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ESTIMATION OF A CONDITION NUMBER
RELATED TO THE WEIGHTED DRAZIN INVERSE

Dijana Mosić1

Abstract. In this paper we get the formula for the condition number of
the W -weighted Drazin inverse solution of a linear system WAWx = b,
where A is a bounded linear operator between Hilbert spaces X and Y ,
W is a bounded linear operator between Hilbert spaces Y and X, x is an
unknown vector in the range of (AW )D and b is a vector in the range of
(WA)D.
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1. Introduction

In this paper X and Y denote arbitrary Hilbert spaces. We use B(X, Y )
to denote the set of all linear bounded operators from X to Y . Set B(X) =
B(X, X).

Let A ∈ B(X,Y ), W ∈ B(Y, X) be nonzero operators. If there exists S ∈
B(X, Y ) satisfying

(AW )k+1SW = (AW )k,

SWAWS = S,

AWS = SWA,

for some nonnegative integer k, then S is called the W-weighted Drazin inverse
of A and denoted by S = Ad,W [5]. If there exists Ad,W , then we say that A
is W -Drazin invertible and Ad,W must be unique [5]. If X = Y , A ∈ B(X)
and W = I, then S = AD, the ordinary Drazin inverse of A [1]. We use
i(S) to denote the Drazin index of S ∈ B(X). If S has a Drazin inverse, then
i(S) = inf{k ∈ N : Sk = Sk+1SD}.

Let us recall that if A ∈ B(X, Y ) and W ∈ B(Y, X) then the following
conditions are equivalent [4]:

(1) A is W -Drazin invertible,

(2) AW is Drazin invertible,

(3) WA is Drazin invertible.
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Let A ∈ B(X, Y ), W ∈ B(Y, X) and let A be W -Drazin invertible. Then
AW and WA are Drazin invertible and

X = N((WA)D)⊕R((WA)D), Y = N((AW )D)⊕R((AW )D).

Let X and Y be equipped with norms ‖ · ‖X and ‖ · ‖Y . The Q-norm for a
vector x ∈ X, the P -norm for a vector y ∈ Y and the PQ-norm for an operator
A ∈ B(X,Y ) are defined by

‖x‖Q =
√
‖x1‖2X + ‖x2‖2X ,

‖y‖P =
√
‖y1‖2Y + ‖y2‖2Y ,

‖A‖PQ = sup
‖x‖Q≤1

‖Ax‖P

where
x = x1 + x2, x1 ∈ R((WA)D), x2 ∈ N((WA)D),

y = y1 + y2, y1 ∈ R((AW )D), y2 ∈ N((AW )D).

Notice that we can also change the inner product in X in the following way:

〈x, y〉P = 〈x1, y1〉X + 〈x2, y2〉X
where

x = x1 + x2, y = y1 + y2, x1, y1 ∈ R((WA)D), x2, y2 ∈ N((WA)D).

Now, ‖ · ‖P is induced by 〈·, ·〉P . Similarly, for 〈·, ·〉Q and ‖ · ‖Q in Y .
From [3] we can write A,W in the form

A = A1 ⊕A2, W = W1 ⊕W2,

with A1,W1 invertible and W2A2 and A2W2 quasinilpotent. Hence, the W–
weighted Drazin inverse of A has the form

Ad,W = (W1A1W1)−1 ⊕ 0.

Let us consider the equation

WAWx = b, b ∈ R((WA)D).

Then there exists a unique x ∈ R((AW )D) such that

x = Ad,W b.

We say that B ∈ B(X, Y ) obeys the condition (W ) at A if

B −A = AWAd,W W (B −A)WAWAd,W and ‖Ad,WW(B−A)‖‖W‖ < 1.
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Set E = B −A.
If F is a continuously differentiable function

F : B(X,Y )×X −→ Y

(A, x) 7−→ F (A, x),

the absolute condition number of F at x is the scalar ‖F ′(x)‖. The relative
condition number of F at x is

‖F ′(x)‖‖x‖X

‖y‖Y
.

Following [2] we introduce the operator

F : B(X,Y )×X −→ Y

(A, b) 7−→ F (A, b) = Ad,W b = x.

We know that the operator F is a differentiable function, if the perturbation E
of A fulfils the following condition:

Ad,W (WAW )EW = EW, WE(WAW )Ad,W = WE.(1)

We need the following important theorem.

Theorem 1.1. ([4]) Let A,B ∈ B(X, Y ),W ∈ B(Y, X), let A be W–Drazin
invertible and let B obey condition (W ) at A. Then B is W–Drazin invertible,
(BW )(Bd,W W ) = (AW )(Ad,W W ), i(BW ) = i(AW ),

Bd,W = (I + Ad,W WEW )−1Ad,W = Ad,W (I + WEWAd,W )−1,

R(Bd,W ) = R(Ad,W ) and N(Bd,W ) = N(Ad,W ).

The norm on the data is the norm in B(X, Y )×X defined as

(A, b) 7−→ ‖[αWAW,βb]‖ =
√

α2‖WAW‖2QP + β2‖b‖2Q.

In [2], Cui and Diao investigated the condition number of the W -weighted
Drazin inverse solution of a linear system WAWx = b, where A is an m × n
rank deficient matrix, the index of AW is k1, the index of WA is k2, b is a real
vector of the size n in the range of (WA)k1 , x is a real vector of the size m in the
range of (AW )k2 . For two positive real numbers α and β, they considered the
weighted Frobenius norm ‖[αWAW,βb]‖(F )

Q,P̃
and gave the explicit formula of the

condition number of the W -weighted Drazin inverse solution of a rectangular
linear system. In this paper we extend the result obtained in [2] to linear
bounded operators between Hilbert spaces.
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2. Results

Now, we prove the following result.

Theorem 2.1. If the perturbation E in A fulfills the condition (1), then the
absolute condition number of the W–weighted Drazin inverse solution of linear
system, with the norm

‖[αWAW,βb]‖ =
√

α2‖WAW‖2QP + β2‖b‖2Q

on the data (A, b) and the norm ‖x‖P on the solution, satisfies

C ≤ ‖Ad,W ‖PQ

√
1
β2

+
‖x‖2P
α2

.

Let (En)n be a sequence of perturbations in A fulfilling the condition (1) and let
(fn)n be a sequence of perturbations in b. If Cn is the corresponding absolute
condition number, then

Cn → ‖Ad,W ‖PQ

√
1
β2

+
‖x‖2P
α2

, n →∞.

Hence, ‖Ad,W ‖PQ

√
1

β2 + ‖x‖2P
α2 is a sharp bound.

Proof. We know that F (A, b) = Ad,W b. Under the condition (1), F is a
differentiable function and F ′ is defined as follows

F ′(A, b)|(E,f) = lim
ε→0

(A + εE)d,W (b + εf)−Ad,W b

ε
,

where E is the perturbation of A and f is the perturbation of b.
Since E satisfies the condition (1), we have ([4])

(A + εE)d,W = Ad,W − εAd,W WEWAd,W + O(ε2),

and then we can easily get that

F ′(A, b)|(E,f) = −Ad,W WEWx + Ad,W f.

Then

‖F ′(A, b)|(E,f)‖P = ‖Ad,W (WEWx− f)‖P

≤ ‖Ad,W ‖PQ(‖WEW‖QP ‖x‖P + ‖f‖Q).

The norm of a linear map F ′(A, b) is the supermum of ‖F ′(A, b)|(E,f)‖P on the
unit ball of B(X, Y )×X. Since

‖[αWEW,βf ]‖2 = α2‖WEW‖2QP + β2‖f‖2Q
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we get

‖F ′(A, b)‖
= sup

α2‖WEW‖2QP +β2‖f‖2Q≤1

‖Ad,W (WEWx− f)‖P

≤ sup
α2‖WEW‖2QP +β2‖f‖2Q≤1

‖Ad,W ‖PQ(‖WEW‖QP ‖x‖P + ‖f‖Q)

= sup
α2‖WEW‖2QP +β2‖f‖2Q≤1

‖Ad,W ‖PQ

(
α‖WEW‖QP

‖x‖P

α
+ β‖f‖Q

1
β

)

= ‖Ad,W ‖PQ sup
α2‖WEW‖2QP +β2‖f‖2Q≤1

(α‖WEW‖QP , β‖f‖Q) ·
(‖x‖P

α
,
1
β

)

where (α‖WEW‖QP , β‖f‖Q) and
(
‖x‖P

α , 1
β

)
can be considered as vectors in

R2.
Therefore, from the Cauchy–Schwarz inequality we get:

‖F ′(A, b)‖ ≤ ‖Ad,W ‖PQ

√
‖x‖2P
α2

+
1
β2

.

Next, we show the other part of the theorem. For a sequence (un)n in R((WA)D),
‖un‖ = 1, there exists a sequence (vn)n in R((AW )D) , ‖vn‖ ≤ 1 and lim

n→∞
‖vn‖ =

1, such that, for all n ∈ N ,

(W1A1W1)−1un = ‖(W1A1W1)−1‖vn = ‖Ad,W ‖PQvn.

Taking, for all n ∈ N ,

ûn =
[

un

0

]
, v̂n =

[
vn

0

]
,

we obtain

Ad,W ûn =
[

(W1A1W1)−1 0
0 0

] [
un

0

]

=
[

(W1A1W1)−1un

0

]

=
[ ‖(W1A1W1)−1‖vn

0

]

= ‖(W1A1W1)−1‖
[

vn

0

]

= ‖Ad,W ‖PQv̂n.

It is easy to check that ‖ûn‖Q = 1 and ‖v̂n‖P ≤ 1, for all n ∈ N .
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Let u ∈ R((WA)D) and v ∈ R((AW )D). Define Su,v ∈ B(R((AW )D), R((WA)D))
as follows: if x ∈ R((AW )D), then

Su,v(x) def= 〈x, v〉u.

For all T ∈ B(R((WA)D), R((AW )D)) we have

TSu,v(x) = T (u)〈x, v〉.
Now we choos, for n = 1, 2, 3, . . . ,

η =

√
‖x‖2P
α2

+
1
β2

, fn =
1

β2η
ûn,

En = − 1
α2η

[
W−1

1 0
0 0

] [
Sun,x 0

0 0

] [
W−1

1 0
0 0

]
.

Then we have, for a fixed n,

EnW = − 1
α2η

[
W−1

1 0
0 0

] [
Sun,x 0

0 0

] [
W−1

1 0
0 0

] [
W1 0
0 W2

]

= − 1
α2η

[
W−1

1 Sun,x 0
0 0

] [
I 0
0 0

]

= − 1
α2η

[
W−1

1 Sun,x 0
0 0

]
.

Since
Ad,W (WAW ) = I ⊕ 0,

we can verify that En fulfills the first equation of condition (1):

Ad,W (WAW )EnW = − 1
α2η

[
I 0
0 0

] [
W−1

1 Sun,x 0
0 0

]

= − 1
α2η

[
W−1

1 Sun,x 0
0 0

]

= EnW.

In the same way we have

WEn = − 1
α2η

[
W1 0
0 W2

] [
W−1

1 0
0 0

] [
Sun,x 0

0 0

] [
W−1

1 0
0 0

]

= − 1
α2η

[
I 0
0 0

] [
Sun,xW−1

1 0
0 0

]

= − 1
α2η

[
Sun,xW−1

1 0
0 0

]
.

Since
(WAW )Ad,W = I ⊕ 0,
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we know

WEn(WAW )Ad,W = − 1
α2η

[
Sun,xW−1

1 0
0 0

] [
I 0
0 0

]

= − 1
α2η

[
Sun,xW−1

1 0
0 0

]

= WEn.

Thus En fulfills the condition (1), for all n ∈ N . Now we want to verify that
the perturbation (En, fn) satisfies α2‖WEnW‖2QP + β2‖fn‖2Q ≤ 1.

α2‖WEnW‖2QP + β2‖fn‖2Q
=

1
α2η2

∥∥∥∥
[

W1 0
0 W2

] [
W−1

1 0
0 0

] [
Sun,x 0

0 0

] [
W−1

1 0
0 0

]

·
[

W1 0
0 W2

]∥∥∥∥
2

QP

+
1

β2η2
‖ûn‖2Q

=
1

α2η2

∥∥∥∥
[

I 0
0 0

] [
Sun,x 0

0 0

] [
I 0
0 0

]∥∥∥∥
2

QP

+
1

β2η2
‖ûn‖2Q

=
1

α2η2

∥∥∥∥
[

Sun,x 0
0 0

] [
I 0
0 0

]∥∥∥∥
2

QP

+
1

β2η2

=
1

α2η2

∥∥∥∥
[

Sun,x 0
0 0

]∥∥∥∥
2

QP

+
1

β2η2

=
1

α2η2
‖Sun,x‖2 +

1
β2η2

≤ 1
α2η2

‖un‖2‖x‖2P +
1

β2η2

=
1
η2

(‖x‖2P
α2

+
1
β2

)

= 1.



8 D. Mosić

Thus, we have

F ′(A, b)|(En,fn) = −Ad,W WEnWx + Ad,W fn

=
1

α2η
((W1A1W1)−1 ⊕ 0)(Sun,x ⊕ 0)x +

1
β2η

Ad,W ûn

=
1

α2η
((W1A1W1)−1Sun,x ⊕ 0)x +

1
β2η

Ad,W ûn

=
1

α2η

[
(W1A1W1)−1〈x, x〉un

0

]
+

1
β2η

Ad,W ûn

=
1

α2η

[ ‖x‖2P (W1A1W1)−1un

0

]
+

1
β2η

Ad,W ûn

=
1

α2η
‖x‖2P

[ ‖(W1A1W1)−1‖vn

0

]
+

1
β2η

Ad,W ûn

=
1

α2η
‖x‖2P ‖(W1A1W1)−1‖

[
vn

0

]
+

1
β2η

‖Ad,W ‖PQv̂n

=
1

α2η
‖x‖2P ‖Ad,W ‖PQv̂n +

1
β2η

‖Ad,W ‖PQv̂n

=
‖Ad,W ‖PQ

η

(‖x‖2P
α2

+
1
β2

)
v̂n

= ‖Ad,W ‖PQηv̂n.

So

‖F ′(A, b)|(En,fn)‖P → ‖Ad,W ‖PQ

√
‖x‖2P
α2

+
1
β2

(n →∞),

with α2‖WEnW‖2QP + β2‖fn‖2Q ≤ 1, we get

‖F ′(A, b)‖ → ‖Ad,W ‖PQ

√
‖x‖2P
α2

+
1
β2

, (n →∞)

and we complete the proof. 2
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