# ESTIMATION OF A CONDITION NUMBER RELATED TO THE WEIGHTED DRAZIN INVERSE 

Dijana Mosic ${ }^{11}$


#### Abstract

In this paper we get the formula for the condition number of the $W$-weighted Drazin inverse solution of a linear system $W A W x=b$, where $A$ is a bounded linear operator between Hilbert spaces $X$ and $Y$, $W$ is a bounded linear operator between Hilbert spaces $Y$ and $X, x$ is an unknown vector in the range of $(A W)^{D}$ and $b$ is a vector in the range of $(W A)^{D}$. AMS Mathematics Subject Classification (2000): 47A05, 15A09 Key words and phrases: NW-weighted Drazin inverse, condition number of a linear system


## 1. Introduction

In this paper $X$ and $Y$ denote arbitrary Hilbert spaces. We use $\mathcal{B}(X, Y)$ to denote the set of all linear bounded operators from $X$ to $Y$. Set $\mathcal{B}(X)=$ $B(X, X)$.

Let $A \in \mathcal{B}(X, Y), W \in \mathcal{B}(Y, X)$ be nonzero operators. If there exists $S \in$ $\mathcal{B}(X, Y)$ satisfying

$$
\begin{gathered}
(A W)^{k+1} S W=(A W)^{k} \\
S W A W S=S \\
A W S=S W A
\end{gathered}
$$

for some nonnegative integer k, then $S$ is called the W-weighted Drazin inverse of $A$ and denoted by $S=A_{d, W}$ 5. If there exists $A_{d, W}$, then we say that $A$ is $W$-Drazin invertible and $A_{d, W}$ must be unique [5]. If $X=Y, A \in \mathcal{B}(X)$ and $W=I$, then $S=A^{D}$, the ordinary Drazin inverse of $A$ [1]. We use $i(S)$ to denote the Drazin index of $S \in \mathcal{B}(X)$. If $S$ has a Drazin inverse, then $i(S)=\inf \left\{k \in N: S^{k}=S^{k+1} S^{D}\right\}$.

Let us recall that if $A \in \mathcal{B}(X, Y)$ and $W \in \mathcal{B}(Y, X)$ then the following conditions are equivalent [4]:
(1) $A$ is $W$-Drazin invertible,
(2) $A W$ is Drazin invertible,
(3) $W A$ is Drazin invertible.

[^0]Let $A \in \mathcal{B}(X, Y), W \in \mathcal{B}(Y, X)$ and let $A$ be $W$-Drazin invertible. Then $A W$ and $W A$ are Drazin invertible and

$$
X=N\left((W A)^{D}\right) \oplus R\left((W A)^{D}\right), \quad Y=N\left((A W)^{D}\right) \oplus R\left((A W)^{D}\right)
$$

Let X and Y be equipped with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$. The $Q$-norm for a vector $x \in X$, the $P$-norm for a vector $y \in Y$ and the $P Q$-norm for an operator $A \in \mathcal{B}(X, Y)$ are defined by

$$
\begin{gathered}
\|x\|_{Q}=\sqrt{\left\|x_{1}\right\|_{X}^{2}+\left\|x_{2}\right\|_{X}^{2}} \\
\|y\|_{P}=\sqrt{\left\|y_{1}\right\|_{Y}^{2}+\left\|y_{2}\right\|_{Y}^{2}} \\
\|A\|_{P Q}=\sup _{\|x\|_{Q} \leq 1}\|A x\|_{P}
\end{gathered}
$$

where

$$
\begin{aligned}
& x=x_{1}+x_{2}, x_{1} \in R\left((W A)^{D}\right), x_{2} \in N\left((W A)^{D}\right), \\
& y=y_{1}+y_{2}, y_{1} \in R\left((A W)^{D}\right), y_{2} \in N\left((A W)^{D}\right) .
\end{aligned}
$$

Notice that we can also change the inner product in $X$ in the following way:

$$
\langle x, y\rangle_{P}=\left\langle x_{1}, y_{1}\right\rangle_{X}+\left\langle x_{2}, y_{2}\right\rangle_{X}
$$

where

$$
x=x_{1}+x_{2}, y=y_{1}+y_{2}, x_{1}, y_{1} \in R\left((W A)^{D}\right), x_{2}, y_{2} \in N\left((W A)^{D}\right)
$$

Now, $\|\cdot\|_{P}$ is induced by $\langle\cdot, \cdot\rangle_{P}$. Similarly, for $\langle\cdot, \cdot\rangle_{Q}$ and $\|\cdot\|_{Q}$ in $Y$.
From [3] we can write $A, W$ in the form

$$
A=A_{1} \oplus A_{2}, \quad W=W_{1} \oplus W_{2}
$$

with $A_{1}, W_{1}$ invertible and $W_{2} A_{2}$ and $A_{2} W_{2}$ quasinilpotent. Hence, the Wweighted Drazin inverse of $A$ has the form

$$
A_{d, W}=\left(W_{1} A_{1} W_{1}\right)^{-1} \oplus 0
$$

Let us consider the equation

$$
W A W x=b, \quad b \in R\left((W A)^{D}\right)
$$

Then there exists a unique $x \in R\left((A W)^{D}\right)$ such that

$$
x=A_{d, W} b
$$

We say that $B \in \mathcal{B}(X, Y)$ obeys the condition ( $W$ ) at $A$ if

$$
B-A=A W A_{d, W} W(B-A) W A W A_{d, W} \quad \text { and } \quad\left\|\mathrm{A}_{\mathrm{d}, \mathrm{~W}} \mathrm{~W}(\mathrm{~B}-\mathrm{A})\right\|\|\mathrm{W}\|<1
$$

Set $E=B-A$.
If $F$ is a continuously differentiable function

$$
\begin{gathered}
F: \mathcal{B}(X, Y) \times X \longrightarrow Y \\
(A, x) \longmapsto F(A, x)
\end{gathered}
$$

the absolute condition number of $F$ at $x$ is the scalar $\left\|F^{\prime}(x)\right\|$. The relative condition number of $F$ at $x$ is

$$
\frac{\left\|F^{\prime}(x)\right\|\|x\|_{X}}{\|y\|_{Y}}
$$

Following [2] we introduce the operator

$$
\begin{gathered}
F: \mathcal{B}(X, Y) \times X \longrightarrow Y \\
(A, b) \longmapsto F(A, b)=A_{d, W} b=x .
\end{gathered}
$$

We know that the operator $F$ is a differentiable function, if the perturbation $E$ of $A$ fulfils the following condition:

$$
\begin{equation*}
A_{d, W}(W A W) E W=E W, \quad W E(W A W) A_{d, W}=W E \tag{1}
\end{equation*}
$$

We need the following important theorem.
Theorem 1.1. ([4]) Let $A, B \in \mathcal{B}(X, Y), W \in \mathcal{B}(Y, X)$, let $A$ be $W$-Drazin invertible and let $B$ obey condition $(W)$ at $A$. Then $B$ is $W$-Drazin invertible, $(B W)\left(B_{d, W} W\right)=(A W)\left(A_{d, W} W\right), i(B W)=i(A W)$,

$$
\begin{gathered}
B_{d, W}=\left(I+A_{d, W} W E W\right)^{-1} A_{d, W}=A_{d, W}\left(I+W E W A_{d, W}\right)^{-1} \\
R\left(B_{d, W}\right)=R\left(A_{d, W}\right) \quad \text { and } \quad N\left(B_{d, W}\right)=N\left(A_{d, W}\right)
\end{gathered}
$$

The norm on the data is the norm in $\mathcal{B}(X, Y) \times X$ defined as

$$
(A, b) \longmapsto\|[\alpha W A W, \beta b]\|=\sqrt{\alpha^{2}\|W A W\|_{Q P}^{2}+\beta^{2}\|b\|_{Q}^{2}}
$$

In [2], Cui and Diao investigated the condition number of the $W$-weighted Drazin inverse solution of a linear system $W A W x=b$, where $A$ is an $m \times n$ rank deficient matrix, the index of $A W$ is $k_{1}$, the index of $W A$ is $k_{2}$, b is a real vector of the size $n$ in the range of $(W A)^{k_{1}}, x$ is a real vector of the size $m$ in the range of $(A W)^{k_{2}}$. For two positive real numbers $\alpha$ and $\beta$, they considered the weighted Frobenius norm $\|[\alpha W A W, \beta b]\|_{Q, \tilde{P}}^{(F)}$ and gave the explicit formula of the condition number of the $W$-weighted Drazin inverse solution of a rectangular linear system. In this paper we extend the result obtained in [2] to linear bounded operators between Hilbert spaces.

## 2. Results

Now, we prove the following result.
Theorem 2.1. If the perturbation $E$ in A fulfills the condition (1), then the absolute condition number of the $W$-weighted Drazin inverse solution of linear system, with the norm

$$
\|[\alpha W A W, \beta b]\|=\sqrt{\alpha^{2}\|W A W\|_{Q P}^{2}+\beta^{2}\|b\|_{Q}^{2}}
$$

on the data $(A, b)$ and the norm $\|x\|_{P}$ on the solution, satisfies

$$
C \leq\left\|A_{d, W}\right\|_{P Q} \sqrt{\frac{1}{\beta^{2}}+\frac{\|x\|_{P}^{2}}{\alpha^{2}}}
$$

Let $\left(E_{n}\right)_{n}$ be a sequence of perturbations in A fulfilling the condition (1) and let $\left(f_{n}\right)_{n}$ be a sequence of perturbations in $b$. If $C_{n}$ is the corresponding absolute condition number, then

$$
C_{n} \rightarrow\left\|A_{d, W}\right\|_{P Q} \sqrt{\frac{1}{\beta^{2}}+\frac{\|x\|_{P}^{2}}{\alpha^{2}}}, \quad n \rightarrow \infty
$$

Hence, $\left\|A_{d, W}\right\|_{P Q} \sqrt{\frac{1}{\beta^{2}}+\frac{\|x\|_{P}^{2}}{\alpha^{2}}}$ is a sharp bound.
Proof. We know that $F(A, b)=A_{d, W} b$. Under the condition (1), $F$ is a differentiable function and $F^{\prime}$ is defined as follows

$$
\left.F^{\prime}(A, b)\right|_{(E, f)}=\lim _{\epsilon \rightarrow 0} \frac{(A+\epsilon E)_{d, W}(b+\epsilon f)-A_{d, W} b}{\epsilon}
$$

where $E$ is the perturbation of $A$ and $f$ is the perturbation of $b$.
Since $E$ satisfies the condition (1), we have (4)

$$
(A+\epsilon E)_{d, W}=A_{d, W}-\epsilon A_{d, W} W E W A_{d, W}+O\left(\epsilon^{2}\right)
$$

and then we can easily get that

$$
\left.F^{\prime}(A, b)\right|_{(E, f)}=-A_{d, W} W E W x+A_{d, W} f
$$

Then

$$
\begin{aligned}
\left\|\left.F^{\prime}(A, b)\right|_{(E, f)}\right\|_{P} & =\left\|A_{d, W}(W E W x-f)\right\|_{P} \\
& \leq\left\|A_{d, W}\right\|_{P Q}\left(\|W E W\|_{Q P}\|x\|_{P}+\|f\|_{Q}\right)
\end{aligned}
$$

The norm of a linear map $F^{\prime}(A, b)$ is the supermum of $\left\|\left.F^{\prime}(A, b)\right|_{(E, f)}\right\|_{P}$ on the unit ball of $\mathcal{B}(X, Y) \times X$. Since

$$
\|[\alpha W E W, \beta f]\|^{2}=\alpha^{2}\|W E W\|_{Q P}^{2}+\beta^{2}\|f\|_{Q}^{2}
$$

we get

$$
\begin{aligned}
& \left\|F^{\prime}(A, b)\right\| \sup ^{=} \sup _{\alpha^{2}\|W E W\|_{Q P}^{2}+\beta^{2}\|f\|_{Q}^{2} \leq 1}\left\|A_{d, W}(W E W x-f)\right\|_{P} \\
& \leq \sup _{\alpha^{2}\|W E W\|_{Q P}^{2}+\beta^{2}\|f\|_{Q}^{2} \leq 1}\left\|A_{d, W}\right\|_{P Q}\left(\|W E W\|_{Q P}\|x\|_{P}+\|f\|_{Q}\right) \\
& =\sup _{\alpha^{2}\|W E W\|_{Q P}^{2}+\beta^{2}\|f\|_{Q}^{2} \leq 1}\left\|A_{d, W}\right\|_{P Q}\left(\alpha\|W E W\|_{Q P} \frac{\|x\|_{P}}{\alpha}+\beta\|f\|_{Q} \frac{1}{\beta}\right) \\
& =\left\|A_{d, W}\right\|_{P Q} \sup _{\alpha^{2}\|W E W\|_{Q P}^{2}+\beta^{2}\|f\|_{Q}^{2} \leq 1}\left(\alpha\|W E W\|_{Q P}, \beta\|f\|_{Q}\right) \cdot\left(\frac{\|x\|_{P}}{\alpha}, \frac{1}{\beta}\right)
\end{aligned}
$$

where $\left(\alpha\|W E W\|_{Q P}, \beta\|f\|_{Q}\right)$ and $\left(\frac{\|x\|_{P}}{\alpha}, \frac{1}{\beta}\right)$ can be considered as vectors in $R^{2}$.

Therefore, from the Cauchy-Schwarz inequality we get:

$$
\left\|F^{\prime}(A, b)\right\| \leq\left\|A_{d, W}\right\|_{P Q} \sqrt{\frac{\|x\|_{P}^{2}}{\alpha^{2}}+\frac{1}{\beta^{2}}}
$$

Next, we show the other part of the theorem. For a sequence $\left(u_{n}\right)_{n}$ in $R\left((W A)^{D}\right)$, $\left\|u_{n}\right\|=1$, there exists a sequence $\left(v_{n}\right)_{n}$ in $R\left((A W)^{D}\right),\left\|v_{n}\right\| \leq 1$ and $\lim _{n \rightarrow \infty}\left\|v_{n}\right\|=$ 1 , such that, for all $n \in N$,

$$
\left(W_{1} A_{1} W_{1}\right)^{-1} u_{n}=\left\|\left(W_{1} A_{1} W_{1}\right)^{-1}\right\| v_{n}=\left\|A_{d, W}\right\|_{P Q} v_{n} .
$$

Taking, for all $n \in N$,

$$
\hat{u}_{n}=\left[\begin{array}{c}
u_{n} \\
0
\end{array}\right], \quad \hat{v}_{n}=\left[\begin{array}{c}
v_{n} \\
0
\end{array}\right]
$$

we obtain

$$
\begin{aligned}
A_{d, W} \hat{u}_{n} & =\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
u_{n} \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(W_{1} A_{1} W_{1}\right)^{-1} u_{n} \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\left\|\left(W_{1} A_{1} W_{1}\right)^{-1}\right\| v_{n} \\
0
\end{array}\right] \\
& =\left\|\left(W_{1} A_{1} W_{1}\right)^{-1}\right\|\left[\begin{array}{c}
v_{n} \\
0
\end{array}\right] \\
& =\left\|A_{d, W}\right\|_{P Q} \hat{v}_{n} .
\end{aligned}
$$

It is easy to check that $\left\|\hat{u}_{n}\right\|_{Q}=1$ and $\left\|\hat{v}_{n}\right\|_{P} \leq 1$, for all $n \in N$.

Let $u \in R\left((W A)^{D}\right)$ and $v \in R\left((A W)^{D}\right)$. Define $S_{u, v} \in \mathcal{B}\left(R\left((A W)^{D}\right), R\left((W A)^{D}\right)\right)$ as follows: if $x \in R\left((A W)^{D}\right)$, then

$$
S_{u, v}(x) \stackrel{\text { def }}{=}\langle x, v\rangle u
$$

For all $T \in \mathcal{B}\left(R\left((W A)^{D}\right), R\left((A W)^{D}\right)\right)$ we have

$$
T S_{u, v}(x)=T(u)\langle x, v\rangle .
$$

Now we choos, for $n=1,2,3, \ldots$,

$$
\begin{gathered}
\eta=\sqrt{\frac{\|x\|_{P}^{2}}{\alpha^{2}}+\frac{1}{\beta^{2}}}, \quad f_{n}=\frac{1}{\beta^{2} \eta} \hat{u}_{n} \\
E_{n}=-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{cc}
W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right] .
\end{gathered}
$$

Then we have, for a fixed $n$,

$$
\begin{aligned}
E_{n} W & =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{cc}
W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right] \\
& =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{cc}
W_{1}^{-1} S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right] \\
& =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{cc}
W_{1}^{-1} S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Since

$$
A_{d, W}(W A W)=I \oplus 0
$$

we can verify that $E_{n}$ fulfills the first equation of condition (1):

$$
\begin{aligned}
A_{d, W}(W A W) E_{n} W & =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
W_{1}^{-1} S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right] \\
& =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{ccc}
W_{1}^{-1} S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right] \\
& =E_{n} W .
\end{aligned}
$$

In the same way we have

$$
\begin{aligned}
W E_{n} & =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right]\left[\begin{array}{cc}
W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right] \\
& =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
S_{u_{n}, x} W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right] \\
& =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{cc}
S_{u_{n}, x} W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Since

$$
(W A W) A_{d, W}=I \oplus 0
$$

we know

$$
\begin{aligned}
W E_{n}(W A W) A_{d, W} & =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{cc}
S_{u_{n}, x} W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right] \\
& =-\frac{1}{\alpha^{2} \eta}\left[\begin{array}{cc}
S_{u_{n}, x} W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right] \\
& =W E_{n} .
\end{aligned}
$$

Thus $E_{n}$ fulfills the condition (1), for all $n \in N$. Now we want to verify that the perturbation $\left(E_{n}, f_{n}\right)$ satisfies $\alpha^{2}\left\|W E_{n} W\right\|_{Q P}^{2}+\beta^{2}\left\|f_{n}\right\|_{Q}^{2} \leq 1$.

$$
\begin{aligned}
& \alpha^{2}\left\|W E_{n} W\right\|_{Q P}^{2}+\beta^{2}\left\|f_{n}\right\|_{Q}^{2} \\
& =\frac{1}{\alpha^{2} \eta^{2}} \|\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right]\left[\begin{array}{cc}
W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
W_{1}^{-1} & 0 \\
0 & 0
\end{array}\right] \\
& \cdot\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right]\left\|_{Q P}^{2}+\frac{1}{\beta^{2} \eta^{2}}\right\| \hat{u}_{n} \|_{Q}^{2} \\
& =\frac{1}{\alpha^{2} \eta^{2}}\left\|\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\right\|_{Q P}^{2}+\frac{1}{\beta^{2} \eta^{2}}\left\|\hat{u}_{n}\right\|_{Q}^{2} \\
& =\frac{1}{\alpha^{2} \eta^{2}}\left\|\left[\begin{array}{cc}
S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]\right\|_{Q P}^{2}+\frac{1}{\beta^{2} \eta^{2}} \\
& =\frac{1}{\alpha^{2} \eta^{2}}\left\|\left[\begin{array}{cc}
S_{u_{n}, x} & 0 \\
0 & 0
\end{array}\right]\right\|_{Q P}^{2}+\frac{1}{\beta^{2} \eta^{2}} \\
& =\frac{1}{\alpha^{2} \eta^{2}}\left\|S_{u_{n}, x}\right\|^{2}+\frac{1}{\beta^{2} \eta^{2}} \\
& \leq \frac{1}{\alpha^{2} \eta^{2}}\left\|u_{n}\right\|^{2}\|x\|_{P}^{2}+\frac{1}{\beta^{2} \eta^{2}} \\
& =\frac{1}{\eta^{2}}\left(\frac{\|x\|_{P}^{2}}{\alpha^{2}}+\frac{1}{\beta^{2}}\right) \\
& =1
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\left.F^{\prime}(A, b)\right|_{\left(E_{n}, f_{n}\right)} & =-A_{d, W} W E_{n} W x+A_{d, W} f_{n} \\
& =\frac{1}{\alpha^{2} \eta}\left(\left(W_{1} A_{1} W_{1}\right)^{-1} \oplus 0\right)\left(S_{u_{n}, x} \oplus 0\right) x+\frac{1}{\beta^{2} \eta} A_{d, W} \hat{u}_{n} \\
& =\frac{1}{\alpha^{2} \eta}\left(\left(W_{1} A_{1} W_{1}\right)^{-1} S_{u_{n}, x} \oplus 0\right) x+\frac{1}{\beta^{2} \eta} A_{d, W} \hat{u}_{n} \\
& =\frac{1}{\alpha^{2} \eta}\left[\begin{array}{c}
\left(W_{1} A_{1} W_{1}\right)^{-1}\langle x, x\rangle u_{n} \\
0
\end{array}\right]+\frac{1}{\beta^{2} \eta} A_{d, W} \hat{u}_{n} \\
& =\frac{1}{\alpha^{2} \eta}\left[\begin{array}{c}
\|x\|_{P}^{2}\left(W_{1} A_{1} W_{1}\right)^{-1} u_{n} \\
0
\end{array}\right]+\frac{1}{\beta^{2} \eta} A_{d, W} \hat{u}_{n} \\
& =\frac{1}{\alpha^{2} \eta}\|x\|_{P}^{2}\left[\begin{array}{c}
\left\|\left(W_{1} A_{1} W_{1}\right)^{-1}\right\| v_{n} \\
0
\end{array}\right]+\frac{1}{\beta^{2} \eta} A_{d, W} \hat{u}_{n} \\
& =\frac{1}{\alpha^{2} \eta}\|x\|_{P}^{2}\left\|\left(W_{1} A_{1} W_{1}\right)^{-1}\right\|\left[\begin{array}{c}
v_{n} \\
0
\end{array}\right]+\frac{1}{\beta^{2} \eta}\left\|A_{d, W}\right\|_{P Q} \hat{v}_{n} \\
& =\frac{1}{\alpha^{2} \eta}\|x\|_{P}^{2}\left\|A_{d, W}\right\|_{P Q} \hat{v}_{n}+\frac{1}{\beta^{2} \eta}\left\|A_{d, W}\right\|_{P Q} \hat{v}_{n} \\
& =\frac{\left\|A_{d, W}\right\|_{P Q}}{\eta}\left(\frac{\|x\|_{P}^{2}}{\alpha^{2}}+\frac{1}{\beta^{2}}\right) \hat{v}_{n} \\
& =\left\|A_{d, W}\right\|_{P Q} \eta \hat{v}_{n} .
\end{aligned}
$$

So

$$
\left\|\left.F^{\prime}(A, b)\right|_{\left(E_{n}, f_{n}\right)}\right\|_{P} \rightarrow\left\|A_{d, W}\right\|_{P Q} \sqrt{\frac{\|x\|_{P}^{2}}{\alpha^{2}}+\frac{1}{\beta^{2}}} \quad(n \rightarrow \infty)
$$

with $\alpha^{2}\left\|W E_{n} W\right\|_{Q P}^{2}+\beta^{2}\left\|f_{n}\right\|_{Q}^{2} \leq 1$, we get

$$
\left\|F^{\prime}(A, b)\right\| \rightarrow\left\|A_{d, W}\right\|_{P Q} \sqrt{\frac{\|x\|_{P}^{2}}{\alpha^{2}}+\frac{1}{\beta^{2}}}, \quad(n \rightarrow \infty)
$$

and we complete the proof.

## References

[1] Ben-Israel, A., Greville, T.N.E., Generalized inverses: theory and applications. Second Ed., Springer 2003.
[2] Cui, X., Diao, H., Condition number for the W-weighted Drazin inverse and its applications in the solution of rectangular linear system. J. Appl. Math. Comput. 20 (2006), 35-59.
[3] Dajić, A., Koliha, J. J., The weighted g-Drazin inverse for operators. J. Australian Math. Soc. 82 (2007), 163-181.
[4] Rakočević, V., Wei, Y., A weighted Drazin inverse and applications. Linear Algebra Appl. 350 (2002), 25-39.
[5] Wang, G., Wei, Y., Qiao, S., Generalized inverses: Theory and Computations. Beijing: Science Press, 2004.

Received by the editors July 14, 2006


[^0]:    ${ }^{1}$ Department of Mathematics and Informatics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia, e-mail: sknme@ptt.yu

