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A CLASS OF Z-METACYCLIC GROUPS INVOLVING
THE LUCAS NUMBERS

H. Doostie1, K. Ahmadidelir2

Abstract. The sequence {gi}∞i=1 is the sequence of Lucas numbers
g1 = 2, g2 = 1, gi+2 = gi+1 + gi, (i ≥ 1), and ` ≥ 2 is an integer. In this
paper we consider the group G(`) with an efficient presentation 〈x, y |
x` = y` = xyx[ `

2 ]y[ 3`
2 ]〉 where, [x] is used for the integer part of a real x,

and prove that G(`) is finite of order

|G(`)| =




`(`+2)
2

(1 + 3
`
2 ), ` ≡ 0 or ±2(mod 6),

2`(` + 1)g`+1, ` ≡ 3 (mod 6),
`(` + 1)g`+1, ` ≡ ±1(mod 6).

Moreover, if ` ≡ ±4 or 8 or ±12 or 20(mod 40), or ` ≡ ±1(mod 6)

then, G(`) is Z-metacyclic ( G′(`) and G(`)
G′(`) are cyclic).
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1. Introduction

A finitely presented group G is said to have deficiency k if k is the largest
integer such that G can be presented by m generators and m − k relations.
The deficiency zero groups are interesting to be considered for their finiteness
and their structures. A considerable effort has, over the years, been put into
presenting infinite classes of finite groups. For a short survey on these groups one
may consider the articles [5, 16, 20, 21, 22] (for the cyclic, metacyclic and some
related groups), the articles [4, 11, 19, 24] (for the linear groups), the articles
[7, 8, 9, 12, 14, 15] (for the soluble groups) and the articles [3, 6, 10, 13, 17, 18]
for some other classes of deficiency zero groups of interesting orders and various
structures. In particular, Wiegold ([23]) considers the deficiency zero groups

G = 〈x, y | x` = ym = w(x, y)〉

where, w is a word on the generators x and y. Since the subgroup 〈x`〉 is
a central subgroup of G then G is finite if and only if the groups G/G′ and
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G/〈x`〉 are finite. In this paper we consider the case when w(x, y) = xyxnyk+m

where `, m, n and k are integers ≥ 2, that is, the groups

G(`,m, n, k) = 〈x, y | x` = ym = xyxnyk+m〉, (`,m, n, k ≥ 2).

It follows readily that the group G(`, m, n, k) is finite if and only if the group
G(`,m, n, k) = G(`,m, n, k)/〈x`〉 is finite, for, the commutator quotient of
G(`,m, n, k) is finite.

A simple calculation shows that the group G(`,m, n, k) is cyclic if at least
three of the four parameters `,m, n and k, are equal, so we suppose that at most
two parameters are equal and then there are the following cases:

G(`, `, n, k), G(`,m, `, k), G(`,m,m, k), G(`,m, n, `), G(`,m, n, m), G(`,m, n, n).

The aim of this paper is to study two subclasses of the groups G(`, `, n, k).
Some of them are Z-metacyclic groups (the groups with the cyclic commutator
subgroup and cyclic commutator quotient group). Sections 2 and 3 are devoted
to the study of the groups

G(`, `, [
`

2
], [

`

2
]),

for every integer ` ≥ 2.
Our notations are fairly standard, [x] is used for the integer part of a real x,

we denote x−1y−1xy by [x, y] and y−1xy by xy, for elements x and y of a group.
The main tools used in this investigation are the Todd-Coxeter coset enumer-
ation algorithm (see [3] for example) and the modification to this algorithm
described in [1] and [2].

2. The groups G(`, `, `
2
, `

2
), (` is even)

For every even integer ` ≥ 2 let G1(`) = G(`, `, `
2 , `

2 ), then the subgroup
H1 = 〈xi+1yx−i : i = 0, 1, . . . , 2`− 1〉 of G1(`) is of index 2`, for, we may define
2` cosets as 1 = H1, and ix = i + 1, (i = 1, 2, . . . , 2` − 1) and a simple coset
enumeration yields | G1(`) : H1 |= 2`. We now give the main results of this
section:

Lemma 2.1. For every even value of ` ≥ 2 the group H1 has a presentation
isomorphic to

〈a1, a2 | [a1, a2] = 1, aα
1 = aα

2 , aβ
2 = aγ

1〉,

where, α = 1+3
`
2

2 , β = `+3+3
`
2

4 and γ = 3`+7+3
`
2

4 .

Proposition 2.2. For every even integer ` ≥ 2, G1(`) is finite of order `(`+2)
2 (1+

3
`
2 ). Moreover, it is a Z-metacyclic group only if ` ≡ ±4 or 8 or ±12 or 20(mod

40).

Proof of Lemma 2.1. Consider

G1(`) = 〈x, y|x` = y`, xyx
`
2 y

`
2 〉
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where, ` ≥ 2. Rename the generators of H1 as a1 = xy, a2 = x2yx−1, . . . , a2` =
x2`yx−2`+1. By the above comments H1 is of index 2` in G1(`) and for using
the Modified Todd-Coxeter algorithm (in the form given in [1]) we identify the
number of a coset of H1 and its representative. So, by defining the 2` cosets as

1 = H1, 1x = 2, 2x = 3, . . . , (2`− 1)x = 2`,





1xy = a1.1 ⇒ 2y = a1.1
1x2yx−1 = a2.1 ⇒ 3y = a2.2
...
1x2`−1yx−2`+2 = a2`.1 ⇒ (2`)y = a2`.(2`− 1).
1x`y−` = 1 ⇒ 1y = a−1

`+1a
−1
`+2 . . . a−1

2`−1 .(2`).

Since then, the relation 1x2`yx−2`+1 = 1 yields

(2`)x = a2`−1a2`−3 . . . a`−1 .1 .

We may now summarize our calculations in the following monitor table, for
more clarity:

cosets x y

1 2 a−1
`+1a

−1
`+2 . . . a−1

2`−1 .(2`)
2 3 a1.1
3 4 a2.2
...
2`− 1 2` a2`−1.(2`− 2)
2` a2`−1a2`−3 . . . a`−1 .1 a2`.(2`− 1)

Considering all of the relations

ix` = iy`, ixyx
`
2 y

`
2 = i, i = 1, 2, . . . , 2`

will give us a presentation for H1. In details, the relations ix` = iy`, i = 2, . . . , `
yield

a`+j = aj , (j = 1, 2, . . . , `− 1),

and using these results and the relations ix` = iy`, (i = ` + 1, . . . , 2`), give us
the new relations

Ri = [A, aiai−1 . . . a2a1] = 1, (i = 1, 2, . . . , `− 1),

where, A = a`a`−1 . . . a3a2a1. To get the other relations of the subgroup H1,
consider ixyx

`
2 y

`
2 = i, for every i = 1, 2, . . . , `− 1. Then we get the relations:

Si = a2
i ai+ `

2−1ai+ `
2−2 . . . ai+1 = 1, (i = 1, 2, . . . , `− 1),

and finally, the relation `xyx
`
2 y

`
2 = ` gives us the relation

S` = a2
`a `

2−1a `
2−2 . . . a2a1 = 1
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for the subgroup H1 (the other derived relations by the relations ixyx
`
2 y

`
2 =

i, i = ` + 1, . . . , 2` are, indeed, the redundant or the trivial relations in H1. So,
H1 has a preliminary presentation isomorphic to

H1 = 〈a1, . . . , a` | S` = Ri = Si = 1, i = 1, 2, . . . , `− 1〉.

To simplify this presentation we show first that [a1, a2] = 1 holds in H1. The
relations S `

2+1 = 1 and S2 = 1 may be rewritten as a`a`−1 . . . a `
2+2a `

2+1 = a−1
`
2+1

and a `
2
a `

2−1 . . . a3a
2
2 = a−1

`
2+1

, respectively. So

a`a`−1 . . . a `
2+2a `

2+1 = a `
2
a `

2−1 . . . a3a
2
2.

This relation together with the relation S1 = 1 yields a`a`−1 . . . a `
2+1 = a−2

1 a2,
a fairly simple calculation now gives us the relation [a1, a2] = 1, by considering
R1 = 1.

By adding this relation to those of H1 we are now able to calculate the
generators a3, a4, . . . , a` in terms of a1 and a2, and then we can eliminate
them. Indeed, a fairly tedious calculation yields





ak = a
3
2− 3k−1

2
1 .a

− 1
2+ 3k−1

2
2 , k = 3, 4, . . . , `

2 ,

ak+ `
2

= a
3
2+ 3k−1

2
1 .a

− 1
2− 3k−1

2
2 , k = 1, 2, . . . , `

2 ,

and we get the desired presentation for H1. 2

Proof of Proposition 2.2. Let α = 1+3
`
2

2 , β = `+3+3
`
2

4 and γ = 3`+7+3
`
2

4 . For
every even integer ` there are two cases: ` − 2 is not divisible by 8 or ` − 2 is
divisible by 8. In the first case α, β and γ are pairwise co-primes, however the
highest common factor of every pair of them is 2 in the second case. In the first
case H1 is a cyclic group (one may consider the subgroup K1 = 〈a1〉 of H1 to
show that | H1 : K1 |= 1) and then, | H1 |= 1

2 (1 + `
2 )(1 + 3

`
2 . For the second

case we consider the subgroup L1 = 〈a1, a
2
2〉 of H1 which is of index 2 in H1 and

will be presented as follows, by letting X = a1 and Y = a2
2:

L1 = 〈X, Y | [X,Y ] = 1, Xα = Y
α
2 , Xγ = Y

β
2 〉.

Since ` ≡ 2 (mod 8) then h.c.f.(α
2 , β

2 ) = h.c.f.(γ, β
2 ) = 1 and L1 is a cyclic

group of order 1
4 (1 + `

2 )(1 + 3
`
2 ), i.e.; | H1 |= 1

2 (1 + `
2 )(1 + 3

`
2 ). Consequently,

| G1(`) |= 2`× 1
2 (1 + `

2 )(1 + 3
`
2 ), as desired.

To complete the proof let ` = 40q± 4. Then by the above results | G′1(`) |=
1+3

`
2

2 and also

G1(`)
G′1(`)

=
{

Z2 × Z `(`+2)
2

, ` ≡ 2 (mod 4),
Z`(`+2), ` ≡ 0 (mod 4),
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and G′1(`) ∼= Z5 × Zt where, t = 9
`
4−1 − 9

`
4−2 + 9

`
4−3 − · · · − 9 + 1. However,

h.c.f.(t, 5) = h.c.f.( `
4 , 5) = h.c.f.(10q±1, 5) = 1 shows that G′1(`) is cyclic. The

same proof carries over the cases ` = 40q + 8, ` = 40q± 12 and ` = 40q + 20. 2

3. The groups G(`, `, `−1
2

, `−1
2

), (` is odd)

For every odd integer ` ≥ 3 let G2(`) = G(`, `, `−1
2 , `−1

2 ). The sequences of
Fibonacci and Lucas numbers {fi}∞i=1 and {gi}∞i=1 will be used in this section,
which are defined as follows:

f2 = 1, fi+2 = fi+1 + fi, (i ≥ 1),
g1 = 2, g2 = 1, gi+2 = gi+1 + gi, (i ≥ 1),

and the main result of this section is:

Proposition 3.1. For every odd integer ` ≥ 3, the group G2(`) is finite and

| G2(`) |=
{

2`(` + 1)g`+1, ` ≡ 3 (mod 6),
`(` + 1)g`+1, ` ≡ ±1(mod 6),

Moreover, this group is Z-metacyclic only if ` ≡ ±1(mod 6).

To prove this proposition we first prove some preliminaries.

Lemma 3.2. For every odd value of ` ≥ 3, the relation x2`(`+1) = 1 holds in
G2(`).

Proof. The second relation of

G2(`) = 〈x, y | x` = y`, xyx
`−1
2 y

`−1
2 = 1〉

is equivalent to x−( `−1
2 ) = y

`−1
2 xy and squaring both sides yields y

`−1
2 xy

`+1
2 xy =

x−`+1, or
xyx−1 = y−( `+1

2 )x−1y−( `−1
2 )x−`.

This may be reduced to

xyx−1 = y−( `+1
2 )x−1−2`x`y−( `−1

2 ),

for, x` and y` are central elements (because of the relation x` = y`.) The last
relation will be reduced to

xyx−1 = y−( `+1
2 )x−1−2`y

`+1
2

(by substituting y` for x`.)
Raising both sides of the last relation to the power ` and considering x` = y`

once again, we get y` = x−`(2`+1), or x2`(`+1) = 1 as desired. 2

Finding the order of G2(`) is possible by getting a suitable quotient group
of G2(`). To do this we proceed as follows:
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First we show that x`, as an element of G2(`) has order ` + 1 or 2(` + 1), if
` ≡ ±1(mod 6) or ` ≡ 3(mod 6), respectively. Let ` ≡ ±1(mod 6) and consider
the subgroup 〈x`, xiyx−i+1 : i = 1, 2, . . . , ` − 1〉. An easy coset enumeration
shows that this subgroup is of index ` in G2(`) and by letting ci = xiyx−i+1,
(i = 1, 2, . . . , ` − 1) and c` = x`, we can get a presentation for this subgroup.
Simplifying the relations of this subgroup gives us two interesting relations:

c
( `+1

2 )g`+1
1 = 1 and c2

` = c
g`+1
1 . On the other hand a numerical result concerning

the Lucas numbers shows that h.c.f.(` + 1, g`+1) = 1 and then the relation

c
2( `+1

2 )g`+1
1 = 1 holds in this subgroup. Consequently, the equation x`(`+1) = 1

holds in G2(`). When ` ≡ 3(mod 6) we may proceed in a similar way to prove
that the equation x2`(`+1) = 1 holds in G2(`).

Secondly, since 〈x`〉 is a central subgroup of G2(`) then adding the relation
x` = 1 to those of G2(`) gives the group

H2(`) = 〈x, y | x` = y` = 1, xyx
`−1
2 y

`−1
2 = 1〉

which is G2(`) factored by the cyclic group Z`+1 or Z2(`+1) if ` ≡ ±1(mod 6)
either ` ≡ 3(mod 6). We are now going to identify the group H2(`) as follows:

Lemma 3.3. For every odd value of ` ≥ 3, the group H2(`) is a metabelian
group of order `× g`+1.

Proof. Abelianising the relations of H2(`) shows that xy ∈ H ′
2(`), so, the sub-

group K2(`) = 〈xy, x2yx−1, . . . , x`−1yx−`+2, yx〉 is contained in H ′
2(`). Showing

that | H2(`) : K2(`) |= ` is easy by defining ` cosets as 1 = K2(`), ix = i + 1, (
i = 1, 2, . . . , `− 1). Consequently, H ′

2(`) = K2(`). We now use the Modified al-
gorithm to find a presentation for K2(`). Let ai = xiyx−i+1, (i = 1, 2, . . . , `−1)
and a` = yx. For every i, (i = 1, 2, . . . , `), the relations iy` = i yield only one
relation for the group K2(`), and this is indeed, the relation:

r = a`a`−1 . . . a2a1 = 1,

and the relations ixyx
`−1
2 y

`−1
2 = i yield the following relations for K2(`):





s1 = a2
1a `−1

2
a `−3

2
. . . a4a3a2 = 1,

s2 = a2
2a `+1

2
a `−1

2
. . . a5a4a3 = 1,

s3 = a2
3a `+3

2
a `+1

2
. . . a6a5a4 = 1,

...
s `+3

2
= a2

`+3
2

a`a`−1 . . . a `+9
2

a `+7
2

a `+5
2

= 1,

s `+5
2

= a2
`+5
2

a1a` . . . a `+11
2

a `+9
2

a `+7
2

= 1,

s `+7
2

= a2
`+7
2

a2a1a` . . . a `+13
2

a `+11
2

a `+9
2

= 1,

...
s`−1 = a2

`−1a `−5
2

a `−7
2

. . . a2a1a` = 1,

s` = a2
`a `−3

2
a `−5

2
. . . a3a2a1 = 1.
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So, K2(`) = 〈a1, a2, . . . , a` | r = si = 1, i = 1, 2, . . . , `〉. Two classes of the new
relations are acceptable by the relations of K2(`), and they are:

ai = ai+1ai+ `+1
2

, a2
i = ai+1ai+ `−1

2
, (i = 1, 2, . . . , `),

where, indices are reduced modulo ` (the proofs are easy, for, rewriting the
relation r = 1 as (ai−1ai−2 . . . a2a1a`a`−1 . . . ai+ `+1

2
)(ai+ `−1

2
. . . ai+1)ai = 1 and

using si+1 = si+ `+1
2

= 1 give us ai = ai+1ai+ `+1
2

, and the second relation may
be derived by considering si = si+1 = 1, for every i.) We use now these new
relations to prove that K2(`) is abelian. By the relations

a1 = a2a `+3
2

= (a3a `+5
2

)a `+3
2

= · · · = a `+1
2

a`a`−1 . . . a `+5
2

a `+3
2

,

a `−1
2

. . . a3a2a1 = a−1
1 ,

and using r = 1 we get [a `+1
2

, a1] = 1. Since a2
1 = a2a `+1

2
then [a1, a2] = 1 holds,

and we will get the relation [ai, ai+1] = 1, for every i. This proves that K2(`) is
abelian, and a hand calculation yields:





a `+3
2

= a1a
−1
2 ,

ai = a
−f2(i−2)
1 . a

f2(i−1)
2 , i = 3, 4, . . . , `+1

2 ,

ai+ `+1
2

= a
f2i−3
1 . a

−f2i−1
2 , i = 2, 3, . . . , `−1

2 .

Showing that K2(`) can be generated by a1 and A2. If ` = 3, K2(`) is of order
4, and if ` ≥ 4,

K2(`) = 〈a1, a2 | a−1+f`−2
1 = af`

2 , a
2+f`−3
1 = a

1+f`−1
2 , [a1, a2] = 1〉.

Then, the order of this group is equal to (−1 + f`−2)(1 + f`−1)− f`(2 + f`−3) =
g`+1. So, | H2(`) |= `× g`+1. 2

Proof of Proposition 3.1. By Lemma 3.3 and the comments after Lemma 3.2
we conclude that

| G2(`) |=
{

2`(` + 1)g`+1, ` ≡ 3 (mod 6),
`(` + 1)g`+1, ` ≡ ±1(mod 6).

To complete the proof let us consider the result of Lemma 3.3, concerning the
derived subgroup of H2(`), i.e.; if ` ≡ ±1(mod 6) then h.c.f.(−1 + f`−2, 2 +
f`−3) = 1 and H ′

2(`) is cyclic of order g`+1, however, if ` ≡ 3(mod 6), H ′
2(`) is

not cyclic (because g`+1 is divisible by 4 in this case). On the other hand, G2(`)
G′2(`)

is
a cyclic group of order `(`+1), for every odd values of ` and then, | G′2(`) |= g`+1.
Consequently, G2(`) is a Z-metacyclic group only if ` ≡ ±1(mod 6), for, H2(`)
is a central homomorphic image of G2(`). 2
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