0
$$

Then $J_{w} \neq 0$ and w is bi-Lipschitz.
Finally, notice that the proof of Theorem 3.1] which was published in [8, can be also based on the results presented in [16] and [17].

Acknowledgment

We would like to thank the referee for careful comments which have helped the exposition and professor M. Merkle for advice concerning the language.

References

[1] Ahlfors, L., Lectures on quasiconformal mappings. Princeton, N.J.: Van Nostrand, 1966.
[2] Axler, S., Bourdon, P., Ramey, W., Harmonic function theory. New York: Springer-Verlag, 1992.
[3] Berenstein, C.A., Gay, R., Complex Variables. An Introduction. New York: Springer-Verlag, 1991.
[4] Kalaj, D., Harmonic and quasiconformal functions between convex domains. Doctoral Thesis, University of Belgrade, (2002).
[5] Kalaj, D., On harmonic diffeomorphisms of the unit disk onto a convex domain. Complex Variables, Theory Appl. 48 No. 2 (2003) 175-187.
[6] Kalaj, D., Pavlović, M., Boundary correspondence under harmonic quasiconformal homeomorfisms of a half-plane. Ann. Acad. Sci. Fenn., Math. 30, No. 1 (2005), 159-165.
[7] Kalaj, D., Quasiconformal harmonic functions between convex domains. Publ. Inst. Math., Nouv. Ser. 76(90), 3-20 (2004).
[8] Kalaj, D., Quasiconformal harmonic mapping between Jordan domains. Math. Z. Vol. 260 No. 2 (2008), 237-252.
[9] Kalaj, D., Harmonic mappings and Lipschitz spaces. to appear in Ann. Acad. Sci. Fenn. Math.
[10] Kalaj, D., Univalent harmonic mappings between Jordan domains. Publ. Inst. Math., Nouv. Ser. 69(83) (2001), 108-112.
[11] Kalaj, D., Mateljević, M., Inner estimate and quasiconformal harmonic maps between smooth domains, Journal d'Analise Math. 100 (2006), 117-132.
[12] Kellogg, O., On the derivatives of harmonic functions on the boundary. Trans. Amer. Math. Soc. 33 (1931), 689-692.
[13] Knežević, M., Mateljević, M., On the quasi-isometries of harmonic quasiconformal mappings J. Math. Anal . Appl. 334(1) (2007), 404-413.
[14] Lewy, H., On the non-vanishing of the Jacobian in certain in one-to-one mappings. Bull. Amer. Math. Soc. 42 (1936), 689-692.
[15] Mateljevic, M., Ahlfors-Schwarz lemma and curvature, Kragujevac Journal of Mathematics (Zbornik radova PMF), Vol. 25, (2003), 155-164.
[16] Mateljević, M., Estimates for the modulus of the derivatives of harmonic univalent mappings, Proceedings of International Conference on Complex Analysis and Related Topics (IX ${ }^{\text {th }}$ Romanian-Finnish Seminar, 2001), Rev Roum. Math. Pures Appliq (Romanian Journal of Pure and Applied mathematics) 47 (2002) 5-6, 709 -711.
[17] Mateljević, M., Distortion of harmonic functions and harmonic quasiconformal quasi-isometry. Revue Roum. Math. Pures Appl. Vol. 51,(2006), 5-6, 711-722
[18] Mateljević, M., On bi-Lipschitz continuity of quasiconformal ρ-harmonic with positive Gauss curvature. preprint.
[19] Pavlović, M., Boundary correspondence under harmonic quasiconformal homeomorfisms of the unit disc. Ann. Acad. Sci. Fenn., Vol 27 (2002), 365-372.

Received by the editors October 1, 2008

[^0]: ${ }^{1}$ University of Montenegro, faculty of natural sciences and mathematics, Cetinjski put b.b. 81000, Podgorica, Montenegro, e-mail: davidk@cg.yu
 ${ }^{2}$ University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia, e-mail: miodrag@matf.bg.ac.yu

