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A COMMON FIXED POINT THEOREM IN
COMPLETE FUZZY METRIC SPACES
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Abstract. In this paper, we establish a common fixed point theorem in
complete fuzzy metric spaces.
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1. Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [11] in 1965.
Since then, using this concept in topology and analysis many authors have
expansively developed the theory of fuzzy sets and application. George and
Veeramani [3] and Kramosil and Michalek [6] have introduced the concept of
fuzzy topological spaces induced by fuzzy metric, which have very important
applications in quantum particle physics, particularly in connections with both
string and ε(∞) theory, given and studied by El Naschie [1, 2]. Many authors
[4, 8, 9] have proved fixed point theorem in fuzzy (probabilistic) metric spaces.

Definition 1.1. A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is a continuous
t-norm if it satisfies the following conditions

1. ∗ is associative and commutative,

2. ∗ is continuous,

3. a ∗ 1 = a for all a ∈ [0, 1],

4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two typical examples of continuous t-norm are a∗b = ab and a∗b = min(a, b).

Definition 1.2. A 3-tuple (X, M, ∗) is called a fuzzy metric space if X is an
arbitrary (non-empty) set, ∗ is a continuous t-norm, and M is a fuzzy set on
X2× (0,∞), satisfying the following conditions for each x, y, z ∈ X and t, s > 0,
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1. M(x, y, t) > 0,

2. M(x, y, t) = 1 if and only if x = y,

3. M(x, y, t) = M(y, x, t),

4. M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s),

5. M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

6. lim
t→∞

M(x, y, t) = 1

Let (X, M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t)
with center x ∈ X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.

Let (X,M, ∗) be a fuzzy metric space. Let τ be the set of all A ⊂ X with
x ∈ A if and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A.
Then τ is a topology on X (induced by the fuzzy metric M). This topology is
Hausdorff and first countable. A sequence {xn} in X converges to x if and only
if M(xn, x, t) → 1 as n → ∞, for each t > 0. It is called a Cauchy sequence if
for each 0 < ε < 1 and t > 0, there exits n0 ∈ N such that M(xn, xm, t) > 1− ε
for each n,m ≥ n0. The fuzzy metric space (X, M, ∗) is said to be complete if
every Cauchy sequence is convergent. A subset A of X is said to be F-bounded
if there exist t > 0 and 0 < r < 1 such that M(x, y, t) > 1− r for all x, y ∈ A.

Example 1.3. Let X = R. Denote a ∗ b = a.b for all a, b ∈ [0, 1]. For each
t ∈ (0,∞), define

M(x, y, t) =
t

t + |x− y|
for all x, y ∈ X.

Lemma 1.4. Let (X, M, ∗) be a fuzzy metric space. Then M(x, y, t) is non-
decreasing with respect to t, for all x, y in X.

Definition 1.5. Let (X,M, ∗) be a fuzzy metric space. M is said to be contin-
uous on X2 × (0,∞) if

lim
n→∞

M(xn, yn, tn) = M(x, y, t).

Whenever a sequence {(xn, yn, tn)} in X2×(0,∞) converges to a point (x, y, t) ∈
X2 × (0,∞), i.e.

lim
n→∞

M(xn, x, t) = lim
n→∞

M(yn, y, t) = 1 and lim
n→∞

M(x, y, tn) = M(x, y, t)

Lemma 1.6. Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous
function on X2 × (0,∞).
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Proof. see proposition 1 of [7] 2

Definition 1.7. Let A and S be mappings from a fuzzy metric space (X, M, ∗)
into itself. Then the mappings are said to be weak compatible if they commute
at their coincidence point, that is, Ax = Sx implies that ASx = SAx.

Definition 1.8. Let A and S be mappings from a fuzzy metric space (X, M, ∗)
into itself. Then the mappings are said to be compatible if

lim
n→∞

M(ASxn, SAxn, t) = 1, ∀t > 0

whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = x ∈ X.

Proposition 1.9. [10]. Self-mappings A and S of a fuzzy metric space (X, M, ∗)
are compatible, then they are weak compatible.

The converse is not true as seen in the following example.

Example 1.10. Let (X, M, ∗) be a fuzzy metric space, where X = [0, 2], with
t-norm defined a ∗ b = min{a, b}, for all a, b ∈ [0, 1] and M(x, y, t) = t

t+d(x,y)

for all t > 0 and x, y ∈ X. Define self-maps A and S on X as follows:

Ax =
{

2 if 0 ≤ x ≤ 1,
x
2 if 1 < x ≤ 2,

Sx =
{

2 if x = 1,
x+3
5 otherwise,

Then we have S1 = A1=2 and S2 = A2 = 1. Also SA1 = AS1 = 1 and
SA2 = AS2 = 2. Thus (A,S) is weak compatible. Again,

Axn = 1− 1
4n

, Sxn = 1− 1
10n

.

Thus,
Axn → 1, Sxn → 1.

Further,

SAxn =
4
5
− 1

20n
, ASxn = 2.

Now,

lim
n→∞

M(ASxn, SAxn, t) = lim
n→∞

M(2,
4
5
− 1

20n
, t) =

t

t + 6
5

< 1, ∀ t > 0.

Hence (A,S) is not compatible.

Henceforth, we assume that ∗ is a continuous t-norm on X such that for
every µ ∈ (0, 1), there is a λ ∈ (0, 1) such that

(1− λ) ∗ (1− λ) ∗ · · · ∗ (1− λ)︸ ︷︷ ︸
n

≥ 1− µ
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Lemma 1.11. Let (X, M, ∗) be a fuzzy metric space. If we define Eλ,M :
X2 →+ ∪{0} by

Eλ,M (x, y) = inf{t > 0 : M(x, y, t) > 1− λ}

for each λ ∈ (0, 1) and x, y ∈ X. Then we have
(i) For any µ ∈ (0, 1) there exists λ ∈ (0, 1) such that

Eµ,M (x1, xn) ≤ Eλ,M (x1, x2) + Eλ,M (x2, x3) + · · ·+ Eλ,M (xn−1, xn)

for any x1, x2, ..., xn ∈ X.
(ii) The sequence {xn}n∈N is convergent in fuzzy metric space (X,M, ∗) if and
only if Eλ,M (xn, x) → 0. Also the sequence {xn}n∈N is a Cauchy sequence if
and only if it is Cauchy with Eλ,M .

Proof. (i) For every µ ∈ (0, 1), we can find a λ ∈ (0, 1) such that

(1− λ) ∗ (1− λ) ∗ · · · ∗ (1− λ)︸ ︷︷ ︸
n

≥ 1− µ

by definition

M(x1, xn, Eλ,M (x1, x2) + Eλ,M (x2, x3) + · · ·+ Eλ,M (xn−1, xn) + nδ)
≥ M(x1, x2, Eλ,M (x1, x2) + δ) ∗ · · · ∗M(xn−1, xn, Eλ,M (xn−1, xn) + δ)
≥ (1− λ) ∗ (1− λ) ∗ · · · ∗ (1− λ)︸ ︷︷ ︸

n

≥ 1− µ

for very δ > 0, which implies that

Eµ,M (x1, xn) ≤ Eλ,M (x1, x2) + Eλ,M (x2, x3) + · · ·+ Eλ,M (xn−1, xn) + nδ

.
Since δ > 0 is arbitrary, we have

Eµ,M (x1, xn) ≤ Eλ,M (x1, x2) + Eλ,M (x2, x3) + · · ·+ Eλ,M (xn−1, xn).

For (ii), note that since M is continuous in its third place and

Eλ,M (x, y) = inf{t > 0 : M(x, y, t) > 1− λ}.

Hence, we have

M(xn, x, η) > 1− λ ⇐⇒ Eλ,M (xn, x) < η

for every η > 0. 2
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Lemma 1.12. Let (X,M,*) be a fuzzy metric space. If there is a sequence {xn}
in X, such that for every n ∈ N.

M(xn, xn+1, t) ≥ M(x0, x1, k
nt)

for every k > 1, then the sequence {xn} is a Cauchy sequence.

Proof. For every λ ∈ (0, 1) and xn, , xn+1 ∈ X, we have

Eλ,M (xn+1, xn) = inf{t > 0 : M(xn+1, xn, t) > 1− λ}
≤ inf{t > 0 : M(x0, x1, k

nt) > 1− λ}
= inf{ t

kn
: M(x0, x1, t) > 1− λ}

=
1
kn

inf{t > 0 : M(x0, x1, t) > 1− λ}

=
1
kn

Eλ,M (x0, x1).

By Lemma (1.11), for every µ ∈ (0, 1) there exists λ ∈ (0, 1) such that

Eµ,M (xn, xm) ≤ Eλ,M (xn, xn+1) + Eλ,M (xn+1, xn+2) + · · ·+ Eλ,M (xm−1, xm)

≤ 1
kn

Eλ,M (x0, x1)+
1

kn+1
Eλ,M (x0, x1)+· · ·+ 1

km−1
Eλ,M (x0, x1)

= Eλ,M (x0, x1)
m−1∑

j=n

1
kj
−→ 0.

Hence, the sequence {xn} is a Cauchy sequence. 2

2. THE MAIN RESULTS

A class of implicit relation

Let Φ be the set of all continuous functions
φ : [0, 1]3 −→ [0, 1], increasing in any coordinate and φ(t, t, t) > t for every
t ∈ [0, 1).

Theorem 2.1. Let A,B, S and T be self-mappings of a complete fuzzy metric
space (X, M, ∗) satisfying :

(i)A(X) ⊆ T (X), B(X) ⊆ S(X) and A(X) or B(X) is a closed subset of
X,

(ii)

M(Ax,By, t) ≥ φ(M(Sx, Ty, kt),M(Ax, Sx, kt),M(By, Ty, kt)),

for every x, y in X,k > 1 and φ ∈ Φ,
(iii) the pairs (A,S) and (B, T ) are weak compatible. Then A,B, S and T

have a unique common fixed point in X.
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Proof. Let x0 ∈ X be an arbitrary point as A(X) ⊆ T (X), B(X) ⊆ S(X),
there exist x1, x2 ∈ X such that Ax0 = Tx1, Bx1 = Sx2. Inductively, construct
the sequences {yn} and {xn} in X such that y2n = Ax2n = Tx2n+1, y2n+1 =
Bx2n+1 = Sx2n+2, for n = 0, 1, 2, · · · .

Now, we prove that {yn} is a Cauchy sequence. Let dm(t) = M(ym, ym+1, t).
Set m = 2n, we have

d2n(t) = M(y2n, y2n+1, t) = M(Ax2n, Bx2n+1, t)
≥ φ(M(Sx2n, Tx2n+1, kt),M(Ax2n, Sx2n, kt),M(Bx2n+1, Tx2n+1, kt))
= φ(M(y2n−1, y2n, kt), M(y2n, y2n−1, kt),M(y2n+1, y2n, kt))
= φ(d2n−1(kt), d2n−1(kt), d2n(kt))

We claim that for every n ∈ N, d2n(kt) ≥ d2n−1(kt). For if d2n(kt) < d2n−1(kt),
for some n ∈ N, since φ is an increasing function, then the last inequality above
we get

d2n(t) ≥ φ(d2n(kt), d2n(kt), d2n(kt)) > d2n(kt).

That is, d2n(t) > d2n(kt), a contradiction. Hence d2n(kt) ≥ d2n−1(kt) for
every n ∈ N and ∀t > 0. Similarly for an odd integer m = 2n + 1 , we have
d2n+1(kt) ≥ d2n(kt). Thus {dn(t)}; is an increasing sequence in [0, 1]. Thus

d2n(t) ≥ φ(d2n−1(kt), d2n−1(kt), d2n−1(kt)) > d2n−1(kt).

Similarly, for an odd integer m = 2n + 1, we have d2n+1(t) ≥ d2n(kt). Hence
dn(t) ≥ dn−1(kt). That is,

M(yn, yn+1, t) ≥ M(yn−1, yn, kt) ≥ ... ≥ M(y0, y1, k
nt).

Hence by Lemma 1.12 {yn} is Cauchy and the completeness of X, {yn} converges
to y in X. That is,

lim
n→∞

yn = y ⇒ lim
n→∞

y2n = lim
n→∞

Ax2n = lim
n→∞

Tx2n+1

= lim
n→∞

y2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = y.

As B(X) ⊆ S(X), there exist u ∈ X such that Su = y. So, for ε > 0 , we have

M(Au, y, t + ε) ≥ M(Au, Bx2n+1, t) ∗M(Bx2n+1, y, ε)
≥ φ(M(Su, Tx2n+1, kt),M(Au, Su, kt),M(Bx2n+1, Tx2n+1, kt)) ∗
∗M(Bx2n+1, y, ε).

By continuous M and φ, on making n −→∞ the above inequality, we get

M(Au, y, t + ε) ≥ φ(M(y, y, kt),M(Au, y, kt),M(y, y, kt))
≥ φ(M(Au, y, kt),M(Au, y, kt),M(Au, y, kt)).
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On making ε −→ 0, we have

M(Au, y, t) ≥ φ(M(Au, y, kt),M(Au, y, kt),M(Au, y, kt)).

If Au 6= y, by above inequality we get M(Au, y, t) > M(Au, y, kt), which is
a contradiction. Hence M(Au, y, t) = 1, i.e Au = y. Thus Au = Su = y.
As A(X) ⊆ T (X) there exist v ∈ X, such that Tv = y. So,

M(y,Bv, t) = M(Au,Bv, t)
≥ φ(M(Su, Tv, kt),M(Au, Su, kt),M(Bv, Tv, kt))
= φ(1, 1,M(Bv, y, kt)).

we claim that Bv = y. For if Bv 6= y, then M(Bv, y, t) < 1.
On the above inequality we get

M(y, Bv, t) ≥ φ(M(y,Bv, kt), M(y,Bv, kt), M(y,Bv, kt)) > M(y, Bv, kt),

a contradiction. Hence Tv = Bv = Au = Su = y. Since (A,S) is weak
compatible, we get that ASu = SAu, that is Ay = Sy.
Since (B, T ) is weak compatible, we get that TBv = BTv, that is Ty = By. If
Ay 6= y, then M(Ay, y, t) < 1. However

M(Ay, y, t) = M(Ay,Bv, t)
≥ φ(M(Sy, Tv, kt),M(Ay, Sy, kt), M(Bv, Tv, kt))
≥ φ(M(Ay, y, kt), 1, 1)
≥ φ(M(Ay, y, kt),M(Ay, y, kt), M(Ay, y, kt))
> M(Ay, y, kt)

a contradiction. Thus Ay = y, hence Ay = Sy = y.
Similarly, we prove that By = y. For if By 6= y, then M(By, y, t) < 1, however

M(y,By, t) = M(Ay, By, t)
≥ φ(M(Sy, Ty, kt), M(Ay, Sy, kt),M(By, Ty, kt)) > M(y, By, kt),

a contradiction. Therefore, Ay = By = Sy = Ty = y, that is, y is a common
fixed point of A,B, S and T .
Uniqueness, let x be another common fixed point of A,B, S and T .
Then x = Ax = Bx = Sx = Tx and M(x, y, t) < 1, hence

M(y, x, t) = M(Ay,Bx, t)
≥ φ(M(Sy, Tx, kt),M(Ay, Sy, kt),M(Bx, Tx, kt))
= φ(M(y, x, kt), 1, 1) > M(y, x, kt),

a contradiction. Therefore, y is the unique common fixed point of self-maps
A,B, S and T . 2
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Theorem 2.2. Let S and T be aself-mappings of a complete fuzzy metric space
(X, M, ∗). If F, G are two mappings of Y into X and A,B are two mappings
of X into Y , where Y is a nonempty set, such that it satisfies the following
conditions:

(i)FA(X) ⊆ T (X), GB(X) ⊆ S(X) and A(X) or B(X) is a complete subset
of X,

(ii)M(FAx,GBy, t) ≥ φ(M(Sx, Ty, kt), M(FAx, Sx, kt),M(GBy, Ty, kt)),
for every x, y in X,k > 1 and φ ∈ Φ,

(iii) the pairs (FA, S) and (GB, T ) are weak compatible.
Then FA, GB, S and T have a unique common fixed point in X.

Proof. By Theorem 2.1 it suffices to set FA = A and GB = B. 2

Theorem 2.3. Let S and T be self-mappings of a complete fuzzy metric space
(X, M, ∗), satisfying

(i) M(Sx, Ty, t) ≥ a(t)M(x, Sy, kt) + b(t)M(x, Sx, kt)
+c(t)M(Sy, TSy, kt)
+h(t) max{M(x, TSy, kt),M(Sx, Sy, kt)}

for every x, y ∈ X and some k > 1, where a, b and c, h are functions of [0,∞)
into (0, 1) such that

a(t) + b(t) + c(t) + h(t) = 1, for any t > 0

Then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X, defined as

x2n+1 = Sx2n n = 0, 1, 2, · · ·
x2n = Tx2n−1 n = 1, 2, · · · .

For simplicity, we set

dn(t) = M(xn, xn+1, t), n = 0, 1, 2, · · ·

Now, we prove that the sequence dn(t) = M(xn, xn+1, t) is an increasing se-
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quence in [0, 1].

d2n(t) = M(x2n, x2n+1, t) = M(Sx2n, Tx2n−1, t) = M(Sx2n, TSx2n−2, t)
≥ a(t)M(x2n, Sx2n−2, kt) + b(t)M(x2n, Sx2n, kt)

+c(t)M(Sx2n−2, TSx2n−2, kt)
+h(t)max{M(x2n, TSx2n−2, kt),
M(Sx2n, Sx2n−2, kt)}

= a(t)M(x2n, x2n−1, kt) + b(t)M(x2n, x2n+1, kt)
+c(t)M(x2n−1, x2n, kt)
+h(t)max{M(x2n, x2n, kt), M(x2n+1, x2n−1, kt)}

= a(t)d2n−1(kt) + b(t)d2n(kt) + c(t)d2n−1(kt) + h(t)

Let d2n(kt) < d2n−1(kt) in the above inequality we have

d2n(t) > a(t)d2n(kt) + b(t)d2n(kt) + c(t)d2n(kt) + h(t)d2n(kt) = d2n(kt)

which is a contradiction. Thus, d2n(kt) ≥ d2n−1(kt). Similarly, we have
d2n+1(kt) ≥ d2n(kt). Hence in the above equality we get dn(t) > dn−1(kt).
That is

M(xn, xn+1, t) = M(xn−1, xn, kt) ≥ · · · ≥ M(x0, x1, k
nt).

Hence by Lemma 1.12, the sequence {xn} is Cauchy and by completeness of X,
{xn} converges to x in X. That is,
lim

n→∞
x2n = lim

n→∞
Sx2n−1 = x, and lim

n→∞
x2n+1 = lim

n→∞
Tx2n = x.

Now, we prove that Sx = x. If Sx 6= x by (i),

M(Sx, x2n, t) = M(Sx, TSx2n−2, t)
≥ a(t)M(x, Sx2n−2, kt) + b(t)M(x, Sx, kt)
+ c(t)M(Sx2n−2, Tx2n−2, kt) + h(t) max{M(x, TSx2n−2, kt),

M(Sx, Sx2n−2, kt)}.
Taking limit as n →∞ we get

M(Sx, x, t) ≥ a(t)M(x, x, kt) + b(t)M(x, Sx, kt)
+ c(t)M(x, x, kt) + h(t)max{M(x, x, kt),M(Sx, x, kt)}
> M(x, Sx, kt)

is a contradiction. Thus M(x, Sx, t) = 1 that is Sx = x . Now, we prove that
Tx = x. If Tx 6= x then by (ii) we have,

M(x, Tx, t) = M(Sx, TSx, t)
≥ a(t)M(x, Sx, kt) + b(t)M(x, Sx, kt)
+ c(t)M(Sx, Tx, kt) + h(t)max{M(x, TSx, kt), M(Sx, Sx, kt)}
> M(x, Tx, kt)
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is a contradiction. Hence Sx = Tx = x, that is x is a common fixed point of
S and T . Now to prove uniqueness let, if possible, y 6= x be another common
fixed point of S and T . Then there exists t > 0 such that M(x, y, t) < 1 and

M(x, y, t) = M(Sx, Ty, t) = M(Sx, TSy, t)
≥ a(t)M(x, Sy, kt) + b(t)M(x, Sx, kt)
+ c(t)M(Sy, TSy, kt) + h(t)max{M(x, TSy, kt),M(Sx, Sy, kt)}
= a(t)M(x, y, kt) + b(t) + c(t) + h(t)M(x, y, kt)
> [(a(t) + b(t) + c(t)) + h(t)]M(x, y, kt) = M(x, y, kt),

which is a contradiction. Therefore, x = y, i.e., x is a unique common fixed
point of S and T . 2
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