A CLASS OF Z-METACYCLIC GROUPS INVOLVING THE LUCAS NUMBERS

H. Doostic ${ }^{11}$, K. Ahmadidelir ${ }^{[2}$

Abstract

The sequence $\left\{g_{i}\right\}_{i=1}^{\infty}$ is the sequence of Lucas numbers $g_{1}=2, g_{2}=1, g_{i+2}=g_{i+1}+g_{i},(i \geq 1)$, and $\ell \geq 2$ is an integer. In this paper we consider the group $G(\ell)$ with an efficient presentation $\langle x, y|$ $\left.x^{\ell}=y^{\ell}=x y x^{\left[\frac{\ell}{2}\right]} y^{\left[\frac{3 \ell}{2}\right]}\right\rangle$ where, $[x]$ is used for the integer part of a real x, and prove that $G(\ell)$ is finite of order

$$
|G(\ell)|= \begin{cases}\frac{\ell(\ell+2)}{2}\left(1+3^{\frac{\ell}{2}}\right), & \ell \equiv 0 \operatorname{or} \pm 2(\bmod 6) \\ 2 \ell(\ell+1) g_{\ell+1}, & \ell \equiv 3(\bmod 6), \\ \ell(\ell+1) g_{\ell+1}, & \ell \equiv \pm 1(\bmod 6)\end{cases}
$$

Moreover, if $\ell \equiv \pm 4$ or 8 or ± 12 or $20(\bmod 40)$, or $\ell \equiv \pm 1(\bmod 6)$ then, $G(\ell)$ is Z-metacyclic ($G^{\prime}(\ell)$ and $\frac{G(\ell)}{G^{\prime}(\ell)}$ are cyclic).

AMS Mathematics Subject Classification (2000): 20K35
Key words and phrases: Finitely presented groups, deficiency zero

1. Introduction

A finitely presented group G is said to have deficiency k if k is the largest integer such that G can be presented by m generators and $m-k$ relations. The deficiency zero groups are interesting to be considered for their finiteness and their structures. A considerable effort has, over the years, been put into presenting infinite classes of finite groups. For a short survey on these groups one may consider the articles [5, 16, 20, 21, 22] (for the cyclic, metacyclic and some related groups), the articles [4, 11, 19, 24 (for the linear groups), the articles [7, 8, 9, 12, 14, 15] (for the soluble groups) and the articles [3, 6, 10, 13, 17, 18] for some other classes of deficiency zero groups of interesting orders and various structures. In particular, Wiegold (23) considers the deficiency zero groups

$$
G=\left\langle x, y \mid x^{\ell}=y^{m}=w(x, y)\right\rangle
$$

where, w is a word on the generators x and y. Since the subgroup $\left\langle x^{\ell}\right\rangle$ is a central subgroup of G then G is finite if and only if the groups G / G^{\prime} and

[^0]$G /\left\langle x^{\ell}\right\rangle$ are finite. In this paper we consider the case when $w(x, y)=x y x^{n} y^{k+m}$ where ℓ, m, n and k are integers ≥ 2, that is, the groups
$$
G(\ell, m, n, k)=\left\langle x, y \mid x^{\ell}=y^{m}=x y x^{n} y^{k+m}\right\rangle,(\ell, m, n, k \geq 2) .
$$

It follows readily that the group $G(\ell, m, n, k)$ is finite if and only if the group $\bar{G}(\ell, m, n, k)=G(\ell, m, n, k) /\left\langle x^{\ell}\right\rangle$ is finite, for, the commutator quotient of $G(\ell, m, n, k)$ is finite.

A simple calculation shows that the group $G(\ell, m, n, k)$ is cyclic if at least three of the four parameters ℓ, m, n and k, are equal, so we suppose that at most two parameters are equal and then there are the following cases:

$$
G(\ell, \ell, n, k), G(\ell, m, \ell, k), G(\ell, m, m, k), G(\ell, m, n, \ell), G(\ell, m, n, m), G(\ell, m, n, n)
$$

The aim of this paper is to study two subclasses of the groups $G(\ell, \ell, n, k)$. Some of them are Z-metacyclic groups (the groups with the cyclic commutator subgroup and cyclic commutator quotient group). Sections 2 and 3 are devoted to the study of the groups

$$
G\left(\ell, \ell,\left[\frac{\ell}{2}\right],\left[\frac{\ell}{2}\right]\right)
$$

for every integer $\ell \geq 2$.
Our notations are fairly standard, $[x]$ is used for the integer part of a real x, we denote $x^{-1} y^{-1} x y$ by $[x, y]$ and $y^{-1} x y$ by x^{y}, for elements x and y of a group. The main tools used in this investigation are the Todd-Coxeter coset enumeration algorithm (see [3 for example) and the modification to this algorithm described in [1] and [2].

2. The groups $G\left(\ell, \ell, \frac{\ell}{2}, \frac{\ell}{2}\right),(\ell$ is even $)$

For every even integer $\ell \geq 2$ let $G_{1}(\ell)=G\left(\ell, \ell, \frac{\ell}{2}, \frac{\ell}{2}\right)$, then the subgroup $H_{1}=\left\langle x^{i+1} y x^{-i}: i=0,1, \ldots, 2 \ell-1\right\rangle$ of $G_{1}(\ell)$ is of index 2ℓ, for, we may define 2ℓ cosets as $1=H_{1}$, and $i x=i+1,(i=1,2, \ldots, 2 \ell-1)$ and a simple coset enumeration yields $\left|G_{1}(\ell): H_{1}\right|=2 \ell$. We now give the main results of this section:

Lemma 2.1. For every even value of $\ell \geq 2$ the group H_{1} has a presentation isomorphic to

$$
\left\langle a_{1}, a_{2} \mid\left[a_{1}, a_{2}\right]=1, a_{1}^{\alpha}=a_{2}^{\alpha}, a_{2}^{\beta}=a_{1}^{\gamma}\right\rangle
$$

where, $\alpha=\frac{1+3^{\frac{\ell}{2}}}{2}, \beta=\frac{\ell+3+3^{\frac{\ell}{2}}}{4}$ and $\gamma=\frac{3 \ell+7+3^{\frac{\ell}{2}}}{4}$.
Proposition 2.2. For every even integer $\ell \geq 2, G_{1}(\ell)$ is finite of order $\frac{\ell(\ell+2)}{2}(1+$ $3^{\frac{\ell}{2}}$). Moreover, it is a Z-metacyclic group only if $\ell \equiv \pm 4$ or 8 or ± 12 or 20 (mod 40).

Proof of Lemma 2.1. Consider

$$
G_{1}(\ell)=\left\langle x, y \mid x^{\ell}=y^{\ell}, x y x^{\frac{\ell}{2}} y^{\frac{\ell}{2}}\right\rangle
$$

where, $\ell \geq 2$. Rename the generators of H_{1} as $a_{1}=x y, a_{2}=x^{2} y x^{-1}, \ldots, a_{2 \ell}=$ $x^{2 \ell} y x^{-2 \ell+1}$. By the above comments H_{1} is of index 2ℓ in $G_{1}(\ell)$ and for using the Modified Todd-Coxeter algorithm (in the form given in [1) we identify the number of a coset of H_{1} and its representative. So, by defining the 2ℓ cosets as

$$
\begin{align*}
& 1=H_{1}, 1 x=2,2 x=3, \ldots,(2 \ell-1) x=2 \ell, \\
& \begin{cases}1 x y=a_{1} \cdot 1 & \Rightarrow 2 y=a_{1} \cdot 1 \\
1 x^{2} y x^{-1}=a_{2} \cdot 1 & \Rightarrow 3 y=a_{2} \cdot 2 \\
\vdots & \Rightarrow(2 \ell) y=a_{2 \ell \cdot} \cdot(2 \ell-1) . \\
1 x^{2 \ell-1} y x^{-2 \ell+2}=a_{2 \ell} \cdot 1 & \Rightarrow 1 y=a_{\ell+1}^{-1} a_{\ell+2}^{-1} \ldots a_{2 \ell-1}^{-1} \\
1 x^{\ell} y^{-\ell}=1 & \Rightarrow\end{cases}
\end{align*}
$$

Since then, the relation $1 x^{2 \ell} y x^{-2 \ell+1}=1$ yields

$$
(2 \ell) x=a_{2 \ell-1} a_{2 \ell-3} \ldots a_{\ell-1} .1
$$

We may now summarize our calculations in the following monitor table, for more clarity:

cosets	x	y
1	2	$a_{\ell+1}^{-1} a_{\ell+2}^{-1} \ldots a_{2 \ell-1}^{-1} \cdot(2 \ell)$
2	3	$a_{1} \cdot 1$
3	4	$a_{2} \cdot 2$
\vdots		
$2 \ell-1$	2ℓ	$a_{2 \ell-1} \cdot(2 \ell-2)$
2ℓ	$a_{2 \ell-1} a_{2 \ell-3} \ldots a_{\ell-1} \cdot 1$	$a_{2 \ell \cdot(2 \ell-1)}$

Considering all of the relations

$$
i x^{\ell}=i y^{\ell}, i x y x^{\frac{\ell}{2}} y^{\frac{\ell}{2}}=i, \quad i=1,2, \ldots, 2 \ell
$$

will give us a presentation for H_{1}. In details, the relations $i x^{\ell}=i y^{\ell}, i=2, \ldots, \ell$ yield

$$
a_{\ell+j}=a_{j}, \quad(j=1,2, \ldots, \ell-1),
$$

and using these results and the relations $i x^{\ell}=i y^{\ell}, \quad(i=\ell+1, \ldots, 2 \ell)$, give us the new relations

$$
R_{i}=\left[A, a_{i} a_{i-1} \ldots a_{2} a_{1}\right]=1, \quad(i=1,2, \ldots, \ell-1)
$$

where, $A=a_{\ell} a_{\ell-1} \ldots a_{3} a_{2} a_{1}$. To get the other relations of the subgroup H_{1}, consider $i x y x^{\frac{\ell}{2}} y^{\frac{\ell}{2}}=i$, for every $i=1,2, \ldots, \ell-1$. Then we get the relations:

$$
S_{i}=a_{i}^{2} a_{i+\frac{\ell}{2}-1} a_{i+\frac{\ell}{2}-2} \ldots a_{i+1}=1, \quad(i=1,2, \ldots, \ell-1)
$$

and finally, the relation $\ell x y x^{\frac{\ell}{2}} y^{\frac{\ell}{2}}=\ell$ gives us the relation

$$
S_{\ell}=a_{\ell}^{2} a_{\frac{\ell}{2}-1} a_{\frac{\ell}{2}-2} \ldots a_{2} a_{1}=1
$$

for the subgroup H_{1} (the other derived relations by the relations ixy $x^{\frac{\ell}{2}} y^{\frac{\ell}{2}}=$ $i, i=\ell+1, \ldots, 2 \ell$ are, indeed, the redundant or the trivial relations in H_{1}. So, H_{1} has a preliminary presentation isomorphic to

$$
H_{1}=\left\langle a_{1}, \ldots, a_{\ell} \mid S_{\ell}=R_{i}=S_{i}=1, i=1,2, \ldots, \ell-1\right\rangle
$$

To simplify this presentation we show first that $\left[a_{1}, a_{2}\right]=1$ holds in H_{1}. The relations $S_{\frac{\ell}{2}+1}=1$ and $S_{2}=1$ may be rewritten as $a_{\ell} a_{\ell-1} \ldots a_{\frac{\ell}{2}+2} a_{\frac{\ell}{2}+1}=a_{\frac{\ell}{2}+1}^{-1}$ and $a_{\frac{\ell}{2}} a_{\frac{\ell}{2}-1} \ldots a_{3} a_{2}^{2}=a_{\frac{\ell}{2}+1}^{-1}$, respectively. So

$$
a_{\ell} a_{\ell-1} \ldots a_{\frac{\ell}{2}+2} a_{\frac{\ell}{2}+1}=a_{\frac{\ell}{2}} a_{\frac{\ell}{2}-1} \ldots a_{3} a_{2}^{2}
$$

This relation together with the relation $S_{1}=1$ yields $a_{\ell} a_{\ell-1} \ldots a_{\frac{\ell}{2}+1}=a_{1}^{-2} a_{2}$, a fairly simple calculation now gives us the relation $\left[a_{1}, a_{2}\right]=1$, by considering $R_{1}=1$.

By adding this relation to those of H_{1} we are now able to calculate the generators $a_{3}, a_{4}, \ldots, a_{\ell}$ in terms of a_{1} and a_{2}, and then we can eliminate them. Indeed, a fairly tedious calculation yields

$$
\begin{cases}a_{k}=a_{1}^{\frac{3}{2}-\frac{3^{k-1}}{2}} \cdot a_{2}^{-\frac{1}{2}+\frac{3^{k-1}}{2}}, & k=3,4, \ldots, \frac{\ell}{2} \\ a_{k+\frac{\ell}{2}}=a_{1}^{\frac{3}{2}+\frac{3^{k-1}}{2}} \cdot a_{2}^{-\frac{1}{2}-\frac{3^{k-1}}{2}}, & k=1,2, \ldots, \frac{\ell}{2}\end{cases}
$$

and we get the desired presentation for H_{1}.
Proof of Proposition 2.2. Let $\alpha=\frac{1+3^{\frac{\ell}{2}}}{2}, \beta=\frac{\ell+3+3^{\frac{\ell}{2}}}{4}$ and $\gamma=\frac{3 \ell+7+3^{\frac{\ell}{2}}}{4}$. For every even integer ℓ there are two cases: $\ell-2$ is not divisible by 8 or $\ell-2$ is divisible by 8 . In the first case α, β and γ are pairwise co-primes, however the highest common factor of every pair of them is 2 in the second case. In the first case H_{1} is a cyclic group (one may consider the subgroup $K_{1}=\left\langle a_{1}\right\rangle$ of H_{1} to show that $\left.\left|H_{1}: K_{1}\right|=1\right)$ and then, $\left|H_{1}\right|=\frac{1}{2}\left(1+\frac{\ell}{2}\right)\left(1+3^{\frac{\ell}{2}}\right.$. For the second case we consider the subgroup $L_{1}=\left\langle a_{1}, a_{2}^{2}\right\rangle$ of H_{1} which is of index 2 in H_{1} and will be presented as follows, by letting $X=a_{1}$ and $Y=a_{2}^{2}$:

$$
L_{1}=\left\langle X, Y \mid[X, Y]=1, X^{\alpha}=Y^{\frac{\alpha}{2}}, X^{\gamma}=Y^{\frac{\beta}{2}}\right\rangle
$$

Since $\ell \equiv 2(\bmod 8)$ then h.c.f. $\left(\frac{\alpha}{2}, \frac{\beta}{2}\right)=$ h.c.f. $\left(\gamma, \frac{\beta}{2}\right)=1$ and L_{1} is a cyclic group of order $\frac{1}{4}\left(1+\frac{\ell}{2}\right)\left(1+3^{\frac{\ell}{2}}\right)$, i.e.; $\left|H_{1}\right|=\frac{1}{2}\left(1+\frac{\ell}{2}\right)\left(1+3^{\frac{\ell}{2}}\right)$. Consequently, $\left|G_{1}(\ell)\right|=2 \ell \times \frac{1}{2}\left(1+\frac{\ell}{2}\right)\left(1+3^{\frac{\ell}{2}}\right)$, as desired.

To complete the proof let $\ell=40 q \pm 4$. Then by the above results $\left|G_{1}^{\prime}(\ell)\right|=$ $\frac{1+3^{\frac{\ell}{2}}}{2}$ and also

$$
\frac{G_{1}(\ell)}{G_{1}^{\prime}(\ell)}= \begin{cases}Z_{2} \times Z_{\frac{\ell(\ell+2)}{}}^{2}, & \ell \equiv 2(\bmod 4) \\ Z_{\ell(\ell+2)}, & \ell \equiv 0(\bmod 4)\end{cases}
$$

and $G_{1}^{\prime}(\ell) \cong Z_{5} \times Z_{t}$ where, $t=9^{\frac{\ell}{4}-1}-9^{\frac{\ell}{4}-2}+9^{\frac{\ell}{4}-3}-\cdots-9+1$. However, h.c.f. $(t, 5)=$ h.c.f. $\left(\frac{\ell}{4}, 5\right)=$ h.c.f. $(10 q \pm 1,5)=1$ shows that $G_{1}^{\prime}(\ell)$ is cyclic. The same proof carries over the cases $\ell=40 q+8, \ell=40 q \pm 12$ and $\ell=40 q+20$.

3. The groups $G\left(\ell, \ell, \frac{\ell-1}{2}, \frac{\ell-1}{2}\right),(\ell$ is odd $)$

For every odd integer $\ell \geq 3$ let $G_{2}(\ell)=G\left(\ell, \ell, \frac{\ell-1}{2}, \frac{\ell-1}{2}\right)$. The sequences of Fibonacci and Lucas numbers $\left\{f_{i}\right\}_{i=1}^{\infty}$ and $\left\{g_{i}\right\}_{i=1}^{\infty}$ will be used in this section, which are defined as follows:

$$
\begin{array}{ll}
f_{2}=1, f_{i+2}=f_{i+1}+f_{i}, & (i \geq 1), \\
g_{1}=2, g_{2}=1, g_{i+2}=g_{i+1}+g_{i}, & (i \geq 1),
\end{array}
$$

and the main result of this section is:
Proposition 3.1. For every odd integer $\ell \geq 3$, the group $G_{2}(\ell)$ is finite and

$$
\left|G_{2}(\ell)\right|= \begin{cases}2 \ell(\ell+1) g_{\ell+1}, & \ell \equiv 3(\bmod 6), \\ \ell(\ell+1) g_{\ell+1}, & \ell \equiv \pm 1(\bmod 6),\end{cases}
$$

Moreover, this group is Z-metacyclic only if $\ell \equiv \pm 1(\bmod 6)$.
To prove this proposition we first prove some preliminaries.
Lemma 3.2. For every odd value of $\ell \geq 3$, the relation $x^{2 \ell(\ell+1)}=1$ holds in $G_{2}(\ell)$.

Proof. The second relation of

$$
G_{2}(\ell)=\left\langle x, y \mid x^{\ell}=y^{\ell}, x y x^{\frac{\ell-1}{2}} y^{\frac{\ell-1}{2}}=1\right\rangle
$$

is equivalent to $x^{-\left(\frac{\ell-1}{2}\right)}=y^{\frac{\ell-1}{2}} x y$ and squaring both sides yields $y^{\frac{\ell-1}{2}} x y^{\frac{\ell+1}{2}} x y=$ $x^{-\ell+1}$, or

$$
x y x^{-1}=y^{-\left(\frac{\ell+1}{2}\right)} x^{-1} y^{-\left(\frac{\ell-1}{2}\right)} x^{-\ell} .
$$

This may be reduced to

$$
x y x^{-1}=y^{-\left(\frac{\ell+1}{2}\right)} x^{-1-2 \ell} x^{\ell} y^{-\left(\frac{\ell-1}{2}\right)}
$$

for, x^{ℓ} and y^{ℓ} are central elements (because of the relation $x^{\ell}=y^{\ell}$.) The last relation will be reduced to

$$
x y x^{-1}=y^{-\left(\frac{\ell+1}{2}\right)} x^{-1-2 \ell} y^{\frac{\ell+1}{2}}
$$

(by substituting y^{ℓ} for x^{ℓ}.)
Raising both sides of the last relation to the power ℓ and considering $x^{\ell}=y^{\ell}$ once again, we get $y^{\ell}=x^{-\ell(2 \ell+1)}$, or $x^{2 \ell(\ell+1)}=1$ as desired.

Finding the order of $G_{2}(\ell)$ is possible by getting a suitable quotient group of $G_{2}(\ell)$. To do this we proceed as follows:

First we show that x^{ℓ}, as an element of $G_{2}(\ell)$ has order $\ell+1$ or $2(\ell+1)$, if $\ell \equiv \pm 1(\bmod 6)$ or $\ell \equiv 3(\bmod 6)$, respectively. Let $\ell \equiv \pm 1(\bmod 6)$ and consider the subgroup $\left\langle x^{\ell}, x^{i} y x^{-i+1}: i=1,2, \ldots, \ell-1\right\rangle$. An easy coset enumeration shows that this subgroup is of index ℓ in $G_{2}(\ell)$ and by letting $c_{i}=x^{i} y x^{-i+1}$, $(i=1,2, \ldots, \ell-1)$ and $c_{\ell}=x^{\ell}$, we can get a presentation for this subgroup. Simplifying the relations of this subgroup gives us two interesting relations: $c_{1}^{\left(\frac{\ell+1}{2}\right) g_{\ell+1}}=1$ and $c_{\ell}^{2}=c_{1}^{g_{\ell+1}}$. On the other hand a numerical result concerning the Lucas numbers shows that h.c.f. $\left(\ell+1, g_{\ell+1}\right)=1$ and then the relation $c_{1}^{2\left(\frac{\ell+1}{2}\right) g_{\ell+1}}=1$ holds in this subgroup. Consequently, the equation $x^{\ell(\ell+1)}=1$ holds in $G_{2}(\ell)$. When $\ell \equiv 3(\bmod 6)$ we may proceed in a similar way to prove that the equation $x^{2 \ell(\ell+1)}=1$ holds in $G_{2}(\ell)$.

Secondly, since $\left\langle x^{\ell}\right\rangle$ is a central subgroup of $G_{2}(\ell)$ then adding the relation $x^{\ell}=1$ to those of $G_{2}(\ell)$ gives the group

$$
H_{2}(\ell)=\left\langle x, y \mid x^{\ell}=y^{\ell}=1, x y x^{\frac{\ell-1}{2}} y^{\frac{\ell-1}{2}}=1\right\rangle
$$

which is $G_{2}(\ell)$ factored by the cyclic group $Z_{\ell+1}$ or $Z_{2(\ell+1)}$ if $\ell \equiv \pm 1(\bmod 6)$ either $\ell \equiv 3(\bmod 6)$. We are now going to identify the group $H_{2}(\ell)$ as follows:

Lemma 3.3. For every odd value of $\ell \geq 3$, the group $H_{2}(\ell)$ is a metabelian group of order $\ell \times g_{\ell+1}$.

Proof. Abelianising the relations of $H_{2}(\ell)$ shows that $x y \in H_{2}^{\prime}(\ell)$, so, the subgroup $K_{2}(\ell)=\left\langle x y, x^{2} y x^{-1}, \ldots, x^{\ell-1} y x^{-\ell+2}, y x\right\rangle$ is contained in $H_{2}^{\prime}(\ell)$. Showing that $\left|H_{2}(\ell): K_{2}(\ell)\right|=\ell$ is easy by defining ℓ cosets as $1=K_{2}(\ell), i x=i+1,($ $i=1,2, \ldots, \ell-1)$. Consequently, $H_{2}^{\prime}(\ell)=K_{2}(\ell)$. We now use the Modified algorithm to find a presentation for $K_{2}(\ell)$. Let $a_{i}=x^{i} y x^{-i+1},(i=1,2, \ldots, \ell-1)$ and $a_{\ell}=y x$. For every $i,(i=1,2, \ldots, \ell)$, the relations $i y^{\ell}=i$ yield only one relation for the group $K_{2}(\ell)$, and this is indeed, the relation:

$$
r=a_{\ell} a_{\ell-1} \ldots a_{2} a_{1}=1
$$

and the relations ixyx $x^{\frac{\ell-1}{2}} y^{\frac{\ell-1}{2}}=i$ yield the following relations for $K_{2}(\ell)$:

$$
\left\{\begin{array}{l}
s_{1}=a_{1}^{2} a_{\frac{\ell-1}{2}} a_{\frac{\ell-3}{2}} \ldots a_{4} a_{3} a_{2}=1, \\
s_{2}=a_{2}^{2} a_{\frac{\ell+1}{2}} a_{\frac{\ell-1}{2}} \ldots a_{5} a_{4} a_{3}=1, \\
s_{3}=a_{3}^{2} a_{\frac{\ell+3}{2}} a_{\frac{\ell+1}{2}} \ldots a_{6} a_{5} a_{4}=1, \\
\vdots \\
s_{\frac{\ell+3}{2}}=a_{\frac{\ell+3}{2}}^{2} a_{\ell} a_{\ell-1} \ldots a_{\frac{\ell+9}{2}} a_{\frac{\ell+7}{2}} a_{\frac{\ell+5}{2}}=1, \\
s_{\frac{\ell+5}{2}}=a_{\frac{\ell+5}{2}} a_{1} a_{\ell} \ldots a_{\frac{\ell+11}{2}} a_{\frac{\ell+9}{2}} a_{\frac{\ell+7}{2}}=1, \\
s_{\frac{\ell+7}{2}}=a_{\frac{\ell+7}{2}}^{2} a_{2} a_{1} a_{\ell} \ldots a_{\frac{\ell+13}{2}} a_{\frac{\ell+11}{2}} a_{\frac{\ell+9}{2}}=1, \\
\vdots \\
s_{\ell-1}=a_{\ell-1}^{2} a_{\frac{\ell-5}{2}} a_{\frac{\ell-7}{2} \ldots a_{2} a_{1} a_{\ell}=1,} \\
s_{\ell}=a_{\ell}^{2} a_{\frac{\ell-3}{2}} a_{\frac{\ell-5}{2}}^{2} \ldots a_{3} a_{2} a_{1}=1 .
\end{array}\right.
$$

So, $K_{2}(\ell)=\left\langle a_{1}, a_{2}, \ldots, a_{\ell} \mid r=s_{i}=1, i=1,2, \ldots, \ell\right\rangle$. Two classes of the new relations are acceptable by the relations of $K_{2}(\ell)$, and they are:

$$
a_{i}=a_{i+1} a_{i+\frac{\ell+1}{2}}, \quad a_{i}^{2}=a_{i+1} a_{i+\frac{\ell-1}{2}}, \quad(i=1,2, \ldots, \ell),
$$

where, indices are reduced modulo ℓ (the proofs are easy, for, rewriting the relation $r=1$ as $\left(a_{i-1} a_{i-2} \ldots a_{2} a_{1} a_{\ell} a_{\ell-1} \ldots a_{i+\frac{\ell+1}{2}}\right)\left(a_{i+\frac{\ell-1}{2}} \ldots a_{i+1}\right) a_{i}=1$ and using $s_{i+1}=s_{i+\frac{\ell+1}{2}}=1$ give us $a_{i}=a_{i+1} a_{i+\frac{\ell+1}{2}}$, and the second relation may be derived by considering $s_{i}=s_{i+1}=1$, for every i.) We use now these new relations to prove that $K_{2}(\ell)$ is abelian. By the relations

$$
\begin{aligned}
& a_{1}=a_{2} a_{\frac{\ell+3}{2}}=\left(a_{3} a_{\frac{\ell+5}{2}}\right) a_{\frac{\ell+3}{2}}=\cdots=a_{\frac{\ell+1}{2}} a_{\ell} a_{\ell-1} \ldots a_{\frac{\ell+5}{2}} a_{\frac{\ell+3}{2}}, \\
& a_{\frac{\ell-1}{2}} \ldots a_{3} a_{2} a_{1}=a_{1}^{-1}
\end{aligned}
$$

and using $r=1$ we get $\left[a_{\frac{\ell+1}{2}}, a_{1}\right]=1$. Since $a_{1}^{2}=a_{2} a_{\frac{\ell+1}{2}}$ then $\left[a_{1}, a_{2}\right]=1$ holds, and we will get the relation $\left[a_{i}, a_{i+1}\right]=1$, for every i. This proves that $K_{2}(\ell)$ is abelian, and a hand calculation yields:

$$
\begin{cases}a_{\frac{\ell+3}{2}}=a_{1} a_{2}^{-1}, & \\ a_{i}=a_{1}^{-f_{2(i-2)}} \cdot a_{2}^{f_{2(i-1)}}, & i=3,4, \ldots, \frac{\ell+1}{2} \\ a_{i+\frac{\ell+1}{2}}=a_{1}^{f_{2 i-3}} \cdot a_{2}^{-f_{2 i-1}}, & i=2,3, \ldots, \frac{\ell-1}{2}\end{cases}
$$

Showing that $K_{2}(\ell)$ can be generated by a_{1} and A_{2}. If $\ell=3, K_{2}(\ell)$ is of order 4 , and if $\ell \geq 4$,

$$
K_{2}(\ell)=\left\langle a_{1}, a_{2} \mid a_{1}^{-1+f_{\ell-2}}=a_{2}^{f_{\ell}}, a_{1}^{2+f_{\ell-3}}=a_{2}^{1+f_{\ell-1}},\left[a_{1}, a_{2}\right]=1\right\rangle .
$$

Then, the order of this group is equal to $\left(-1+f_{\ell-2}\right)\left(1+f_{\ell-1}\right)-f_{\ell}\left(2+f_{\ell-3}\right)=$ $g_{\ell+1}$. So, $\left|H_{2}(\ell)\right|=\ell \times g_{\ell+1}$.

Proof of Proposition 3.1. By Lemma 3.3 and the comments after Lemma 3.2 we conclude that

$$
\left|G_{2}(\ell)\right|= \begin{cases}2 \ell(\ell+1) g_{\ell+1}, & \ell \equiv 3(\bmod 6), \\ \ell(\ell+1) g_{\ell+1}, & \ell \equiv \pm 1(\bmod 6)\end{cases}
$$

To complete the proof let us consider the result of Lemma 3.3, concerning the derived subgroup of $H_{2}(\ell)$, i.e.; if $\ell \equiv \pm 1(\bmod 6)$ then h.c.f. $\left(-1+f_{\ell-2}, 2+\right.$ $\left.f_{\ell-3}\right)=1$ and $H_{2}^{\prime}(\ell)$ is cyclic of order $g_{\ell+1}$, however, if $\ell \equiv 3(\bmod 6), H_{2}^{\prime}(\ell)$ is not cyclic (because $g_{\ell+1}$ is divisible by 4 in this case). On the other hand, $\frac{G_{2}(\ell)}{G_{2}^{\prime}(\ell)}$ is a cyclic group of order $\ell(\ell+1)$, for every odd values of ℓ and then, $\left|G_{2}^{\prime}(\ell)\right|=g_{\ell+1}$. Consequently, $G_{2}(\ell)$ is a Z-metacyclic group only if $\ell \equiv \pm 1(\bmod 6)$, for, $H_{2}(\ell)$ is a central homomorphic image of $G_{2}(\ell)$.

References

[1] Beetham, M.J., Campbell, C.M., A note on the Todd-Coxeter coset enumeration algorithm. Proc. Edinburgh Math. Soc. 20 (Series 2) (1976), 73-79.
[2] Benson, C.T., Mendelson N.S., A calculus for a certain classes of word problem in groups. J. Combinatorial Theory 1 (1966), 200-208.
[3] Campbell, C.M., Coxeter, H.S.M., Robertson, E.F., Some families of finite groups having two generators and two relations. Proc. R. Soc. London 357 (Series A) (1977), 423-438.
[4] Campbell, C.M., Robertson, E.F., A deficiency zero presentation for $\operatorname{SL}(2, p)$. Bull. London Math. Soc. 12 (1980), 17-20.
[5] Campbell, C.M., Robertson, E.F., The orders of certain metacyclic groups. Bull. London Math. Soc. 6 (1974), 312-314.
[6] Campbell, C.M., Robertson, E.F., Remarks on a class of 2-generator groups of deficiency zero. J. Austral. Math. Soc. 19 (Series A) (1975), 297-305.
[7] Campbell, C.M., Robertson, E.F., Deficiency zero groups involving Fibonacci and Lucas numbers. Proc. Royal Soc. Edinburgh 81 (Series A) (1978), 273-286.
[8] Campbell, C.M., Robertson, E.F., On 2-generator 2-relation soluble groups. Proc. Edinburgh Math. Soc. 23 (1980), 269-273.
[9] Campbell, C.M., Robertson, E.F., Thomas, R.M., Finite groups of deficiency zero involving the Lucas numbers. Proc. Edinburgh Math. Soc. 33 (1990), 1-10.
[10] Campbell, C.M., Robertson, E.F., Thomas, R.M., On groups related to Fibonacci groups. Group Theory. Proceedings of 1987, Singapore Conference, 323-331.
[11] Campbell, C.M., Robertson, E.F., Williams, P.D., On presentations of $P S L\left(2, p^{n}\right)$. J. Austral. Math. Soc. 48 (Series A) (1990), 333-346.
[12] Doostie, H., Non-metabelian soluble groups involving the Lucas numbers. J. Sci. I.R.Iran 3 (Nos. 1, 2) (1992), 63-68.
[13] Doostie, H., Gholamie, R., Thomas, R.M., Certain extensions of ($\ell, m \mid n, k)$ groups. Southeast Asian Bull. Math. 27 (2003), 21-34.
[14] Doostie, H., Jamali, A.R., A class of deficiency zero soluble groups of derived length 4. Proc. Royal Soc. Edinburgh 121 (Series A) (1992), 163-168.
[15] Kenne, P.E., Some new efficient soluble groups. Communication in Algebra 18 (No. 8) (1990), 2747-2753.
[16] MacDonald, I.D., On a class of finitely presented groups. Canad. J. Math. 14 (1962), 602-613.
[17] Perkel, M., Groups of type $F^{a, b,-c}$. Israeal J. Math. 52 (Nos. 1-2) (1985), 167-177.
[18] Schenkman, E., Some two-generator groups with two relations. Arch. Math. 18 (1967), 362-363.
[19] Sunday, J.G., Presentaions of groups $S L(2, m)$ and $P S L(2, m)$ Canad. J. Math. 6 (No. 1) (1972), 1129-1131.
[20] Wamsley, J.W., A class of two generator two relation finite groups. J. Austral. Math. Soc. 14 (1970), 38-39.
[21] Wamsley, J.W., The deficiency of metacyclic groups. Proc. Amer. Math. Soc. 24 (1970), 724-726.
[22] Wamsley, J.W., Some finite groups with zero deficiency. J. Austral. Math. Soc. 18 (1974), 73-75.
[23] Wiegold, J., On some groups with trivial multiplicator. Bull. Austral. Math. Soc. 40 (1989), 331-332.
[24] Zassenhauss, H.J., A presentation of the group $P S L(2, p)$ with three defining relations. Canad. J. Math. 21 (1969), 310-411.

Received by the editors July 18, 2007

[^0]: ${ }^{1}$ Mathematics Department, Tarbiat Moallem University, 49 Mofateh Ave., Tehran 15614, Iran, e-mail: doostih@saba.tmu.ac.ir
 ${ }^{2}$ Department of mathematics, Science and Research Branch, Islamic Azad University, P. O. Box 14515/1775, Tehran, Iran, e-mail: kdelir@gmail.com

