NOVI SAD J. MATH. Vol. 38, No. 3, 2008, 173-180

ABOUT ALMOST SYMPLECTIC STRUCTURES ON THE TOTAL SPACE OF THE TANGENT BUNDLE ¹

Petre Stavre², Adrian Lupu³

Abstract. In this paper, starting from the general theory of the pseudoriemannian conjugation, which was systematically elaborated for the first time in [3], and from the general theory of the almost symplectic ω -conjugation, systematically elaborated in [4], the authors obtain

a partition of the relativistic models $\left\{ \begin{matrix} G \\ L = \{E, G, D\} \end{matrix} \right\}$, and also of the

hamiltonian models $\left\{ \begin{matrix} (\omega) \\ L \end{matrix} = \{E, \omega, D\} \end{matrix} \right\}$, based on a general criterion of conjugation.

AMS Mathematics Subject Classification (2000): 53D15, 53C80

Key words and phrases: almost symplectic conjugations, pseudoriemannian conjugations, distributions, linear d-connections

1. Introduction

Let us consider a C^{∞} differentiable, *p*-dimensional, paracompact and connected $(E_p = (E, [A]), \Re^p)$ manifold.

Example 1.1. Let us consider a vector bundle $\xi = (E, \pi, M)$, where the base M is a C^{∞} , *n*-dimensional, paracompact differentiable manifold, with the *m*-dimensional fiber type \Re^m . Then we will obtain on E the structure of C^{∞} , paracompact, differentiable manifold E_p , (p = 2n).

Example 1.2. Let us consider the tangent bundle $\xi = (E = TM, \pi, M)$. Under the above conditions, with respect to M_n , we will obtain on E = TM a structure of C^{∞} differentiable manifold, E_p , (p = 2n).

We chose these two examples because the following theory will be applied in these cases.

Under the given conditions:

a) There are riemannian structures on E_p (globally).

b) There are linear connections, $\{D\}$, on E_p (globally), with or without torsion.

 $^{^1\}mathrm{This}$ paper is partially supported by the organizers of the 12th Serbian Mathematical Congress

²University of Craiova, Romania

 $^{^{3&}quot;} {\rm Decebal}"$ Tehnical High School, Drobeta Turnu Severin, Romania, e-mail: adilupucv@yahoo.fr

For the modelling in relativistic mechanics in the relativity theory it is necessary to consider pseudo-riemannian metrics $\{G\}$.

The existence of the almost symplectic structures, ω , or symplectic structures $(d\omega = 0)$ is necessary for the modelling of the hamiltonian mechanical systems.

But, as is well-known, the study can be simplified if it can be done by splitting in two directions with a certain property. In this way the idea arises of a classification of all the models

 $\begin{cases} G \\ L = \{E, G, D\} \end{cases}, \text{ respectively of all the models } \begin{cases} (\omega) \\ L = \{E, \omega, D\} \end{cases}. \text{ This ideal is developed in this paper.}$

2. G-conjugations

Definition 2.1 ([3]). Let us consider E_p a C^{∞} -differentiable, *p*-dimensional, paracompact, connected manifold, endowed with a pseudoriemannian metric G and $\overset{(1)}{D}, \overset{(2)}{D}$ two linear connections on *E*. Let us take $L_1 = \left(E, G; \overset{(1)}{D}\right); L_2 = \left(E, G; \overset{(2)}{D}\right)$ two models associated to the structure (E, G) and $\overset{(1)}{D}_{(1)}, \overset{(2)}{D}_{(1)}$ two one-dimensional distributions, $\overset{(1)}{D}_{(1)}: u \to \overset{(1)}{D}_{u(1)} \subset T_u E, \overset{(2)}{D}_{(1)}: u \to T_u E$ such that $\overset{(1)}{D}_{(1)} \perp \overset{(2)}{D}_{(1)}:$

(1)
$$G\left(\begin{array}{c}V,V\\(1)&(2)\end{array}\right) = 0; (\forall) \begin{array}{c}V\\(1)\end{array} \in \begin{array}{c}(1)\\D_{u(1)}, V\\(2)\end{array} \in \begin{array}{c}(2)\\D_{u(1)}\end{array}$$

If (1) is preserved at the parallel transport of the distribution $\stackrel{(1)}{D}_{(1)}$ with respect to $\stackrel{(1)}{D}$ and at the parallel transport of $\stackrel{(2)}{D}_{(1)}$ with respect to $\stackrel{(2)}{D}$, then we will say that the two models are *G*-conjugated or that the two linear connections $\stackrel{(1)}{D}_{,D}^{(2)}$ are *G*-conjugated. We will write $L_1 \stackrel{G}{\sim} L_2$ or $\stackrel{(1)}{D} \stackrel{G}{\sim} \stackrel{(2)}{D}$.

Remark 1. If G is a pseudo-riemannian metric then the distributions can be selfconjugated, i.e. the pseudo-riemannian indicator $\varepsilon_v = 0$ for $V \in D_{(1)}^{(1)}$ or $V \in D_{(1)}^{(2)}$ (the distributions can be null or isotropic, which is different from the case of riemannian G).

Definition 2.2. Two models L_1, L_2 will be also called *G*-compatible if they are *G*-conjugated (comparison criteria).

We obtain two special situations:

About almost symplectic structures ...

Theorem 2.1. Two models L_1, L_2 cannot be *G*-compatible if $\stackrel{(1)}{D}, \stackrel{(2)}{D}$ are metric *G*-compatible ($\stackrel{(1)}{D}G = 0, \stackrel{(2)}{D}G = 0$).

Theorem 2.2. No model L = (E, G, D) with symmetric linear connection (T = 0) can be compatible with the model $L = (E, G, \nabla)$, where ∇ is the Levy-Civita connection.

It results in:

Theorem 2.3. Any model from the theory of the general relativity L = (E, G, D), with D symmetric, is not compatible with the model of Einstein ((E, G, ∇)).

Theorem 2.4. There are relativistic models which are G-compatible with the Einstein model.

Because of Theorem 2.1, Theorem 2.2 we can give a classification of the relativistic models. It easily results in:

Theorem 2.5. The relation " $\stackrel{G}{\sim}$ " is not, in the general case, an equivalence one. It is symmetric but is not reflexive and transitive one.

Theorem 2.6. If
$$L_1 = \left(E_p, G; \overset{(1)}{D}\right) \stackrel{G}{\sim} L_2 = \left(E, G; \overset{(2)}{D}\right)$$
 and $\overset{(1)}{D}G = 0$ then
 $\overset{(1)}{D}_X G = \rho(X)G; \ \rho \neq 0.$

Theorem 2.7. Let us consider $C_{\overline{D}}$ the set of the models which are *G*-compatible (G)

with the model $\overline{L} = (E, G, \overline{D})$, where $\overline{D}G = 0$. Then:

1) on the set $C_{\overline{D}}$ the relation " $\stackrel{G}{\sim}$ " is an equivalence one. (G)

2) Two classes $C_{(1)}, C_{(1)}$ are disjointed. If $\stackrel{(1)}{D} \in C_{(1)}, \stackrel{(2)}{D} \in C_{(2)}$ then the $\stackrel{(G)}{\underset{(G)}{D}} \stackrel{(G)}{\underset{(G)}{G}}$ $\stackrel{(G)}{\underset{(G)}{G}}$

models L_1, L_2 are not G-compatible.

From these results we get:

Theorem 2.8 (The partition theorem). The set of the relativistic models

$$\{L = (E, G, \{D\})\} = \underset{(G)}{M}(D)$$

 $\begin{array}{l} admit \ the \ partition: \ \underset{(G)}{M}(D) \ = \ \underset{(G)}{M_1(D)} (D) \ = \ \underset{(G)}{M_1(D)} (D) \ : \ \underset{(G)}{M_1(D)} \cap \ \underset{(G)}{M_2(D)} = \ \emptyset, \ where \ \underset{(G)}{M_1(D)} = \ \underset{(G)}{M_1(D)} (D) \ : \ \underset{(G)}{M_1(D)} = \ : \ \underset{(G)}{M_1(D)} (D) \ : \ \underset{(G)}{M_1(D)} = \ \underset{(G)}{M_1(D)} (D) \ : \ : \ \underset{(G)}{M_1(D)} (D) \ : \ : \ \underset{(G)}{M_1(D)} (D) \ : \ \underset{(G)}{M_1(D)} (D) \ : \ : \ \atop_{(G)}{M_1(D)} (D) \ : \ : \ \atop_{(G)}{M_1(D)} (D) \ : \ : \ \underset{(G)}{M_1(D)} (D) \ : \ : \ : \ \atop_{(G)}{M_1(D)} (D) \ : \$

This partition completes the classification of the relativistic models given in [3].

Corollary 2.1. The Einstein model with non-symmetric field, which was elaborated by Einstein in the last part of his life and was presented in an extended version, is included in C_{∇} .

Application: In the case of the vector bundle p = n + m is sufficient to consider a nonlinear connection $\stackrel{G}{N}(G(hX, vY)) = 0 \ \forall X, Y \in X(E))$ and the theory will become more beautiful if we will consider the models on the set of linear d-connections because these preserve the orthogonality of the horizontal distribution H and the vertical one V([2]). Therefore, the condition of G-conjugation $\stackrel{(1)}{D}_{(1)}, \stackrel{(2)}{D}_{(1)}$ will be considered only for the cases when $\stackrel{(1)}{D}_{(1)}, \stackrel{(2)}{D}_{(1)}$ are both horizontal or $\stackrel{(1)}{D}_{(1)}, \stackrel{(2)}{D}_{(1)}$ are both vertical.

3. Almost symplectic conjugations

Definition 3.1. Let us consider $L_1 = \left(E, \omega; D^1\right), L_2 = \left(E, \omega; D^2\right)$ two models associated to the structures (E, ω) , where ω is a general almost symplectic structure on E. Let us consider two arbitrary one-dimensional distributions, $\begin{pmatrix} 1 \\ D_{(1)} \\ \end{pmatrix}: u \to D_{u(1)} \subset T_u E; D_{(1)} : u \to D_{u(1)} \subset T_u E$ such that, in $u \in E$, we have:

(2)
$$\omega \begin{pmatrix} V, V \\ (1) & (2) \end{pmatrix} \quad \forall V \in D_{u(1)}^{(1)}; V \in D_{u(1)}^{(2)}; V \in D_{u(1)}^{(2)}$$

If the condition (2) is preserved at the parallel transport of the distributions $\stackrel{(1)}{D}_{(1)}$, $\stackrel{(2)}{D}_{(1)}$, $\stackrel{(2)}{D}_{(1)}$ with respect to the connections $\stackrel{(1)}{D}, \stackrel{(2)}{D}$, then we will say that the two models are ω -conjugated $\begin{pmatrix} L_1 & \overset{\omega}{\sim} & L_2 \end{pmatrix}$ or $\stackrel{(1)}{D} \overset{\omega}{\sim} \stackrel{(2)}{D}$.

Definition 3.2. Let us consider (E_p, ω) , where p is an even number and ω is a general almost symplectic structure on E. If D is a linear connection on E, then we will say that D is ω -compatible if we have:

(3)
$$D_X \omega = 0; \quad \forall X \in X(E)$$

Theorem 3.1. There are linear connections $\{\overline{D}\}$, on E, which are ω -compatible.

Proof. Let us consider D, an arbitrary linear connection on E, and $\{\overline{D}\}$, a linear connection on E, defined by:

About almost symplectic structures ...

(4)
$$\omega\left(Y,\overline{D}_XZ\right) = \omega\left(Y,D_XZ\right) + \frac{1}{2}\left(D_X\omega\right)\left(YZ\right)\ X,Y,Z \in X(E).$$

It results in: $(\overline{D}_X \omega)(Y, Z) = 0 \quad \forall X, Y, Z \in X(E) \text{ so } \overline{D} \text{ is } \omega \text{ -compatible} (\overline{D}_X \omega = 0).$

Definition 3.3. The linear connection \overline{D} , defined by (3), will be called the ω -compatibilisation of the connection D on E.

In the given conditions there are linear connections, D, on E, with torsion $(T \neq 0)$.

(5)
$$T(XZ) = D_X Z - D_Z X - [XZ] \neq 0$$

but also symmetric linear connections (torsion free i.e. T = 0).

For the almost symplectic structures (E, ω) such connection, ∇ , which must be ω -compatibile ($\nabla \omega = 0$) and torsion free $\begin{pmatrix} \nabla \\ T = 0 \end{pmatrix}$, does not exist if ω is a general almost symplectic one. More precisely we have:

Theorem 3.2. If ω is a general one, that means that it is not integrable, then:

- a) There are linear connections, \overline{D} on E, which are ω -compatible ($\overline{D}\omega = 0$).
- b) There are linear connections, on E, without torsion.

c) Linear connections, \overline{D} , do not exist on E, which are ω -compatible and without torsion.

Proof. Generally speaking, we have for any linear connection D on E:

(6)
$$(d\omega)(XYZ) = \sum_{(XYZ)} \{(D_X\omega)(YZ) + \omega(T(XY), Z)\} \quad \forall X, Y, Z$$

where $d\omega$ is the external differential.

If $D_X \omega = 0$, T = 0 then $d\omega = 0$ so ω is integrable (the structure ω is symplectic). Therefore, if ω is a general one $(d\omega \neq 0)$, \overline{D} does not exist on E, with the properties:

$$(7) D_X \omega = 0$$

(8)
$$\overline{T} = 0$$

Theorem 3.3. If ω is a symplectic one then the connections $\overline{D} = \nabla$ exists with the properties (7) and (8).

A proof can be found in [1] or, for E = TM (tangent bundle) in [4], with some completions related to the horizontal distribution, HTM, which is supplementary to the vertical one, VTM.

From the above considerations, in the general case $d\omega \neq 0$, the partition of the almost symplectic conjugated models $\{(E, \omega \{D\})\}$ will be studied in a different way from the case of $\{(E, G, D)\}$.

To compare two almost symplectic models $L_1 = \begin{pmatrix} E, \omega; D \end{pmatrix}$, $L_2 = \begin{pmatrix} E, \omega; D \end{pmatrix}$, a more general criterion is necessary. This criterion is given by the preservation $\begin{pmatrix} 1 & 2 \\ \end{pmatrix}$, $\begin{pmatrix} 2 \\ \end{pmatrix}$, a more general criterion is necessary. This criterion is given by the preservation $\begin{pmatrix} 1 & 2 \\ \end{pmatrix}$, the parallel transport with respect to the distributions $D_{u(1)}$, $D_{u(1)}$, in $u \in E$, at $\begin{pmatrix} 1 & 2 \\ \end{pmatrix}$, the parallel transport with respect to the linear connections D, D, that means it is given by the condition $L_1 \sim L_2$. The physical meaning of this criterion is obvious in the particular case of the models associated to the hamiltonian mechanical systems (on the phase space $E = T^*M$), such as the physical meaning of the *G*-conjugation criterion is obvious in Lagrangean modelling, on E = TM(on the speed space). These special cases show that a classification criterion is necessary.

Definition 3.4. Let us consider two almost symplectic ω -conjugated models, $L_1 \stackrel{\omega}{\sim} L_2$. We will say that L_1, L_2 are ω -compatible.

In [4], starting from the mixed, covariant derivative, associated to $\overset{(1)}{D},\overset{(2)}{D}$:

(9)
$$\begin{pmatrix} {}^{(12)} D X \omega \end{pmatrix} (YZ) = \begin{pmatrix} {}^{(1)} D X \omega \end{pmatrix} (YZ) - \omega \left(Y, {}^{(21)} T (XZ) \right)$$

and similarly for $\begin{pmatrix} (21) \\ D \\ X \end{pmatrix} (YZ)$ where:

(10)
$${}^{(21)}_{\tau}(XZ) = {}^{(2)}_{D_X}Z - {}^{(1)}_{D_X}Z = -{}^{(12)}_{\tau}(XZ)$$

is elaborated a systematic theory of ω -conjugation, $\stackrel{(1)}{D} \sim \stackrel{(2)}{\sim} \stackrel{(2)}{D}$. In the general case it is obtained:

Theorem 3.4. ([4]). We have $\overset{(1)}{D} \approx \overset{(2)}{D}$ if and only if :

(11)
$$\begin{pmatrix} {}^{(12)} \\ D \\ X \omega \end{pmatrix} (YZ) = \alpha(X)\omega(YZ), \alpha \in \Lambda_1(E)$$

Also it results in:

Theorem 3.5. Let us consider two models L_1, L_2 . If $\stackrel{(1)}{D}, \stackrel{(2)}{D}$ are ω -compatible $\begin{pmatrix} {}^{(1)}_{D} \omega = 0; \stackrel{(2)}{D} \omega = 0 \end{pmatrix}$ then L_1, L_2 cannot be ω -conjugated, i.e. they are not ω -compatible.

Theorem 3.6. Let us consider L_1, L_2 two models. If $\stackrel{(1)}{D}$ is ω -compatible or $\stackrel{(2)}{D}$ is ω -compatible and $\stackrel{(1)}{T} = \stackrel{(2)}{T}$ then L_1, L_2 are not ω -compatible.

Theorem 3.7. Let us consider the ω -compatible models L_1, L_2 . If $\stackrel{(1)}{D}$ is ω -compatible then we will have:

(12)
$$\overset{(2)}{D}_X \omega = 2\alpha(X)\omega; \ X \in X(M), \alpha \neq 0$$

From the above theorems it results:

Theorem 3.8. Let us consider $\underset{(\omega)}{M}(D)$ the set of the ω -compatibile models. On the set $\underset{(\omega)}{M}(D)$, the relation " $\overset{\omega}{\sim}$ " is not an equivalence one. It is symmetrical: $L_1 \overset{\omega}{\sim} L_2 \Leftrightarrow L_2 \overset{\omega}{\sim} L_1$, but, in the general case, it is not reflexive or transitive. Let us take $C_{\overline{D}} = \left\{ (E, \omega, D) | D \overset{\omega}{\sim} \overline{D}; \overline{D}\omega = 0 \right\}$. It results in:

Theorem 3.9. The restriction of the relation " $\stackrel{\omega}{\sim}$ " to $C_{\overline{D}}$ is an equivalence $\overset{(\omega)}{(\omega)}$

Let us consider $M_1(D) = \bigcup_{(\omega)} C_{\overline{D}}; \overline{D}\omega = 0$. Now we will take $M_2(D) = M_1(D) - M_1(D)$. It results in:

Theorem 3.10. (the partition theorem). We have:

(13)
$$\underset{(\omega)}{\overset{M}{}}(D) = \underset{(\omega)}{\overset{M}{}}(D) \cup \underset{(\omega)}{\overset{M}{}}(D)$$

where $M_1(D) \cap M_2(D) = \emptyset$, $M_1(D) = \bigcup_{\overline{D}} C_{\overline{D}}; C_{(1)} \cap C_{(2)} = \emptyset \left(\overline{D}\omega = 0; \overline{D}$

This theorem emphasizes how to analyze the ω -compatibilisation of the almost symplectic conjugated models.

Corollary 3.1. If ω is a symplectic structure then there are classes, $\left\{ \begin{array}{c} C_{\nabla} \\ (\omega) \end{array} \right\}$ with $\nabla \omega = 0; \stackrel{\nabla}{T} = 0.$

Corollary 3.2. If ω is symplectic then $D \in C_{\nabla}$ cannot be torsion free.

Corollary 3.3. If ω is symplectic then $D \in C_{\nabla}$ is a linear semisymmetric connection in Schouten-Thomas way.

Example 3.1. If $D \stackrel{\omega}{\sim} \stackrel{(0)}{D}$, with $\stackrel{(0)}{D}$ an arbitrary fixed linear connection, then from (2.6) the following transformations result $\omega(Y, D_X Z) = \omega\left(Y, \stackrel{(0)}{D}_X Z\right) +$

$$\binom{(0)}{D_X\omega}(YZ) - \alpha(X)\omega(YZ)$$
 with $\alpha \in \Lambda_1(E)$, arbitrary chosen.

Acknowledgement

The authors would like to thank the organizers for a beautiful conference.

References

- Gheorghiev, V., Oproiu, V., Differentiable manifolds. (in Romanian) Vol.I-II, Ed.Acad.Române, 1976-1979
- [2] Miron R., Anastasiei M., Vector bundles. Lagrange Spaces. Applications to
- [3] Stavre P., Vector bundles, Ed. EUC, vol.I- 2004, II- 2005, III- 2006
- [4] Stavre, P., An introduction to the theory of the conjugated geometrical structures. Applications to the relativity, Ed. Matrix, Bucarest, 2007

Received by the editors October 1, 2008