NOVI SAD J. MATH. Vol. 39, No. 1, 2009, 21-29

A CLASS OF Z-METACYCLIC GROUPS INVOLVING THE LUCAS NUMBERS

H. Doostie¹, K. Ahmadidelir²

Abstract. The sequence $\{g_i\}_{i=1}^{\infty}$ is the sequence of Lucas numbers $g_1 = 2, g_2 = 1, g_{i+2} = g_{i+1} + g_i, (i \ge 1)$, and $\ell \ge 2$ is an integer. In this paper we consider the group $G(\ell)$ with an efficient presentation $\langle x, y | x^{\ell} = y^{\ell} = xyx^{\lfloor \frac{\ell}{2} \rfloor}y^{\lfloor \frac{3\ell}{2} \rfloor} \rangle$ where, [x] is used for the integer part of a real x, and prove that $G(\ell)$ is finite of order

$$|G(\ell)| = \begin{cases} \frac{\ell(\ell+2)}{2}(1+3^{\frac{\ell}{2}}), & \ell \equiv 0 \text{ or } \pm 2 \pmod{6}, \\ 2\ell(\ell+1)g_{\ell+1}, & \ell \equiv 3 \pmod{6}, \\ \ell(\ell+1)g_{\ell+1}, & \ell \equiv \pm 1 \pmod{6}. \end{cases}$$

Moreover, if $\ell \equiv \pm 4$ or 8 or ± 12 or 20(mod 40), or $\ell \equiv \pm 1 \pmod{6}$ then, $G(\ell)$ is Z-metacyclic ($G'(\ell)$ and $\frac{G(\ell)}{G'(\ell)}$ are cyclic).

AMS Mathematics Subject Classification (2000): 20K35 Key words and phrases: Finitely presented groups, deficiency zero

1. Introduction

A finitely presented group G is said to have deficiency k if k is the largest integer such that G can be presented by m generators and m - k relations. The deficiency zero groups are interesting to be considered for their finiteness and their structures. A considerable effort has, over the years, been put into presenting infinite classes of finite groups. For a short survey on these groups one may consider the articles [5, 16, 20, 21, 22] (for the cyclic, metacyclic and some related groups), the articles [4, 11, 19, 24] (for the linear groups), the articles [7, 8, 9, 12, 14, 15] (for the soluble groups) and the articles [3, 6, 10, 13, 17, 18] for some other classes of deficiency zero groups of interesting orders and various structures. In particular, Wiegold ([23]) considers the deficiency zero groups

$$G = \langle x, y \mid x^{\ell} = y^m = w(x, y) \rangle$$

where, w is a word on the generators x and y. Since the subgroup $\langle x^{\ell} \rangle$ is a central subgroup of G then G is finite if and only if the groups G/G' and

 $^{^1{\}rm Mathematics}$ Department, Tarbiat Moallem University, 49 Mofateh Ave., Tehran 15614, Iran, e-mail: doostih@saba.tmu.ac.ir

²Department of mathematics, Science and Research Branch, Islamic Azad University, P. O. Box 14515/1775, Tehran, Iran, e-mail: kdelir@gmail.com

 $G/\langle x^{\ell} \rangle$ are finite. In this paper we consider the case when $w(x, y) = xyx^n y^{k+m}$ where ℓ, m, n and k are integers ≥ 2 , that is, the groups

$$G(\ell,m,n,k) = \langle x,y \mid x^{\ell} = y^m = xyx^n y^{k+m} \rangle, \ (\ell,m,n,k \ge 2).$$

It follows readily that the group $G(\ell, m, n, k)$ is finite if and only if the group $\overline{G}(\ell, m, n, k) = G(\ell, m, n, k)/\langle x^{\ell} \rangle$ is finite, for, the commutator quotient of $G(\ell, m, n, k)$ is finite.

A simple calculation shows that the group $G(\ell, m, n, k)$ is cyclic if at least three of the four parameters ℓ, m, n and k, are equal, so we suppose that at most two parameters are equal and then there are the following cases:

$$G(\ell,\ell,n,k), G(\ell,m,\ell,k), G(\ell,m,m,k), G(\ell,m,n,\ell), G(\ell,m,n,m), G(\ell,m,n,n).$$

The aim of this paper is to study two subclasses of the groups $G(\ell, \ell, n, k)$. Some of them are Z-metacyclic groups (the groups with the cyclic commutator subgroup and cyclic commutator quotient group). Sections 2 and 3 are devoted to the study of the groups

$$G(\ell,\ell,[\frac{\ell}{2}],[\frac{\ell}{2}])$$

for every integer $\ell \geq 2$.

Our notations are fairly standard, [x] is used for the integer part of a real x, we denote $x^{-1}y^{-1}xy$ by [x, y] and $y^{-1}xy$ by x^y , for elements x and y of a group. The main tools used in this investigation are the Todd-Coxeter coset enumeration algorithm (see [3] for example) and the modification to this algorithm described in [1] and [2].

2. The groups $G(\ell, \ell, \frac{\ell}{2}, \frac{\ell}{2}), (\ell \text{ is even})$

For every even integer $\ell \geq 2$ let $G_1(\ell) = G(\ell, \ell, \frac{\ell}{2}, \frac{\ell}{2})$, then the subgroup $H_1 = \langle x^{i+1}yx^{-i} : i = 0, 1, \dots, 2\ell - 1 \rangle$ of $G_1(\ell)$ is of index 2ℓ , for, we may define 2ℓ cosets as $1 = H_1$, and ix = i + 1, $(i = 1, 2, \dots, 2\ell - 1)$ and a simple coset enumeration yields $|G_1(\ell) : H_1| = 2\ell$. We now give the main results of this section:

Lemma 2.1. For every even value of $\ell \geq 2$ the group H_1 has a presentation isomorphic to

 $\langle a_1, a_2 \mid [a_1, a_2] = 1, a_1^{\alpha} = a_2^{\alpha}, a_2^{\beta} = a_1^{\gamma} \rangle,$

where, $\alpha = \frac{1+3^{\frac{\ell}{2}}}{2}, \ \beta = \frac{\ell+3+3^{\frac{\ell}{2}}}{4} \ and \ \gamma = \frac{3\ell+7+3^{\frac{\ell}{2}}}{4}.$

Proposition 2.2. For every even integer $\ell \geq 2$, $G_1(\ell)$ is finite of order $\frac{\ell(\ell+2)}{2}(1+3^{\frac{\ell}{2}})$. Moreover, it is a Z-metacyclic group only if $\ell \equiv \pm 4$ or 8 or ± 12 or $20 \pmod{40}$.

Proof of Lemma 2.1. Consider

$$G_1(\ell) = \langle x, y | x^{\ell} = y^{\ell}, xyx^{\frac{\ell}{2}}y^{\frac{\ell}{2}} \rangle$$

where, $\ell \geq 2$. Rename the generators of H_1 as $a_1 = xy$, $a_2 = x^2yx^{-1}$, \ldots , $a_{2\ell} = x^{2\ell}yx^{-2\ell+1}$. By the above comments H_1 is of index 2ℓ in $G_1(\ell)$ and for using the Modified Todd-Coxeter algorithm (in the form given in [1]) we identify the number of a coset of H_1 and its representative. So, by defining the 2ℓ cosets as

$$\begin{split} 1 &= H_1, \ 1x = 2, \ 2x = 3, \dots, (2\ell-1)x = 2\ell, \\ &1xy = a_1.1 &\Rightarrow 2y = a_1.1 \\ &1x^2yx^{-1} = a_2.1 &\Rightarrow 3y = a_2.2 \\ &\vdots \\ &1x^{2\ell-1}yx^{-2\ell+2} = a_{2\ell}.1 &\Rightarrow (2\ell)y = a_{2\ell}.(2\ell-1). \\ &1x^\ell y^{-\ell} = 1 &\Rightarrow 1y = a_{\ell+1}^{-1}a_{\ell+2}^{-1}\dots a_{2\ell-1}^{-1} .(2\ell). \end{split}$$

Since then, the relation $1x^{2\ell}yx^{-2\ell+1} = 1$ yields

$$(2\ell)x = a_{2\ell-1}a_{2\ell-3}\dots a_{\ell-1} . 1$$
.

We may now summarize our calculations in the following monitor table, for more clarity:

$\cos ets$	x	y
1	2	$a_{\ell+1}^{-1}a_{\ell+2}^{-1}\ldots a_{2\ell-1}^{-1}$.(2 ℓ)
2	3	$a_1.1$
3	4	$a_2.2$
:		
$\frac{1}{2\ell} - 1$	2ℓ	$a_{2\ell-1}(2\ell-2)$
$\frac{2\ell}{2\ell}$	$a_{2\ell-1}a_{2\ell-3}\ldots a_{\ell-1}$.1	$a_{2\ell}(2\ell-1)$

Considering all of the relations

$$ix^{\ell} = iy^{\ell}, ixyx^{\frac{\ell}{2}}y^{\frac{\ell}{2}} = i, \ i = 1, 2, \dots, 2\ell$$

will give us a presentation for H_1 . In details, the relations $ix^{\ell} = iy^{\ell}, i = 2, \dots, \ell$ yield

$$a_{\ell+j} = a_j, \quad (j = 1, 2, \dots, \ell - 1),$$

and using these results and the relations $ix^{\ell} = iy^{\ell}$, $(i = \ell + 1, \dots, 2\ell)$, give us the new relations

$$R_i = [A, a_i a_{i-1} \dots a_2 a_1] = 1, \quad (i = 1, 2, \dots, \ell - 1),$$

where, $A = a_{\ell}a_{\ell-1}\ldots a_3a_2a_1$. To get the other relations of the subgroup H_1 , consider $ixyx^{\frac{\ell}{2}}y^{\frac{\ell}{2}} = i$, for every $i = 1, 2, \ldots, \ell - 1$. Then we get the relations:

$$S_i = a_i^2 a_{i+\frac{\ell}{2}-1} a_{i+\frac{\ell}{2}-2} \dots a_{i+1} = 1, \ (i = 1, 2, \dots, \ell - 1),$$

and finally, the relation $\ell xyx^{\frac{\ell}{2}}y^{\frac{\ell}{2}} = \ell$ gives us the relation

$$S_{\ell} = a_{\ell}^2 a_{\frac{\ell}{2}-1} a_{\frac{\ell}{2}-2} \dots a_2 a_1 = 1$$

for the subgroup H_1 (the other derived relations by the relations $ixyx^{\frac{\ell}{2}}y^{\frac{\ell}{2}} = i$, $i = \ell + 1, \ldots, 2\ell$ are, indeed, the redundant or the trivial relations in H_1 . So, H_1 has a preliminary presentation isomorphic to

$$H_1 = \langle a_1, \dots, a_\ell \mid S_\ell = R_i = S_i = 1, \ i = 1, 2, \dots, \ell - 1 \rangle.$$

To simplify this presentation we show first that $[a_1, a_2] = 1$ holds in H_1 . The relations $S_{\frac{\ell}{2}+1} = 1$ and $S_2 = 1$ may be rewritten as $a_{\ell}a_{\ell-1} \dots a_{\frac{\ell}{2}+2}a_{\frac{\ell}{2}+1} = a_{\frac{\ell}{2}+1}^{-1}$ and $a_{\frac{\ell}{2}}a_{\frac{\ell}{2}-1}\dots a_3a_2^2 = a_{\frac{\ell}{2}+1}^{-1}$, respectively. So

$$a_{\ell}a_{\ell-1}\dots a_{\frac{\ell}{2}+2}a_{\frac{\ell}{2}+1} = a_{\frac{\ell}{2}}a_{\frac{\ell}{2}-1}\dots a_{3}a_{2}^{2}.$$

This relation together with the relation $S_1 = 1$ yields $a_{\ell}a_{\ell-1} \dots a_{\ell+1} = a_1^{-2}a_2$, a fairly simple calculation now gives us the relation $[a_1, a_2] = 1$, by considering $R_1 = 1$.

By adding this relation to those of H_1 we are now able to calculate the generators a_3, a_4, \ldots, a_ℓ in terms of a_1 and a_2 , and then we can eliminate them. Indeed, a fairly tedious calculation yields

$$\begin{cases} a_k = a_1^{\frac{3}{2} - \frac{3^{k-1}}{2}} . a_2^{-\frac{1}{2} + \frac{3^{k-1}}{2}}, & k = 3, 4, \dots, \frac{\ell}{2}, \\ a_{k+\frac{\ell}{2}} = a_1^{\frac{3}{2} + \frac{3^{k-1}}{2}} . a_2^{-\frac{1}{2} - \frac{3^{k-1}}{2}}, & k = 1, 2, \dots, \frac{\ell}{2}, \end{cases}$$

and we get the desired presentation for H_1 .

Proof of Proposition 2.2. Let
$$\alpha = \frac{1+3\frac{5}{2}}{2}$$
, $\beta = \frac{\ell+3+3\frac{5}{2}}{4}$ and $\gamma = \frac{3\ell+7+3\frac{5}{2}}{4}$. For
every even integer ℓ there are two cases: $\ell - 2$ is not divisible by 8 or $\ell - 2$ is
divisible by 8. In the first case α , β and γ are pairwise co-primes, however the
highest common factor of every pair of them is 2 in the second case. In the first
case H_1 is a cyclic group (one may consider the subgroup $K_1 = \langle a_1 \rangle$ of H_1 to
show that $|H_1: K_1| = 1$) and then, $|H_1| = \frac{1}{2}(1 + \frac{\ell}{2})(1 + 3\frac{\ell}{2})$. For the second
case we consider the subgroup $L_1 = \langle a_1, a_2^2 \rangle$ of H_1 which is of index 2 in H_1 and
will be presented as follows, by letting $X = a_1$ and $Y = a_2^2$:

$$L_1 = \langle X, Y \mid [X, Y] = 1, X^{\alpha} = Y^{\frac{\alpha}{2}}, X^{\gamma} = Y^{\frac{\beta}{2}} \rangle.$$

Since $\ell \equiv 2 \pmod{8}$ then $h.c.f.(\frac{\alpha}{2}, \frac{\beta}{2}) = h.c.f.(\gamma, \frac{\beta}{2}) = 1$ and L_1 is a cyclic group of order $\frac{1}{4}(1 + \frac{\ell}{2})(1 + 3^{\frac{\ell}{2}})$, i.e.; $|H_1| = \frac{1}{2}(1 + \frac{\ell}{2})(1 + 3^{\frac{\ell}{2}})$. Consequently, $|G_1(\ell)| = 2\ell \times \frac{1}{2}(1 + \frac{\ell}{2})(1 + 3^{\frac{\ell}{2}})$, as desired.

To complete the proof let $\ell = 40q \pm 4$. Then by the above results $|G'_1(\ell)| = \frac{1+3^{\frac{\ell}{2}}}{2}$ and also

$$\frac{G_1(\ell)}{G_1'(\ell)} = \left\{ \begin{array}{ll} Z_2 \times Z_{\frac{\ell(\ell+2)}{2}}, & \ell \equiv 2 \pmod{4}, \\ Z_{\ell(\ell+2)}, & \ell \equiv 0 \pmod{4}, \end{array} \right.$$

and $G'_1(\ell) \cong Z_5 \times Z_t$ where, $t = 9^{\frac{\ell}{4}-1} - 9^{\frac{\ell}{4}-2} + 9^{\frac{\ell}{4}-3} - \dots - 9 + 1$. However, $h.c.f.(t,5) = h.c.f.(\frac{\ell}{4},5) = h.c.f.(10q \pm 1,5) = 1$ shows that $G'_1(\ell)$ is cyclic. The same proof carries over the cases $\ell = 40q + 8$, $\ell = 40q \pm 12$ and $\ell = 40q + 20$. \Box

3. The groups $G(\ell, \ell, \frac{\ell-1}{2}, \frac{\ell-1}{2}), (\ell \text{ is odd})$

For every odd integer $\ell \geq 3$ let $G_2(\ell) = G(\ell, \ell, \frac{\ell-1}{2}, \frac{\ell-1}{2})$. The sequences of Fibonacci and Lucas numbers $\{f_i\}_{i=1}^{\infty}$ and $\{g_i\}_{i=1}^{\infty}$ will be used in this section, which are defined as follows:

$$\begin{aligned} f_2 &= 1, \ f_{i+2} = f_{i+1} + f_i, & (i \ge 1), \\ g_1 &= 2, g_2 = 1, g_{i+2} = g_{i+1} + g_i, & (i \ge 1), \end{aligned}$$

and the main result of this section is:

Proposition 3.1. For every odd integer $\ell \geq 3$, the group $G_2(\ell)$ is finite and

$$|G_{2}(\ell)| = \begin{cases} 2\ell(\ell+1)g_{\ell+1}, & \ell \equiv 3 \pmod{6}, \\ \ell(\ell+1)g_{\ell+1}, & \ell \equiv \pm 1 \pmod{6}, \end{cases}$$

Moreover, this group is Z-metacyclic only if $\ell \equiv \pm 1 \pmod{6}$.

To prove this proposition we first prove some preliminaries.

Lemma 3.2. For every odd value of $\ell \geq 3$, the relation $x^{2\ell(\ell+1)} = 1$ holds in $G_2(\ell)$.

Proof. The second relation of

$$G_2(\ell) = \langle x, y \mid x^{\ell} = y^{\ell}, xyx^{\frac{\ell-1}{2}}y^{\frac{\ell-1}{2}} = 1 \rangle$$

is equivalent to $x^{-(\frac{\ell-1}{2})} = y^{\frac{\ell-1}{2}}xy$ and squaring both sides yields $y^{\frac{\ell-1}{2}}xy^{\frac{\ell+1}{2}}xy = x^{-\ell+1}$, or

$$xyx^{-1} = y^{-(\frac{\ell+1}{2})}x^{-1}y^{-(\frac{\ell-1}{2})}x^{-\ell}$$

This may be reduced to

$$xyx^{-1} = y^{-(\frac{\ell+1}{2})}x^{-1-2\ell}x^{\ell}y^{-(\frac{\ell-1}{2})},$$

for, x^ℓ and y^ℓ are central elements (because of the relation $x^\ell=y^\ell.)$ The last relation will be reduced to

$$xyx^{-1} = y^{-(\frac{\ell+1}{2})}x^{-1-2\ell}y^{\frac{\ell+1}{2}}$$

(by substituting y^{ℓ} for x^{ℓ} .)

Raising both sides of the last relation to the power ℓ and considering $x^{\ell} = y^{\ell}$ once again, we get $y^{\ell} = x^{-\ell(2\ell+1)}$, or $x^{2\ell(\ell+1)} = 1$ as desired. \Box

Finding the order of $G_2(\ell)$ is possible by getting a suitable quotient group of $G_2(\ell)$. To do this we proceed as follows:

First we show that x^{ℓ} , as an element of $G_2(\ell)$ has order $\ell + 1$ or $2(\ell + 1)$, if $\ell \equiv \pm 1 \pmod{6}$ or $\ell \equiv 3 \pmod{6}$, respectively. Let $\ell \equiv \pm 1 \pmod{6}$ and consider the subgroup $\langle x^{\ell}, x^i y x^{-i+1} : i = 1, 2, \dots, \ell - 1 \rangle$. An easy coset enumeration shows that this subgroup is of index ℓ in $G_2(\ell)$ and by letting $c_i = x^i y x^{-i+1}$, $(i = 1, 2, \dots, \ell - 1)$ and $c_{\ell} = x^{\ell}$, we can get a presentation for this subgroup. Simplifying the relations of this subgroup gives us two interesting relations: $c_1^{(\ell+1)} g_{\ell+1} = 1$ and $c_{\ell}^2 = c_1^{g_{\ell+1}}$. On the other hand a numerical result concerning the Lucas numbers shows that $h.c.f.(\ell + 1, g_{\ell+1}) = 1$ and then the relation $c_1^{2(\ell+1)} g_{\ell+1} = 1$ holds in this subgroup. Consequently, the equation $x^{\ell(\ell+1)} = 1$ holds in $G_2(\ell)$. When $\ell \equiv 3 \pmod{6}$ we may proceed in a similar way to prove that the equation $x^{2\ell(\ell+1)} = 1$ holds in $G_2(\ell)$.

Secondly, since $\langle x^{\ell} \rangle$ is a central subgroup of $G_2(\ell)$ then adding the relation $x^{\ell} = 1$ to those of $G_2(\ell)$ gives the group

$$H_2(\ell) = \langle x, y \mid x^{\ell} = y^{\ell} = 1, xyx^{\frac{\ell-1}{2}}y^{\frac{\ell-1}{2}} = 1 \rangle$$

which is $G_2(\ell)$ factored by the cyclic group $Z_{\ell+1}$ or $Z_{2(\ell+1)}$ if $\ell \equiv \pm 1 \pmod{6}$ either $\ell \equiv 3 \pmod{6}$. We are now going to identify the group $H_2(\ell)$ as follows:

Lemma 3.3. For every odd value of $\ell \geq 3$, the group $H_2(\ell)$ is a metabelian group of order $\ell \times g_{\ell+1}$.

Proof. Abelianising the relations of $H_2(\ell)$ shows that $xy \in H'_2(\ell)$, so, the subgroup $K_2(\ell) = \langle xy, x^2yx^{-1}, \ldots, x^{\ell-1}yx^{-\ell+2}, yx \rangle$ is contained in $H'_2(\ell)$. Showing that $|H_2(\ell): K_2(\ell)| = \ell$ is easy by defining ℓ cosets as $1 = K_2(\ell)$, ix = i + 1, ($i = 1, 2, \ldots, \ell - 1$). Consequently, $H'_2(\ell) = K_2(\ell)$. We now use the Modified algorithm to find a presentation for $K_2(\ell)$. Let $a_i = x^iyx^{-i+1}$, $(i = 1, 2, \ldots, \ell - 1)$ and $a_\ell = yx$. For every i, $(i = 1, 2, \ldots, \ell)$, the relations $iy^\ell = i$ yield only one relation for the group $K_2(\ell)$, and this is indeed, the relation:

$$r = a_\ell a_{\ell-1} \dots a_2 a_1 = 1,$$

and the relations $ixyx^{\frac{\ell-1}{2}}y^{\frac{\ell-1}{2}} = i$ yield the following relations for $K_2(\ell)$:

$$\begin{array}{l} \begin{array}{l} s_1 = a_1^2 a_{\frac{\ell-1}{2}} a_{\frac{\ell-3}{2}} \dots a_4 a_3 a_2 = 1, \\ s_2 = a_2^2 a_{\frac{\ell+1}{2}} a_{\frac{\ell-3}{2}} \dots a_5 a_4 a_3 = 1, \\ s_3 = a_3^2 a_{\frac{\ell+3}{2}} a_{\frac{\ell+1}{2}} \dots a_6 a_5 a_4 = 1, \\ \vdots \\ s_{\frac{\ell+3}{2}} = a_{\frac{\ell+3}{2}}^2 a_{\ell} a_{\ell-1} \dots a_{\frac{\ell+9}{2}} a_{\frac{\ell+7}{2}} a_{\frac{\ell+5}{2}} = 1, \\ s_{\frac{\ell+5}{2}} = a_{\frac{\ell+5}{2}}^2 a_1 a_{\ell} \dots a_{\frac{\ell+11}{2}} a_{\frac{\ell+9}{2}} a_{\frac{\ell+7}{2}} = 1, \\ s_{\frac{\ell+7}{2}} = a_{\frac{\ell+7}{2}}^2 a_2 a_1 a_{\ell} \dots a_{\frac{\ell+13}{2}} a_{\frac{\ell+11}{2}} a_{\frac{\ell+9}{2}} = 1 \\ \vdots \\ s_{\ell-1} = a_{\ell-1}^2 a_{\frac{\ell-5}{2}} a_{\frac{\ell-7}{2}} \dots a_2 a_1 a_{\ell} = 1, \\ s_{\ell} = a_{\ell}^2 a_{\ell-3} a_{\ell-5} \dots a_3 a_2 a_1 = 1. \end{array}$$

So, $K_2(\ell) = \langle a_1, a_2, \dots, a_\ell | r = s_i = 1, i = 1, 2, \dots, \ell \rangle$. Two classes of the new relations are acceptable by the relations of $K_2(\ell)$, and they are:

$$a_i = a_{i+1}a_{i+\frac{\ell+1}{2}}, \quad a_i^2 = a_{i+1}a_{i+\frac{\ell-1}{2}}, \quad (i = 1, 2, \dots, \ell),$$

where, indices are reduced modulo ℓ (the proofs are easy, for, rewriting the relation r = 1 as $(a_{i-1}a_{i-2} \dots a_{2}a_{1}a_{\ell}a_{\ell-1} \dots a_{i+\frac{\ell+1}{2}})(a_{i+\frac{\ell-1}{2}} \dots a_{i+1})a_i = 1$ and using $s_{i+1} = s_{i+\frac{\ell+1}{2}} = 1$ give us $a_i = a_{i+1}a_{i+\frac{\ell+1}{2}}$, and the second relation may be derived by considering $s_i = s_{i+1} = 1$, for every *i*.) We use now these new relations to prove that $K_2(\ell)$ is abelian. By the relations

$$a_1 = a_2 a_{\frac{\ell+3}{2}} = (a_3 a_{\frac{\ell+5}{2}}) a_{\frac{\ell+3}{2}} = \dots = a_{\frac{\ell+1}{2}} a_\ell a_{\ell-1} \dots a_{\frac{\ell+5}{2}} a_{\frac{\ell+3}{2}},$$

$$a_{\frac{\ell-1}{2}} \dots a_3 a_2 a_1 = a_1^{-1},$$

and using r = 1 we get $[a_{\frac{\ell+1}{2}}, a_1] = 1$. Since $a_1^2 = a_2 a_{\frac{\ell+1}{2}}$ then $[a_1, a_2] = 1$ holds, and we will get the relation $[a_i, a_{i+1}] = 1$, for every *i*. This proves that $K_2(\ell)$ is abelian, and a hand calculation yields:

$$\begin{cases} a_{\frac{\ell+3}{2}} = a_1 a_2^{-1}, \\ a_i = a_1^{-f_{2(i-2)}} \cdot a_2^{f_{2(i-1)}}, & i = 3, 4, \dots, \frac{\ell+1}{2}, \\ a_{i+\frac{\ell+1}{2}} = a_1^{f_{2i-3}} \cdot a_2^{-f_{2i-1}}, & i = 2, 3, \dots, \frac{\ell-1}{2}. \end{cases}$$

Showing that $K_2(\ell)$ can be generated by a_1 and A_2 . If $\ell = 3$, $K_2(\ell)$ is of order 4, and if $\ell \ge 4$,

$$K_2(\ell) = \langle a_1, a_2 \mid a_1^{-1+f_{\ell-2}} = a_2^{f_\ell}, a_1^{2+f_{\ell-3}} = a_2^{1+f_{\ell-1}}, [a_1, a_2] = 1 \rangle.$$

Then, the order of this group is equal to $(-1 + f_{\ell-2})(1 + f_{\ell-1}) - f_{\ell}(2 + f_{\ell-3}) = g_{\ell+1}$. \Box

Proof of Proposition 3.1. By Lemma 3.3 and the comments after Lemma 3.2 we conclude that

$$|G_2(\ell)| = \begin{cases} 2\ell(\ell+1)g_{\ell+1}, & \ell \equiv 3 \pmod{6}, \\ \ell(\ell+1)g_{\ell+1}, & \ell \equiv \pm 1 \pmod{6}. \end{cases}$$

To complete the proof let us consider the result of Lemma 3.3, concerning the derived subgroup of $H_2(\ell)$, i.e.; if $\ell \equiv \pm 1 \pmod{6}$ then $h.c.f.(-1 + f_{\ell-2}, 2 + f_{\ell-3}) = 1$ and $H'_2(\ell)$ is cyclic of order $g_{\ell+1}$, however, if $\ell \equiv 3 \pmod{6}$, $H'_2(\ell)$ is not cyclic (because $g_{\ell+1}$ is divisible by 4 in this case). On the other hand, $\frac{G_2(\ell)}{G'_2(\ell)}$ is a cyclic group of order $\ell(\ell+1)$, for every odd values of ℓ and then, $|G'_2(\ell)| = g_{\ell+1}$. Consequently, $G_2(\ell)$ is a Z-metacyclic group only if $\ell \equiv \pm 1 \pmod{6}$, for, $H_2(\ell)$ is a central homomorphic image of $G_2(\ell)$.

References

- Beetham, M.J., Campbell, C.M., A note on the Todd-Coxeter coset enumeration algorithm. Proc. Edinburgh Math. Soc. 20 (Series 2) (1976), 73-79.
- [2] Benson, C.T., Mendelson N.S., A calculus for a certain classes of word problem in groups. J. Combinatorial Theory 1 (1966), 200-208.
- [3] Campbell, C.M., Coxeter, H.S.M., Robertson, E.F., Some families of finite groups having two generators and two relations. Proc. R. Soc. London 357 (Series A) (1977), 423-438.
- [4] Campbell, C.M., Robertson, E.F., A deficiency zero presentation for SL(2,p). Bull. London Math. Soc. 12 (1980), 17-20.
- [5] Campbell, C.M., Robertson, E.F., The orders of certain metacyclic groups. Bull. London Math. Soc. 6 (1974), 312-314.
- [6] Campbell, C.M., Robertson, E.F., Remarks on a class of 2-generator groups of deficiency zero. J. Austral. Math. Soc. 19 (Series A) (1975), 297-305.
- [7] Campbell, C.M., Robertson, E.F., Deficiency zero groups involving Fibonacci and Lucas numbers. Proc. Royal Soc. Edinburgh 81 (Series A) (1978), 273-286.
- [8] Campbell, C.M., Robertson, E.F., On 2-generator 2-relation soluble groups. Proc. Edinburgh Math. Soc. 23 (1980), 269-273.
- [9] Campbell, C.M., Robertson, E.F., Thomas, R.M., Finite groups of deficiency zero involving the Lucas numbers. Proc. Edinburgh Math. Soc. 33 (1990), 1-10.
- [10] Campbell, C.M., Robertson, E.F., Thomas, R.M., On groups related to Fibonacci groups. Group Theory. Proceedings of 1987, Singapore Conference, 323-331.
- [11] Campbell, C.M., Robertson, E.F., Williams, P.D., On presentations of $PSL(2, p^n)$. J. Austral. Math. Soc. 48 (Series A) (1990), 333-346.
- [12] Doostie, H., Non-metabelian soluble groups involving the Lucas numbers. J. Sci. I.R.Iran 3 (Nos. 1, 2) (1992), 63-68.
- [13] Doostie, H., Gholamie, R., Thomas, R.M., Certain extensions of $(\ell, m \mid n, k)$ -groups. Southeast Asian Bull. Math. 27 (2003), 21-34.
- [14] Doostie, H., Jamali, A.R., A class of deficiency zero soluble groups of derived length 4. Proc. Royal Soc. Edinburgh 121 (Series A) (1992), 163-168.
- [15] Kenne, P.E., Some new efficient soluble groups. Communication in Algebra 18 (No. 8) (1990), 2747-2753.
- [16] MacDonald, I.D., On a class of finitely presented groups. Canad. J. Math. 14 (1962), 602-613.
- [17] Perkel, M., Groups of type $F^{a,b,-c}$. Israeal J. Math. 52 (Nos. 1-2) (1985), 167-177.
- [18] Schenkman, E., Some two-generator groups with two relations. Arch. Math. 18 (1967), 362-363.
- [19] Sunday, J.G., Presentaions of groups SL(2, m) and PSL(2, m). Canad. J. Math. 6 (No. 1) (1972), 1129-1131.
- [20] Wamsley, J.W., A class of two generator two relation finite groups. J. Austral. Math. Soc. 14 (1970), 38-39.

- [21] Wamsley, J.W., The deficiency of metacyclic groups. Proc. Amer. Math. Soc. 24 (1970), 724-726.
- [22] Wamsley, J.W., Some finite groups with zero deficiency. J. Austral. Math. Soc. 18 (1974), 73-75.
- [23] Wiegold, J., On some groups with trivial multiplicator. Bull. Austral. Math. Soc. 40 (1989), 331-332.
- [24] Zassenhauss, H.J., A presentation of the group PSL(2,p) with three defining relations. Canad. J. Math. 21 (1969), 310-411.

Received by the editors July 18, 2007