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QUASICONFORMAL AND HARMONIC MAPPINGS
BETWEEN SMOOTH JORDAN DOMAINS

David Kalajl, Miodrag Mateljevi®@

Abstract. We present some recent results on the topic of quasiconformal
harmonic maps. The main result is that every quasiconformal harmonic
mapping w of C** Jordan domain Q; onto C*** Jordan domain € is Lip-
schitz continuous, which is the property shared with conformal mappings.
In addition, if Q has C®* boundary, then w is bi-Lipschitz continuous.
These results have been considered by the authors in various ways.
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1. Introduction

Let D and G be subdomains of the complex plane C. A homeomorphism
f: D — G, where is said to be K-quasiconformal (K-q.c), K > 1, if f is
absolutely continuous on almost every horizontal and almost every vertical line
and

of12 10f? 1

1.1 '7‘ ’7 <(K+—= e on D,
(1.1) 8x+8y _< +K>Jf a.e. on
where J; is the Jacobian of f (cf. [1], pp. 23-24). Note that the condition (L))
can be written as
-1, 1+k

K
z| < -C. - €. = — .
|fz| <k|f.| ae. on D where k e T %

A function w is called harmonic in a region D if it is of the form w = u + v
where u and v are real-valued harmonic functions in D. If D is simply-connected,
there exist two analytic functions g and h defined on D such that w has the
representation

w=g+ h.

If w is a harmonic univalent function, then by Lewy’s theorem (see [14]), w
has a non-vanishing Jacobian and consequently, according to the inverse map-
ping theorem, w is a diffeomorphism.

1University of Montenegro, faculty of natural sciences and mathematics, Cetinjski put b.b.
81000, Podgorica, Montenegro, e-mail: davidk@cg.yu

2University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Serbia,
e-mail: miodrag@matf.bg.ac.yu



148 D. Kalaj, M. Mateljevi¢

Let
1—72

- 27(1 — 2r cos(z — @) + 12)

P(’{‘,I*QO)

denote the Poisson kernel. Then every bounded harmonic function w defined
on the unit disk U := {z : |z] < 1} has the representation

2m

(1.2) w(z) = P[f(z) = | P(r,z — ¢)f(e")dz,

where z = re’? and f is a bounded integrable function defined on the unit circle
St

Suppose 7 is a rectifiable, directed, differentiable curve given by its arc-length
parametrization g(s), 0 < s < I, where [ is the length of 7. Then |¢'(s)| =1
and s = [; |g'(t)|dt, for all s € [0,1].

If v is a twice-differentiable curve, then the curvature of v at a point p = g(s)
is given by k~(p) = |¢”(s)|. Let

(1.3) K(s,t) = Re[(g(t) — g(s)) - ig'(s)]

be a function defined on [0,1] x [0,1]. By K(s £1,t£1) = K(s,t) we extend it
on R x R. Note that ig’(s) is the unit normal vector of v at g(s) and therefore,
if v is convex then

(1.4) K(s,t) > 0 for every s and ¢.
We say that vy € C**, 0 < pu<1,if g€ C! and

"ty — o
sup SO =GN _
ts  |t—sl®

Let v € C1* be a Jordan curve such that the interior of v contains the origin.
Let f be a C1# function from the unit circle onto v and let F(x) = f(e'®),
x € [0,27). Then the functions p(x) = |F(z)| and §(z) = arg F(x) mod 27 on
(0, 27r] have C'* extension on R. In the remainder of this paper we will use f
and F interchangeably and will write f/(z) instead of F’(z).

Suppose now that f : R — ~ is an arbitrary 2 periodic C' function such
that flj,2x) : [0,27) = v is an orientation preserving bijective function.

Then there exists an increasing continuous function s : [0, 27] — [0,1] such
that

(1.5) flp) = g(s(p))-

Hence

and therefore
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Along with the function K we will also consider the function K defined by

Kp(p,x) =Re[(f(z) = f(#)) - if'(0)]-

It is easy to see that

(1.6) Kf(p,x) = s'(¢)Rel(g(s(x)) — g(s()))-ig'(s())] = s'(0) K(s(¢), s(x)).

2. The Lipschitz continuity of q.c. harmonic mapping

The following lemma is a slight modifications of the corresponding lemma
in [8].

Lemma 2.1. Let v be a C* Jordan curve. Let g : [0,1] — ~ be a natural
parametrization and f : [0,27] — v, be arbitrary parametrization of v. Then

(2.1) |K (s,t)] < Cymin{|s — ¢]"#, (1 — |s — t])" "}
and

(22)  [Kf(p,2)| < Cys'(p) minf[s(p) — s(@)|"T, (1 = [s(p) — s(x)) 7},
where

1 W09

T I+ pocigs< t—slt

Here d.(f(e), f(e™)) := min{|s(¢) — s(z)|, (1 — |s(p) — s(z)|)} is the distance
(shorter) between f(e'?) and f(e'®) along v which satisfies the relation
[F(e'9) = F(e))] < dy(f(e'), f(e)) < | (f(e") = f(e)].

Moreover if v has a bounded curvature then the relations (211) and (Z2) are
true for

Cy = sup{|r4(g(s))|/2: s € [0,1]}
and p=1. In this case

K6 ) Ken) s,
M-~ 2 "I Gm R 2 @

and the constant C is the best possible.

Proof. Note that
K(s,t) = Re[(g(t) — g(s)) - ig'(s)]
= Re |:(g(t)g(5)).i (g’(s) _ g(t)g(s)ﬂ ,

t—s
and

T.

g 90 =) _ [Mg(5) = g(7)
g(s) - 252 [0,

t—s t—s
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If v has a bounded curvature then ¢” is bounded and

MERCETC] Py ORI

t
— 1
< swp '@ [ Tdr =5 sw [g (@)t - o).

s<z<t t—s 2 s<z<t

On the other hand

l9(8) —g(s)l < sup |g'(@)|(t —5) = (t =),

and thus

1
(s, ) < 5 sup_lg"(@)](s — 1)
s<z<t

It follows that the inequality (Z.I)) holds for C, = sup, |k, (p)|/2 and pu = 1.
From (2 and (I6) we obtain (2:2). Since

0 —— .

55 1 (s:8) = Re[(9() — 9(5)) - ig" (5)],
it follows that

Ky(s,t Re[(g(t) — g(s)) - ig"(s)]

li =1li
5 (s —t)2 o 2(s —1t)
=Re[—g'(s) -ig"(s)l/2 = €lg" (s)|/2 = Ky (5)/2.
Here ¢ = 1 if kK, > 0 and ¢ = —1 if k, < 0. Similarly we can prove the case
v € CLH, ]

Lemma 2.2. [8] Let w = u+iv be a differentiable function defined on U. Then:
. 1
(2.3) Ju(re'?) = ugvy — uyv, = lw,|> — |wz|* = —(upvy — upvy)
r

and
_ow]* | |9,w]?
2 22

If in addition we suppose that w = P[f](z), where f € CV#, f: S* s ~, then
there exist continuous functions J,, and D(w) on the unit circle defined by:

(2.4) D(w)(re'?) == [w.|* + ws]*

(2.5) Ju(e¥) = HII% Jw(re'®)
and

20 D(w)(e) = lim Dlw)(e) - tim 1220 VOP
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Proposition 2.3 (Kellogg). Lety € CYH be a Jordan curve and let Q = Int(T).
If w is a conformal mapping of U onto 2, then ' and Inw" are in Lip,. In
particular, |w'| is bounded from above and below by positive constants on U.

For the proof, see for example [12].
The following lemma is a generalization of Mori’s Theorem, (cf. [1]).

Lemma 2.4. If w is a K quasiconformal function between the unit disk and
a Jordan domain 0 with CY* boundary =, then there exists a constant Ck
depending only on v and on w(0) such that

1—-k&
lw(z1) —w(22)| < Cklz1 — 22|”, « TR b2 €

Note that the constant « is the best possible (in general case).

In the following lemma, we give some estimates for the Jacobian of a har-
monic univalent function. It is a slight improvement of [8, Lemma 2.7].

Lemma 2.5. Let w = P[f](2) be a harmonic function between the unit disk U
and the Jordan domain ), such that f is injective, f € CY*, and 02 = f(S*) €
CY*. Then for

) l9'(s) — g'(t)]
@ A1+ p) Ssl;g) (s —t)~
one has
(2.7) lim Jy,(2) < Ci1|f(9)] " dw(f(ei@ﬂ));f(ew»lw -

T

ip
zZ—e —T

for all e € S*.

Proof. Since f € C1*, by the proof of the Lemma 2.2it follows that the partial
derivatives of the function w have continuous extensions on the boundary. Since

F(x) = p(x)e®™),
we obtain

u,(e?) = lim wu,.(2), ©v.(e?)= lim v.(2),

z—el® z—et®

lim_uy() = Reo (p()e ) = () cos 6() — pl2)8 () sin B(p)

z—et® 8(,0
and
. 0 i .
im v,(2) = Im% (p(w)e 9(“")) = p/(¢)sinb(p) + p()0' () cos O(p).
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Observe that u(e®) = p(p) cos0(¢) and v(e'?) = p(p) sinO(p). Thus:

: 1
lim J,(re*¥) = linﬁ ;(Ur% — UpUy)

iy (P (g)sinote) + ol () o)
s (D) (54 coste) — p0 (s
—tim [ Ky P g

g P(r,x) .

=i K
fim st )7

According to [22)

K1 (2 + 0, 9)] < Colf (9)ldy (f(FH), flef)) e,

On the other hand, using the inequality [t| < 7/2|sint| for —7/2 <t < 7/2, we
obtain

P(r,x) 1+7r < 1 T

= <
1—r 2r(1+72 —2rcosz) — w((1 —7)2 4 4rsin®z/2) ~ 4ra?

for 0 <r <1 and z € [-m,7]. Thus,

s P _
lim K(z, o) (7’1, =)
-

r—1 J_

do < ™ pp) [ DYETD N,

T

The inequality now holds for

Using Lemma [2Z2] Proposition [Z3] Lemma 2.4 and Lemma we obtain:

Theorem 2.6. [§] Let w = P[f](z) be a K q.c. harmonic function between the
unit disk and a Jordan domain ), such that w(0) = 0. If v = 0Q € CY*, then
there exists a constant C' = C'(v, K) such that

(2.8) |f' ()] < C" for almost every ¢ € [0, 27],

and

(2.9) lw(z1) — w(z2)| < KC'|21 — 22| for 21,20 € U.
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Notice that Theorem is a generalization of the corresponding result for
the harmonic q.c. of the unit disk onto itself, see [I9]. Theorem has its
extension to the class of q.c. mappings satisfying the differential inequality
|[Aw| < M|w,||ws| (see [I1]).

Example 2.7 ([3]). Let P, be a regular n—polygon. Then the function

w(z) = /OZ (1—2")"%/"dz

is a conformal mapping of the unit disk onto the polygon P,. However w’'(z) =
(1 — 2™)~2/™ is an unbounded function on the unit disk and thus the condition
~ € CY* in Theorem is important.

Corollary 2.8. [§] Let w be a quasiconformal harmonic mapping between Jor-
dan domains Q and Qy, such that w(0) = 0. If y = 0Q € CY* and v, = 0Q, €
CYm 0 < p,py < 1, then there exist the constants C and Cy depending on
and ~y1 such that

(2.10) |w(z1) — w(ze2)] < Clz1 — 22|
and
(2.11) D(w)(2) = . (2)? + [ws(2)? < Cn.

3. The bi-Lipschitz continuity of q.c. harmonic mappings

The following theorem provides a necessary and sufficient condition for the
g.c. harmonic extension of a homeomorphism from the unit circle to a C*
convex Jordan curve. It is an extension of the corresponding theorem of Pavlovié

(I9)):

Theorem 3.1. [§] Let f : S' — ~ be an orientation preserving absolutely
continuous homeomorphism of the unit circle onto a convex Jordan curve -y €
CUH. Then w = P[f] is a quasiconformal mapping if and only if

(3.1) 0 < essinf |f'(p)],
(3.2) esssup | f'(p)| < oo
and

dt| < oo.

/“ f'lp+t)—flp—1t)
0

3.3
(3:3) o sgp tant/2

Let us note that the hypothesis ”absolutely continuous” in the previous the-
orem is needed, although this theorem appeared in [8] without this hypothesis.
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Example 3.2 ([7]). Let

24 b(cos(log |p|) — sin(log |¢]))
(30) - 2+ b(COS(lOgﬂ') — sin(logﬂ')) P, pE [*7T77T],

where 0 < b < 1. Then the function w(z) = P[f](z) = P[e?’¥)](2) is a qua-
siconformal mapping of the unit disk onto itself such that f’(¢) does not exist
for ¢ = 0.

Hence a q.c. harmonic function does not have necessarily a C'! extension to
the boundary as in conformal case.

Corollary 3.3. [§] Let w be a K quasiconformal harmonic function between
a Jordan domain Q and a convex Jordan domain i, such that w(0) = 0 and
o0, 0 € CY*. Then w is bi-Lipschitz, i.e. there exists a constant L > 1 such
that

(3.4) LYz, — 2| < Jw(z1) — w(zo)| < L|z1 — 22|, 21,22 € Q.
Moreover, there exists Cp = C(K,Q,Q1) > 1 such that
(3.5) 1/Cp < |D(w)(2)| < Cp, for z €.

One of the recent results of the first author is the following theorem. It is
an extension of Corollary for a nonconvex case.

Theorem 3.4. [J] Let w = f(z) be a K quasiconformal harmonic mapping
between a Jordan domain Q with CY* boundary and a Jordan domain Q, with
C?H boundary. Let in addition a € Q and b = f(a). Then w is bi-Lipschitz.
Moreover there exists a positive constant ¢ = ¢(K,Q,Qq,a,b) > 1 such that

1
(3.6) E\Zl — 2| <|f(21) — f(22)| < 21 — 22|, 21,20 € QL

First, we need to introduce some notations: ~
We write Ly = Ly(2) = |0f(2)| +19f(2)] and Iy = l¢(2) = [0f(2)| = |0f(2)|, if
0f(z) and 0f(z) exist.

In [I3], the following results have been obtained (see also [15]) :

Theorem 3.5. Let f be a k-qc euclidean harmonic diffeomorphism from the
upper half-plane H onto itself and K = % Then f is a (1/K,K) quasi-
isometry with respect to the Poincaré distance dy,.

Outline of the proof: Precomposing f with a linear fractional transformation,
we can suppose that f(oco) = oo and therefore we can write f in the form

f=u+iy=1(F(z) + 2+ F(z) — z), where F is a holomorphic function in H.
Hence the complex dilatation py = %, Li(z) = 2(|F'(2) + 1|+ |F'(2) — 1|)
and l5(z) = $(|F'(z) + 1| — |F'(z) — 1|); which yields

1+1/K<|F'(2)+1]<K+1, 1-1/K<|F'(z)-1|<K-1
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and therefore it follows
1
1S Ly(z) = S(1F'(2) £ 1+ [F'(2) = 1]) S K,

and consequently
I1(2) > Ly(z)/K > 1/K.

Now using a known procedure, we obtain

1
(3.7) i 12— alSif(e) - f)| S Kl —zf 21,22 € H,
1—k 1+k
(3-8) mdh(zhzz) < dn(f(21), f(22)) < 1% dn(z1,22) 21,22 € H.

Both estimates are sharp (see also [4], [6] for an estimate with some constant
c¢(K) in B1). |

The following generalization of Theorem B4l will appear in [I8].

Ii is partially based on the results obtained in [9] and on Bochner formula
for harmonic maps.

Theorem 3.6. [18] Let w be a C? K quasiconformal mapping of the unit disk
onto a C*® Jordan domain. Let p be a C* metric on Q of non-negative curvature
and w p-harmonic, that is

w,z + (log p)yw,ws = 0.
Then Jy, # 0 and w is bi-Lipschitz.

Finally, notice that the proof of Theorem [B], which was published in [§],
can be also based on the results presented in [I6] and [17].

Acknowledgment

We would like to thank the referee for careful comments which have helped
the exposition and professor M. Merkle for advice concerning the language.

References
[1] Ahlfors, L., Lectures on quasiconformal mappings. Princeton, N.J.: Van Nostrand,
1966.

[2] Axler, S., Bourdon, P., Ramey, W., Harmonic function theory. New York:
Springer-Verlag, 1992.

[3] Berenstein, C.A., Gay, R., Complex Variables. An Introduction. New York:
Springer-Verlag, 1991.

[4] Kalaj, D., Harmonic and quasiconformal functions between convex domains. Doc-
toral Thesis, University of Belgrade, (2002).

[5] Kalaj, D., On harmonic diffeomorphisms of the unit disk onto a convex domain.
Complex Variables, Theory Appl. 48 No. 2 (2003) 175-187.



156 D. Kalaj, M. Mateljevi¢

[6] Kalaj, D., Pavlovi¢, M., Boundary correspondence under harmonic quasiconformal
homeomorfisms of a half-plane. Ann. Acad. Sci. Fenn., Math. 30, No. 1 (2005),
159-165.

[7] Kalaj, D., Quasiconformal harmonic functions between convex domains. Publ.
Inst. Math., Nouv. Ser. 76(90), 3-20 (2004).

[8] Kalaj, D., Quasiconformal harmonic mapping between Jordan domains. Math. Z.
Vol. 260 No. 2 (2008), 237-252.

[9] Kalaj, D., Harmonic mappings and Lipschitz spaces. to appear in Ann. Acad. Sci.
Fenn. Math.

[10] Kalaj, D., Univalent harmonic mappings between Jordan domains. Publ. Inst.
Math., Nouv. Ser. 69(83) (2001), 108-112.

[11] Kalaj, D., Mateljevié¢, M., Inner estimate and quasiconformal harmonic maps
between smooth domains, Journal d’Analise Math. 100 (2006), 117-132.

[12] Kellogg, O., On the derivatives of harmonic functions on the boundary. Trans.
Amer. Math. Soc. 33 (1931), 689-692.

[13] Knezevié, M., Mateljevié, M., On the quasi-isometries of harmonic quasi-
conformal mappings J. Math. Anal . Appl. 334(1) (2007), 404-413.

[14] Lewy, H., On the non-vanishing of the Jacobian in certain in one-to-one mappings.
Bull. Amer. Math. Soc. 42 (1936), 689-692.

[15] Mateljevic, M., Ahlfors-Schwarz lemma and curvature, Kragujevac Journal of
Mathematics (Zbornik radova PMF), Vol. 25, (2003), 155-164.

[16] Mateljevi¢, M., Estimates for the modulus of the derivatives of harmonic univa-
lent mappings, Proceedings of International Conference on Complex Analysis and
Related Topics (IXth Romanian-Finnish Seminar, 2001), Rev Roum. Math. Pures
Appliq (Romanian Journal of Pure and Applied mathematics) 47 (2002) 5-6, 709
-711.

[17] Mateljevié¢, M., Distortion of harmonic functions and harmonic quasiconformal
quasi-isometry. Revue Roum. Math. Pures Appl. Vol. 51,(2006), 5-6, 711-722

[18] Mateljevié, M., On bi-Lipschitz continuity of quasiconformal p-harmonic with
positive Gauss curvature. preprint.

[19] Pavlovié, M., Boundary correspondence under harmonic quasiconformal homeo-
morfisms of the unit disc. Ann. Acad. Sci. Fenn., Vol 27 (2002), 365-372.

Received by the editors October 1, 2008



	Introduction
	The Lipschitz continuity of q.c. harmonic mapping
	The bi-Lipschitz continuity of q.c. harmonic mappings

