NOVI SAD J. MATH. Vol. 39, No. 1, 2009, 1-9

ESTIMATION OF A CONDITION NUMBER RELATED TO THE WEIGHTED DRAZIN INVERSE

Dijana Mosić¹

Abstract. In this paper we get the formula for the condition number of the *W*-weighted Drazin inverse solution of a linear system WAWx = b, where *A* is a bounded linear operator between Hilbert spaces *X* and *Y*, *W* is a bounded linear operator between Hilbert spaces *Y* and *X*, *x* is an unknown vector in the range of $(AW)^{D}$ and *b* is a vector in the range of $(WA)^{D}$.

AMS Mathematics Subject Classification (2000): 47A05, 15A09

 $Key\ words\ and\ phrases:$ NW–weighted Drazin inverse, condition number of a linear system

1. Introduction

In this paper X and Y denote arbitrary Hilbert spaces. We use $\mathcal{B}(X, Y)$ to denote the set of all linear bounded operators from X to Y. Set $\mathcal{B}(X) = B(X, X)$.

Let $A \in \mathcal{B}(X,Y)$, $W \in \mathcal{B}(Y,X)$ be nonzero operators. If there exists $S \in \mathcal{B}(X,Y)$ satisfying

 $(AW)^{k+1}SW = (AW)^k,$

SWAWS = S,

$$AWS = SWA,$$

for some nonnegative integer k, then S is called the W-weighted Drazin inverse of A and denoted by $S = A_{d,W}$ [5]. If there exists $A_{d,W}$, then we say that A is W-Drazin invertible and $A_{d,W}$ must be unique [5]. If X = Y, $A \in \mathcal{B}(X)$ and W = I, then $S = A^D$, the ordinary Drazin inverse of A [1]. We use i(S) to denote the Drazin index of $S \in \mathcal{B}(X)$. If S has a Drazin inverse, then $i(S) = \inf\{k \in N : S^k = S^{k+1}S^D\}$.

Let us recall that if $A \in \mathcal{B}(X, Y)$ and $W \in \mathcal{B}(Y, X)$ then the following conditions are equivalent [4]:

- (1) A is W-Drazin invertible,
- (2) AW is Drazin invertible,
- (3) WA is Drazin invertible.

 $^{^1 \}rm Department of Mathematics and Informatics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia, e-mail: sknme@ptt.yu$

Let $A \in \mathcal{B}(X, Y)$, $W \in \mathcal{B}(Y, X)$ and let A be W-Drazin invertible. Then AW and WA are Drazin invertible and

$$X = N((WA)^D) \oplus R((WA)^D), \qquad Y = N((AW)^D) \oplus R((AW)^D).$$

Let X and Y be equipped with norms $\|\cdot\|_X$ and $\|\cdot\|_Y$. The Q-norm for a vector $x \in X$, the P-norm for a vector $y \in Y$ and the PQ-norm for an operator $A \in \mathcal{B}(X, Y)$ are defined by

$$\|x\|_Q = \sqrt{\|x_1\|_X^2 + \|x_2\|_X^2},$$

$$\|y\|_P = \sqrt{\|y_1\|_Y^2 + \|y_2\|_Y^2},$$

$$\|A\|_{PQ} = \sup_{\|x\|_Q \le 1} \|Ax\|_P$$

where

$$x = x_1 + x_2, \ x_1 \in R((WA)^D), \ x_2 \in N((WA)^D),$$

$$y = y_1 + y_2, \ y_1 \in R((AW)^D), \ y_2 \in N((AW)^D).$$

Notice that we can also change the inner product in X in the following way:

$$\langle x, y \rangle_P = \langle x_1, y_1 \rangle_X + \langle x_2, y_2 \rangle_X$$

where

$$x = x_1 + x_2, \ y = y_1 + y_2, \ x_1, \ y_1 \in R((WA)^D), \ x_2, \ y_2 \in N((WA)^D).$$

Now, $\|\cdot\|_P$ is induced by $\langle\cdot,\cdot\rangle_P$. Similarly, for $\langle\cdot,\cdot\rangle_Q$ and $\|\cdot\|_Q$ in Y. From [3] we can write A, W in the form

$$A = A_1 \oplus A_2, \quad W = W_1 \oplus W_2,$$

with A_1, W_1 invertible and W_2A_2 and A_2W_2 quasinilpotent. Hence, the W–weighted Drazin inverse of A has the form

$$A_{d,W} = (W_1 A_1 W_1)^{-1} \oplus 0.$$

Let us consider the equation

$$WAWx = b, \qquad b \in R((WA)^D).$$

Then there exists a unique $x \in R((AW)^D)$ such that

$$x = A_{d,W}b.$$

We say that $B \in \mathcal{B}(X, Y)$ obeys the condition (W) at A if

$$B - A = AWA_{d,W}W(B - A)WAWA_{d,W} \text{ and } \|A_{d,W}W(B - A)\|\|W\| < 1.$$

Set E = B - A. If F is a continuously differentiable function

$$F:\mathcal{B}(X,Y)\times X\longrightarrow Y$$

$$(A, x) \longmapsto F(A, x),$$

the absolute condition number of F at x is the scalar ||F'(x)||. The relative condition number of F at x is

$$\frac{\|F'(x)\|\|x\|_X}{\|y\|_Y}.$$

Following [2] we introduce the operator

$$F: \mathcal{B}(X,Y) \times X \longrightarrow Y$$

$$(A, b) \longmapsto F(A, b) = A_{d,W}b = x.$$

We know that the operator F is a differentiable function, if the perturbation E of A fulfils the following condition:

(1)
$$A_{d,W}(WAW)EW = EW, WE(WAW)A_{d,W} = WE.$$

We need the following important theorem.

Theorem 1.1. ([4]) Let $A, B \in \mathcal{B}(X, Y), W \in \mathcal{B}(Y, X)$, let A be W-Drazin invertible and let B obey condition (W) at A. Then B is W-Drazin invertible, $(BW)(B_{d,W}W) = (AW)(A_{d,W}W), i(BW) = i(AW),$

$$B_{d,W} = (I + A_{d,W}WEW)^{-1}A_{d,W} = A_{d,W}(I + WEWA_{d,W})^{-1},$$

$$R(B_{d,W}) = R(A_{d,W}) \quad and \quad N(B_{d,W}) = N(A_{d,W}).$$

The norm on the data is the norm in $\mathcal{B}(X,Y) \times X$ defined as

$$(A,b) \longmapsto \|[\alpha WAW,\beta b]\| = \sqrt{\alpha^2 \|WAW\|_{QP}^2 + \beta^2 \|b\|_Q^2}.$$

In [2], Cui and Diao investigated the condition number of the W-weighted Drazin inverse solution of a linear system WAWx = b, where A is an $m \times n$ rank deficient matrix, the index of AW is k_1 , the index of WA is k_2 , b is a real vector of the size n in the range of $(WA)^{k_1}$, x is a real vector of the size m in the range of $(AW)^{k_2}$. For two positive real numbers α and β , they considered the weighted Frobenius norm $\|[\alpha WAW, \beta b]\|_{Q,\tilde{P}}^{(F)}$ and gave the explicit formula of the condition number of the W-weighted Drazin inverse solution of a rectangular linear system. In this paper we extend the result obtained in [2] to linear bounded operators between Hilbert spaces.

2. Results

Now, we prove the following result.

Theorem 2.1. If the perturbation E in A fulfills the condition (1), then the absolute condition number of the W-weighted Drazin inverse solution of linear system, with the norm

$$\|[\alpha WAW, \beta b]\| = \sqrt{\alpha^2 \|WAW\|_{QP}^2 + \beta^2 \|b\|_Q^2}$$

on the data (A, b) and the norm $||x||_P$ on the solution, satisfies

$$C \le \|A_{d,W}\|_{PQ} \sqrt{\frac{1}{\beta^2} + \frac{\|x\|_P^2}{\alpha^2}}$$

Let $(E_n)_n$ be a sequence of perturbations in A fulfilling the condition (1) and let $(f_n)_n$ be a sequence of perturbations in b. If C_n is the corresponding absolute condition number, then

$$C_n \to ||A_{d,W}||_{PQ} \sqrt{\frac{1}{\beta^2} + \frac{||x||_P^2}{\alpha^2}}, \qquad n \to \infty$$

Hence, $||A_{d,W}||_{PQ}\sqrt{\frac{1}{\beta^2} + \frac{||x||_P^2}{\alpha^2}}$ is a sharp bound.

Proof. We know that $F(A,b) = A_{d,W}b$. Under the condition (1), F is a differentiable function and F' is defined as follows

$$F'(A,b)|_{(E,f)} = \lim_{\epsilon \to 0} \frac{(A + \epsilon E)_{d,W}(b + \epsilon f) - A_{d,W}b}{\epsilon},$$

where E is the perturbation of A and f is the perturbation of b. Since E satisfies the condition (1), we have ([4])

$$(A + \epsilon E)_{d,W} = A_{d,W} - \epsilon A_{d,W} W E W A_{d,W} + O(\epsilon^2),$$

and then we can easily get that

$$F'(A,b)|_{(E,f)} = -A_{d,W}WEWx + A_{d,W}f.$$

Then

$$\begin{aligned} \|F'(A,b)\|_{(E,f)}\|_{P} &= \|A_{d,W}(WEWx-f)\|_{P} \\ &\leq \|A_{d,W}\|_{PQ}(\|WEW\|_{QP}\|x\|_{P}+\|f\|_{Q}). \end{aligned}$$

The norm of a linear map F'(A, b) is the supermum of $||F'(A, b)|_{(E,f)}||_P$ on the unit ball of $\mathcal{B}(X, Y) \times X$. Since

$$\|[\alpha WEW, \beta f]\|^2 = \alpha^2 \|WEW\|_{QP}^2 + \beta^2 \|f\|_Q^2$$

4

we get

$$\begin{split} \|F'(A,b)\| &= \sup_{\alpha^2 \|WEW\|_{Q_P}^2 + \beta^2 \|f\|_Q^2 \le 1} \|A_{d,W}(WEWx - f)\|_P \\ &\le \sup_{\alpha^2 \|WEW\|_{Q_P}^2 + \beta^2 \|f\|_Q^2 \le 1} \|A_{d,W}\|_{PQ} (\|WEW\|_{Q_P} \|x\|_P + \|f\|_Q) \\ &= \sup_{\alpha^2 \|WEW\|_{Q_P}^2 + \beta^2 \|f\|_Q^2 \le 1} \|A_{d,W}\|_{PQ} \left(\alpha \|WEW\|_{Q_P} \frac{\|x\|_P}{\alpha} + \beta \|f\|_Q \frac{1}{\beta}\right) \\ &= \|A_{d,W}\|_{PQ} \sup_{\alpha^2 \|WEW\|_{Q_P}^2 + \beta^2 \|f\|_Q^2 \le 1} (\alpha \|WEW\|_{Q_P}, \beta \|f\|_Q) \cdot \left(\frac{\|x\|_P}{\alpha}, \frac{1}{\beta}\right) \end{split}$$

where $(\alpha ||WEW||_{QP}, \beta ||f||_Q)$ and $(\frac{||x||_P}{\alpha}, \frac{1}{\beta})$ can be considered as vectors in \mathbb{R}^2 .

Therefore, from the Cauchy–Schwarz inequality we get:

$$||F'(A,b)|| \le ||A_{d,W}||_{PQ} \sqrt{\frac{||x||_P^2}{\alpha^2} + \frac{1}{\beta^2}}.$$

Next, we show the other part of the theorem. For a sequence $(u_n)_n$ in $R((WA)^D)$, $||u_n|| = 1$, there exists a sequence $(v_n)_n$ in $R((AW)^D)$, $||v_n|| \le 1$ and $\lim_{n \to \infty} ||v_n|| = 1$, such that, for all $n \in N$,

$$(W_1A_1W_1)^{-1}u_n = \|(W_1A_1W_1)^{-1}\|v_n = \|A_{d,W}\|_{PQ}v_n.$$

Taking, for all $n \in N$,

$$\hat{u}_n = \begin{bmatrix} u_n \\ 0 \end{bmatrix}, \quad \hat{v}_n = \begin{bmatrix} v_n \\ 0 \end{bmatrix},$$

we obtain

$$\begin{aligned} A_{d,W}\hat{u}_n &= \begin{bmatrix} (W_1A_1W_1)^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_n\\ 0 \end{bmatrix} \\ &= \begin{bmatrix} (W_1A_1W_1)^{-1}u_n\\ 0 \end{bmatrix} \\ &= \begin{bmatrix} \|(W_1A_1W_1)^{-1}\|v_n\\ 0 \end{bmatrix} \\ &= \|(W_1A_1W_1)^{-1}\| \begin{bmatrix} v_n\\ 0 \end{bmatrix} \\ &= \|A_{d,W}\|_{PQ}\hat{v}_n. \end{aligned}$$

It is easy to check that $\|\hat{u}_n\|_Q = 1$ and $\|\hat{v}_n\|_P \le 1$, for all $n \in N$.

Let $u \in R((WA)^D)$ and $v \in R((AW)^D)$. Define $S_{u,v} \in \mathcal{B}(R((AW)^D), R((WA)^D))$ as follows: if $x \in R((AW)^D)$, then

$$S_{u,v}(x) \stackrel{\text{def}}{=} \langle x, v \rangle u.$$

For all $T\in \mathcal{B}(R((WA)^D),R((AW)^D))$ we have

$$TS_{u,v}(x) = T(u)\langle x, v \rangle.$$

Now we choos, for n = 1, 2, 3, ...,

$$\begin{split} \eta &= \sqrt{\frac{\|x\|_P^2}{\alpha^2} + \frac{1}{\beta^2}}, \quad f_n = \frac{1}{\beta^2 \eta} \hat{u}_n, \\ E_n &= -\frac{1}{\alpha^2 \eta} \begin{bmatrix} W_1^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_{u_n,x} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} W_1^{-1} & 0\\ 0 & 0 \end{bmatrix} \end{split}$$

Then we have, for a fixed n,

$$\begin{split} E_n W &= -\frac{1}{\alpha^2 \eta} \begin{bmatrix} W_1^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_{u_n,x} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} W_1^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} W_1 & 0\\ 0 & W_2 \end{bmatrix} \\ &= -\frac{1}{\alpha^2 \eta} \begin{bmatrix} W_1^{-1} S_{u_n,x} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} \\ &= -\frac{1}{\alpha^2 \eta} \begin{bmatrix} W_1^{-1} S_{u_n,x} & 0\\ 0 & 0 \end{bmatrix} . \end{split}$$

Since

$$A_{d,W}(WAW) = I \oplus 0,$$

we can verify that E_n fulfills the first equation of condition (1):

$$\begin{aligned} A_{d,W}(WAW)E_nW &= -\frac{1}{\alpha^2\eta} \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} W_1^{-1}S_{u_n,x} & 0\\ 0 & 0 \end{bmatrix} \\ &= -\frac{1}{\alpha^2\eta} \begin{bmatrix} W_1^{-1}S_{u_n,x} & 0\\ 0 & 0 \end{bmatrix} \\ &= E_nW. \end{aligned}$$

In the same way we have

$$WE_{n} = -\frac{1}{\alpha^{2}\eta} \begin{bmatrix} W_{1} & 0\\ 0 & W_{2} \end{bmatrix} \begin{bmatrix} W_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_{u_{n},x} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} W_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix}$$
$$= -\frac{1}{\alpha^{2}\eta} \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_{u_{n},x}W_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix}$$
$$= -\frac{1}{\alpha^{2}\eta} \begin{bmatrix} S_{u_{n},x}W_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix}.$$

Since

$$(WAW)A_{d,W}=I\oplus 0,$$

7

we know

$$WE_{n}(WAW)A_{d,W} = -\frac{1}{\alpha^{2}\eta} \begin{bmatrix} S_{u_{n},x}W_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix}$$
$$= -\frac{1}{\alpha^{2}\eta} \begin{bmatrix} S_{u_{n},x}W_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix}$$
$$= WE_{n}.$$

Thus E_n fulfills the condition (1), for all $n \in N$. Now we want to verify that the perturbation (E_n, f_n) satisfies $\alpha^2 ||WE_nW||_{QP}^2 + \beta^2 ||f_n||_Q^2 \leq 1$.

$$\begin{split} &\alpha^{2} \|WE_{n}W\|_{QP}^{2} + \beta^{2} \|f_{n}\|_{Q}^{2} \\ &= \frac{1}{\alpha^{2}\eta^{2}} \left\| \begin{bmatrix} W_{1} & 0 \\ 0 & W_{2} \end{bmatrix} \begin{bmatrix} W_{1}^{-1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_{u_{n},x} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} W_{1}^{-1} & 0 \\ 0 & 0 \end{bmatrix} \\ &\cdot \begin{bmatrix} W_{1} & 0 \\ 0 & W_{2} \end{bmatrix} \right\|_{QP}^{2} + \frac{1}{\beta^{2}\eta^{2}} \|\hat{u}_{n}\|_{Q}^{2} \\ &= \frac{1}{\alpha^{2}\eta^{2}} \left\| \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_{u_{n},x} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \right\|_{QP}^{2} + \frac{1}{\beta^{2}\eta^{2}} \\ &= \frac{1}{\alpha^{2}\eta^{2}} \left\| \begin{bmatrix} S_{u_{n},x} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \right\|_{QP}^{2} + \frac{1}{\beta^{2}\eta^{2}} \\ &= \frac{1}{\alpha^{2}\eta^{2}} \left\| \begin{bmatrix} S_{u_{n},x} & 0 \\ 0 & 0 \end{bmatrix} \right\|_{QP}^{2} + \frac{1}{\beta^{2}\eta^{2}} \\ &= \frac{1}{\alpha^{2}\eta^{2}} \|S_{u_{n},x}\|^{2} + \frac{1}{\beta^{2}\eta^{2}} \\ &\leq \frac{1}{\alpha^{2}\eta^{2}} \|u_{n}\|^{2} \|x\|_{P}^{2} + \frac{1}{\beta^{2}\eta^{2}} \\ &= \frac{1}{\eta^{2}} \left(\frac{\|x\|_{P}^{2}}{\alpha^{2}} + \frac{1}{\beta^{2}} \right) \\ &= 1. \end{split}$$

Thus, we have

$$\begin{split} F'(A,b)|_{(E_n,f_n)} &= -A_{d,W}WE_nWx + A_{d,W}f_n \\ &= \frac{1}{\alpha^2\eta}((W_1A_1W_1)^{-1} \oplus 0)(S_{u_n,x} \oplus 0)x + \frac{1}{\beta^2\eta}A_{d,W}\hat{u}_n \\ &= \frac{1}{\alpha^2\eta}((W_1A_1W_1)^{-1}S_{u_n,x} \oplus 0)x + \frac{1}{\beta^2\eta}A_{d,W}\hat{u}_n \\ &= \frac{1}{\alpha^2\eta} \begin{bmatrix} (W_1A_1W_1)^{-1}\langle x, x \rangle u_n \\ 0 \end{bmatrix} + \frac{1}{\beta^2\eta}A_{d,W}\hat{u}_n \\ &= \frac{1}{\alpha^2\eta} \begin{bmatrix} \|x\|_P^2(W_1A_1W_1)^{-1}u_n \\ 0 \end{bmatrix} + \frac{1}{\beta^2\eta}A_{d,W}\hat{u}_n \\ &= \frac{1}{\alpha^2\eta}\|x\|_P^2 \begin{bmatrix} \|(W_1A_1W_1)^{-1}\|v_n \\ 0 \end{bmatrix} + \frac{1}{\beta^2\eta}A_{d,W}\hat{u}_n \\ &= \frac{1}{\alpha^2\eta}\|x\|_P^2\|(W_1A_1W_1)^{-1}\| \begin{bmatrix} v_n \\ 0 \end{bmatrix} + \frac{1}{\beta^2\eta}\|A_{d,W}\|_{PQ}\hat{v}_n \\ &= \frac{1}{\alpha^2\eta}\|x\|_P^2\|A_{d,W}\|_{PQ}\hat{v}_n + \frac{1}{\beta^2\eta}\|A_{d,W}\|_{PQ}\hat{v}_n \\ &= \frac{\|A_{d,W}\|_{PQ}}{\eta} \left(\frac{\|x\|_P^2}{\alpha^2} + \frac{1}{\beta^2}\right)\hat{v}_n \\ &= \|A_{d,W}\|_{PQ}\eta\hat{v}_n. \end{split}$$

 So

$$||F'(A,b)|_{(E_n,f_n)}||_P \to ||A_{d,W}||_{PQ} \sqrt{\frac{||x||_P^2}{\alpha^2} + \frac{1}{\beta^2}} \qquad (n \to \infty),$$

with $\alpha^2 \|WE_nW\|_{QP}^2 + \beta^2 \|f_n\|_Q^2 \le 1$, we get

$$||F'(A,b)|| \to ||A_{d,W}||_{PQ} \sqrt{\frac{||x||_P^2}{\alpha^2} + \frac{1}{\beta^2}}, \qquad (n \to \infty)$$

and we complete the proof. \square

References

- Ben-Israel, A., Greville, T.N.E., Generalized inverses: theory and applications. Second Ed., Springer 2003.
- [2] Cui, X., Diao, H., Condition number for the W-weighted Drazin inverse and its applications in the solution of rectangular linear system. J. Appl. Math. Comput. 20 (2006), 35–59.
- [3] Dajić, A., Koliha, J. J., The weighted g-Drazin inverse for operators. J. Australian Math. Soc. 82 (2007), 163–181.

8

- [4] Rakočević, V., Wei, Y., A weighted Drazin inverse and applications. Linear Algebra Appl. 350 (2002), 25–39.
- [5] Wang, G., Wei, Y., Qiao, S., Generalized inverses: Theory and Computations. Beijing: Science Press, 2004.

Received by the editors July 14, 2006