ON A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS INVOLVING CHO-SRIVASTAVA OPERATOR

G. Murugusundaramoorthy ${ }^{11}$, S. Sivasubramanian ${ }^{2}$, R. K. Raina ${ }^{3}$

Abstract. The authors introduce a new subclass $\mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ of functions which are analytic in the open disc $\Delta=\{z \in \mathbb{C}:|z|<1\}$. Various results studied include the coefficient estimates and distortion bounds, radii of close-to-convexity, starlikeness and convexity and integral means inequalities for functions belonging to the above class. Relevances of the main results are also briefly indicated.

AMS Mathematics Subject Classification (2000): 30C45
Key words and phrases: Analytic function, Starlike function, Convex function, Uniformly convex function, Convolution product, Cho-Srivastava operator

1. Introduction and Motivations

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\Delta:=\{z \in \mathbb{C}:|z|<1\}$. Let \mathcal{S} be a subclass of \mathcal{A} consisting of univalent functions in Δ. By $\mathcal{S}^{*}(\beta)$ and $\mathcal{K}(\beta)$, respectively, we mean the classes of analytic functions that satisfy the analytic conditions

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta, \quad \text { and } \quad \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\beta \quad(z \in \Delta)
$$

for $0 \leqq \beta<1$. In particular, $\mathcal{S}^{*}=\mathcal{S}^{*}(0)$ and $\mathcal{K}=\mathcal{K}(0)$, respectively, are the well-known standard classes of starlike and convex functions. Let \mathcal{T} denote the subclass of \mathcal{S} of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geqq 0\right) \tag{2}
\end{equation*}
$$

[^0]which are analytic in the open unit disc Δ, introduced and studied in 10 . Analogously to the subclasses $\mathcal{S}^{*}(\beta)$ and $\mathcal{K}(\beta)$ of \mathcal{S}, respectively, the subclasses of \mathcal{T} denoted by $\mathcal{T}^{*}(\beta)$ and $\mathcal{C}(\beta), 0 \leqq \beta<1$, have also been investigated in 10. For functions $f \in \mathcal{A}$ given by (11) and $g \in \mathcal{A}$ given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, we define the Hadamard product (or convolution) of f and g by
\[

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} \quad(z \in \Delta) \tag{3}
\end{equation*}
$$

\]

Also, for functions $f \in \mathcal{A}$, we recall the multiplier transformation $I(\lambda, k)$ introduced by Cho and Srivastava [3] which is defined by

$$
\begin{equation*}
I(\lambda, k) f(z)=z+\sum_{n=2}^{\infty} \Psi_{n} a_{n} z^{n} \quad(\lambda \geqq 0 ; k \in \mathbb{Z}), \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{n}:=\left(\frac{n+\lambda}{1+\lambda}\right)^{k} \tag{5}
\end{equation*}
$$

and, obviously it follows that

$$
\begin{equation*}
z(I(\lambda, k) f(z))^{\prime}=(1+\lambda) I(\lambda, k+1) f(z)-\lambda I(\lambda, k) f(z) \tag{6}
\end{equation*}
$$

In the special case when $\lambda=1$, the operators $I(1, k)$ were studied earlier by Uralegaddi and Somanatha [15. It may be observed that the operators $I(\lambda, k)$ are closely related to the multiplier transformations studied by Flett 4 and also to the differential and integral operators investigated by Sălăgean [8]. For comprehensive details of various convolution operators which are related to the multiplier transformations of Flett [4, one may refer to the paper of Li and Srivastava [5] (as well as the references cited by therein). For the purpose of this paper, we now define a unified class of analytic functions which is based on the Cho-Srivastava operator (1.4).
Definition 1. For $0 \leqq \delta \leqq \gamma \leqq 1,0 \leqq \beta<1$ and $\alpha \geqq 0$, and for all $z \in \Delta$, we let the class $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ consist of functions $f \in \mathcal{T}$ which satisfy the condition

$$
\begin{equation*}
\Re\left(\frac{z F^{\prime}(z)}{F(z)}-\beta\right)>\alpha\left|\frac{z F^{\prime}(z)}{F(z)}-1\right|, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
F(z):=F_{1}(z)+F_{2}(z)+F_{3}(z) \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
& F_{1}(z):=\gamma \delta(1+\lambda)^{2} I(\lambda, k+2) f(z) \tag{9}\\
& F_{2}(z):=\{\gamma-\delta-\gamma \delta(1+2 \lambda)\}(1+\lambda) I(\lambda, k+1) f(z), \tag{10}\\
& F_{3}(z):=\{1-(\lambda+1)(\gamma-\delta-\gamma \delta \lambda)\} I(\lambda, k) f(z) \tag{11}
\end{align*}
$$

and $I(\lambda, k) f(z)$ is the Cho-Srivastava operator defined by (4).

The function class $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ unifies many well known classes of analytic univalent functions. To illustrate, we observe that the class $\mathcal{U H}(\alpha, \beta, \gamma, \delta, 0,0)$ was studied by Kamali and Kadioglu [7] and the class $\mathcal{U H}(0, \beta, 0, \gamma, 0,0)$ was studied by Altintas in [1]. Also, many other classes including $\mathcal{U} \mathcal{H}(0, \beta, 0,0,0,0)$ and $\mathcal{U} \mathcal{H}(0, \beta, 1,0,0,0)$ were investigated by Srivastava et al. [14]. We further note that the class $\mathcal{U} \mathcal{H}(\alpha, \beta, 0, \gamma, 0,0)$ is the known class of α-uniformly convex functions of order β studied by Aqlan et al. [2] (also see [13]).

In the present paper we obtain a characterization property giving coefficients estimates, distortion theorem and covering theorem, extreme points and radii of close-to-convexity, starlikeness and convexity and integral means inequalities for functions belonging to the class $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$.

2. Coefficient estimates and Distortion bounds

Theorem 1. Let $f \in \mathcal{T}$ be given by (21), then $f \in \mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n} a_{n} \leqq 1-\beta \tag{12}
\end{equation*}
$$

where $0 \leqq \delta \leqq \gamma \leqq 1,0 \leqq \beta<1$ and $\alpha \geqq 0$. The result is sharp for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}} z^{n}(n \geq 2) \tag{13}
\end{equation*}
$$

Proof. Following [2], we assert that $f \in \mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ if and only if the condition (7) is satisfied and this is equivalent to

$$
\begin{equation*}
\Re\left\{\frac{z F^{\prime}(z)\left(1+\alpha e^{i \theta}\right)-F(z) \alpha e^{i \theta}}{F(z)}\right\}>\beta \quad(-\pi \leqq \theta<\pi) \tag{14}
\end{equation*}
$$

By putting $G(z)=z F^{\prime}(z)\left(1+\alpha e^{i \theta}\right)-F(z) \alpha e^{i \theta}$, (14) is equivalent to

$$
|G(z)+(1-\beta) F(z)|>|G(z)-(1+\beta) F(z)|(0 \leqq \beta<1)
$$

where $F(z)$ is as defined in (8). Simple computations readily give

$$
\begin{aligned}
& |G(z)+(1-\beta) F(z)| \geqq(2-\beta)|z|- \\
& \quad-\sum_{n=2}^{\infty}[\{n(\alpha+1)-(\alpha+\beta)+1\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n} a_{n}|z|^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
& |G(z)-(1+\beta) F(z)| \leqq \beta|z|+ \\
& \quad+\sum_{n=2}^{\infty}[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n} a_{n}|z|^{n}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& |G(z)+(1-\beta) F(z)|-|G(z)-(1+\beta) F(z)| \geqq 2(1-\beta)|z|- \\
& \quad-2 \sum_{n=2}^{\infty}[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n} a_{n}|z|^{n} \geqq 0
\end{aligned}
$$

which implies that $f \in \mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$.
On the other hand, for all $-\pi \leqq \theta<\pi$, we assume that

$$
\Re\left\{\frac{z F^{\prime}(z)}{F(z)}\left(1+\alpha e^{i \theta}\right)-\alpha e^{i \theta}\right\}>\beta .
$$

Choosing the values of z on the positive real axis such that $0 \leqq|z|=r<1$, and using the fact that $\Re\left\{-e^{i \theta}\right\} \geqq-\left|e^{i \theta}\right|=-1$, the above inequality can be written as
$\Re\left\{\frac{(1-\beta)-\sum_{n=2}^{\infty}[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n} a_{n} r^{n-1}}{1-\sum_{n=2}^{\infty}[\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n} a_{n} r^{n-1}}\right\} \geqq 0$,
which on letting $r \rightarrow 1^{-}$yields the desired inequality (2.1).

Theorem 2. If $f \in \mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$, then
$\left(1 \bar{a}_{h} \leqq \frac{1-\beta}{[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}}(n \geqq 2)\right.$,
where $0 \leqq \delta \leqq \gamma \leqq 1,0 \leqq \beta<1$ and $\alpha \geqq 0$. Equality in (15) holds for the function
$(1 \nsubseteq)(z)=z-\frac{1-\beta}{[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}} z^{n}$.
It may be observed that for $\lambda=k=\delta=\gamma-1=\alpha=0$, Theorem 1 corresponds to the following results due to Silverman [10].

Corollary 1. ([10]) If $f \in \mathcal{T}$, then $f \in \mathcal{K}(\beta)$ if and only if

$$
\sum_{n=2}^{\infty} n(n-\beta) a_{n} \leqq 1-\beta
$$

Corollary 2. ([10]) If $f \in \mathcal{K}(\beta)$, then $f \in \mathcal{T}^{*}\left(\frac{2}{3-\beta}\right)$. The result is sharp for the extremal function

$$
f(z)=z-\frac{1-\beta}{2(2-\beta)} z^{2}
$$

On a subclass of uniformly convex functions...
Theorem 3. If $f \in \mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$, then $f \in \mathcal{T}^{*}(\eta)$, where

$$
\eta=1-\frac{1-\beta}{[\{2(\alpha+1)-(\alpha+\beta)\}\{2 \gamma \delta+\gamma-\delta+1\}] \Psi_{2}-(1-\beta)}
$$

This result is sharp with the extremal function given by

$$
f(z)=z-\frac{1-\beta}{[\{2(\alpha+1)-(\alpha+\beta)\}\{2 \gamma \delta+\gamma-\delta+1\}] \Psi_{2}} z^{2}
$$

Proof. It is sufficient to show that (12) implies

$$
\sum_{n=2}^{\infty}(n-\eta) a_{n} \leqq 1-\eta
$$

In view of (2.4), we find that

$$
\begin{equation*}
\frac{n-\eta}{1-\eta} \leqq \frac{[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}}{1-\beta}(n \geqq 2) \tag{17}
\end{equation*}
$$

For $n \geqq 2$, (17) is equivalent to
$\eta \leqq 1-\frac{(n-1)(1-\beta)}{[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}-(1-\beta)}=\Phi(n)$,
and since $\Phi(n) \leqq \Phi(2)(n \geqq 2)$, therefore, (17) holds true for any $0 \leqq \delta \leqq \gamma \leqq 1$, $0 \leqq \beta<1$ and $\alpha \geqq 0$. This completes the proof of Theorem 3.

The following results give the growth and distortion bounds for the class of functions $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ which can be established by adopting the well known methods of derivation and we omit the proof details.
Theorem 4. If $f \in \mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$, then $\left(z=r e^{i \theta} \in \Delta\right)$:

$$
\begin{equation*}
r-B(\alpha, \beta, \gamma, \delta, \lambda) r^{2} \leqq|f(z)| \leqq r+B(\alpha, \beta, \gamma, \delta, \lambda) r^{2} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
B(\alpha, \beta, \gamma, \delta, \lambda):=\frac{1-\beta}{[\{2(\alpha+1)-(\alpha+\beta)\}\{2 \gamma \delta+\gamma-\delta+1\}] \Psi_{2}} \tag{19}
\end{equation*}
$$

and Ψ_{2} is given by (5)
Theorem 5. If $f \in \mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$, then $(|z|=r<1)$:

$$
\begin{equation*}
1-B(\alpha, \beta, \gamma, \delta, \lambda) r \leqq\left|f^{\prime}(z)\right| \leqq 1+B(\alpha, \beta, \gamma, \delta, \lambda) r, \tag{20}
\end{equation*}
$$

where $B(\alpha, \beta, \gamma, \delta, \lambda)$ is given by (2.8).
The equality in Theorems 4 and 5 hold for the function given by

$$
f(z)=z-\frac{1-\beta}{[\{2(\alpha+1)-(\alpha+\beta)\}\{2 \gamma \delta+\gamma-\delta+1\}] \Psi_{2}} z^{2}
$$

3. Radii of close-to-convexity, starlikeness and convexity

The following results giving the radii of convexity, starlikeness and convexity for a function f to belong to the class $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ can be established by following similar lines of proof as given in [13] and 14. We merely state here these results and omit their proof details.

Theorem 6. Let the function $f \in \mathcal{T}$ be in the class $\mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$, then $f(z)$ is close-to-convex of order $\rho(0 \leqq \rho<1)$ in $|z|<r_{1}(\alpha, \beta, \gamma, \delta, \rho)$, where

$$
\begin{aligned}
& r_{1}(\alpha, \beta, \gamma, \delta, \rho)= \\
& \quad=\inf _{n}\left[\frac{(1-\rho)[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}}{n(1-\beta)}\right]^{\frac{1}{n-1}}
\end{aligned}
$$

for $n \geqq 2$ with Ψ_{n} defined as in (5). The result is sharp for the function $f(z)$ given by (13).

Theorem 7. Let the function $f(z)$ defined by (2) be in the class $\mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$, then $f(z)$ is starlike of order $\rho(0 \leqq \rho<1)$ in $|z|<$ $r_{2}(\alpha, \beta, \gamma, \delta, \rho)$, where

$$
\begin{aligned}
& r_{2}(\alpha, \beta, \gamma, \delta, \rho)= \\
& \quad=\inf _{n}\left[\frac{(1-\rho)[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}}{(n-\rho)(1-\beta)}\right]^{\frac{1}{n-1}}
\end{aligned}
$$

for $n \geqq 2$ with Ψ_{n} defined as in (5). The result is sharp for the function $f(z)$ given by (13).

Theorem 8. Let the function $f(z)$ defined by (2) be in the class $\mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$, then $f(z)$ is convex of order $\rho(0 \leqq \rho<1)$ in $|z|<$ $r_{3}(\alpha, \beta, \gamma, \delta, \rho)$, where

$$
\begin{aligned}
& r_{3}(\alpha, \beta, \gamma, \delta, \rho)= \\
& =\inf _{n}\left[\frac{(1-\rho)[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}}{n(n-\rho)(1-\beta)}\right]^{\frac{1}{n-1}}
\end{aligned}
$$

for $n \geqq 2$ with Ψ_{n} defined as in (5). The result is sharp for the function $f(z)$ given by (13).
4. Extreme points of the class $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$

Theorem 9. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{n}(z)=z-\frac{1-\beta}{[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}} z^{n} \tag{21}
\end{equation*}
$$

for $n \geqq 2$ and Ψ_{n} be as defined in (5). Then $f \in \mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ if and only if it can be represented in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z) \quad\left(\mu_{n} \geqq 0\right), \quad \sum_{n=1}^{\infty} \mu_{n}=1 . \tag{22}
\end{equation*}
$$

Proof. Suppose $f(z)$ is expressible in the form (22). Then
$f(z)=z-\sum_{n=2}^{\infty} \mu_{n}\left\{\frac{1-\beta}{[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}}\right\} z^{n}$.
Since

$$
\begin{gathered}
\sum_{n=2}^{\infty} \mu_{n} \frac{[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}(1-\beta)}{(1-\beta)[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}} \\
=\sum_{n=2}^{\infty} \mu_{n}=1-\mu_{1} \leqq 1
\end{gathered}
$$

which implies that $f \in \mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$. Conversely, suppose $f \in \mathcal{U H} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$. Using (15), we may write

$$
\mu_{n}=\frac{[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}}{1-\beta} a_{n} \quad(n \geqq 2)
$$

and $\mu_{1}=1-\sum_{n=2}^{\infty} \mu_{n}$. This gives $f(z)=\sum_{n=1}^{\infty} \mu_{n} f_{n}(z)$, where $f_{n}(z)$ is given by (21).

Corollary 3. The extreme points of $f \in \mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ are the functions $f_{1}(z)=z$ and
$f_{n}(z)=z-\frac{1-\beta}{[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}} z^{n} \quad(n \geqq 2)$.
Theorem 10. The class $\mathcal{U H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ is a convex set.
Proof. Suppose the functions

$$
\begin{equation*}
f_{j}(z)=z-\sum_{n=2}^{\infty} a_{n, j} z^{n} \quad\left(a_{n, j} \geqq 0 ; \quad j=1,2\right) \tag{23}
\end{equation*}
$$

be in the class $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$. It sufficient to show that the function $g(z)$ defined by

$$
g(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z) \quad(0 \leqq \mu \leqq 1)
$$

is in the class $\mathcal{U H} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$. Since

$$
g(z)=z-\sum_{n=2}^{\infty}\left[\mu a_{n, 1}+(1-\mu) a_{n, 2}\right] z^{n}
$$

and applying Theorem 1. we get

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left[\{n(\alpha+1)-(\alpha+\beta)\}\{((n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}\left[\mu a_{n, 1}+(1-\mu) a_{n, 2}\right]\right. \\
\leqq \mu(1-\beta)+(1-\mu)(1-\beta) \leqq 1-\beta
\end{gathered}
$$

which asserts that $g \in \mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$. Hence $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ is convex.

5. Integral Means Inequalities

Lemma 1. ([G]]) If the functions f and g are analytic in Δ with $g \prec f$, then for $\eta>0$, and $0<r<1$:

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta \tag{24}
\end{equation*}
$$

In [10], Silverman found that the function $f_{2}(z)=z-\frac{z^{2}}{2}$ is often extremal over the family \mathcal{T}. He applied this function to obtain the following integral means inequality (which was conjectured in 11 and settled in [12]):

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}\left(r e^{i \theta}\right)\right|^{\eta} d \theta
$$

for all $f \in \mathcal{T}, \eta>0$ and $0<r<1$. In [12], he also proved his conjecture for the subclasses $T^{*}(\beta)$ and $C(\beta)$ of \mathcal{T}.

In this section, we obtain integral means inequalities for the functions in the family $\mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$. By assigning appropriate values to the parameters $\alpha, \beta, \gamma, \delta, \lambda, k$, we can deduce various integral means inequalities for various known as well as new subclasses. We prove the following result.

Theorem 11. Suppose $f(z) \in \mathcal{U} \mathcal{H}(\alpha, \beta, \gamma, \delta, \lambda, k)$ and $\eta>0$. If $f_{2}(z)$ is defined by

$$
f_{2}(z)=z-\frac{1-\beta}{\Phi(\alpha, \beta, \delta, \lambda, \gamma, k, 2)} z^{2}
$$

where
(25)
$\Phi(\alpha, \beta, \delta, \lambda, \gamma, k, 2)=(2-\beta)[\{2(\alpha+1)-(\alpha+\beta)\}\{(2 \gamma \delta+\gamma-\delta)+1\}] \Psi_{2}$

$$
\Psi_{2}:=\left(\frac{2+\lambda}{1+\lambda}\right)^{k}
$$

then for $z=r e^{i \theta}(0<r<1)$:

$$
\begin{equation*}
\int_{0}^{2 \pi}|f(z)|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|f_{2}(z)\right|^{\eta} d \theta \tag{26}
\end{equation*}
$$

Proof. For

$$
f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}
$$

(26) is equivalent to proving that

$$
\int_{0}^{2 \pi}\left|1-\sum_{n=2}^{\infty}\right| a_{n}\left|z^{n-1}\right|^{\eta} d \theta \leq \int_{0}^{2 \pi}\left|1-\frac{(1-\gamma)}{\Phi(\alpha, \beta, \delta, \lambda, \gamma, k, 2)} z\right|^{\eta} d \theta
$$

By Lemma 1, it suffices to show that

$$
1-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n-1} \prec 1-\frac{1-\gamma}{\Phi(\alpha, \beta, \delta, \lambda, \gamma, k, 2)} z .
$$

Setting

$$
\begin{equation*}
1-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n-1}=1-\frac{1-\gamma}{\Phi(\alpha, \beta, \delta, \lambda, \gamma, k, 2)} w(z) \tag{27}
\end{equation*}
$$

and using (12), we obtain

$$
\begin{aligned}
|w(z)| & =\left|\sum_{n=2}^{\infty} \frac{\Phi(\alpha, \beta, \delta, \lambda, \gamma, k, n)}{1-\gamma}\right| a_{n}\left|z^{n-1}\right| \\
& \leq|z| \sum_{n=2}^{\infty} \frac{\Phi(\alpha, \beta, \delta, \lambda, \gamma, k, n)}{1-\gamma}\left|a_{n}\right| \\
& \leq|z|
\end{aligned}
$$

where

$$
\Phi(\alpha, \beta, \delta, \lambda, \gamma, k, n)=[\{n(\alpha+1)-(\alpha+\beta)\}\{(n-1)(n \gamma \delta+\gamma-\delta)+1\}] \Psi_{n}
$$

and Ψ_{n} is given by (5). This completes the proof of Theorem 11 ,

Finally, we conclude this paper by remarking that by suitably specializing the values of the parameters $\lambda, k, \delta, \gamma$, and α in the various results mentioned in this paper, we would be led to some interesting results including those which were obtained in [7], [9], [10] and [12].

References

[1] Altintas, O., On a subclass of certain starlike functions with negative coefficients. Math. Japon. 36 (3) (1991), 1-7.
[2] Aqlan, E., Jahangiri, J.M., Kulkarni, S. R., Classes of k-uniformly convex and starlike functions. Tamkang J. Math. 35 (3) (2004), 1-7.
[3] Cho, N. E., Srivastava, H. M., Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modelling. 37 no. 1-2 (2003), 39-49.
[4] Flett, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl., 38 (1972), 746-765.
[5] Li, J.-L., Srivastava, H.M., Some inclusion properties of the class $\mathcal{P}_{\alpha}(\beta)$. Integral Transform. Spec. Funct., 8 no. 1-2 (1999), 57-64.
[6] Littlewood, J. E., On inequalities in theory of functions. Proc. London Math. Soc. 23 (1925), 481-519.
[7] Kamali, M., Kadioglu, E., On a new subclass of certain starlike functions with negative coefficients. Atti Sem. Mat. Fis. Univ. Modena. 48 (2000), 31-44.
[8] Sălăgean, G. Ş., Subclasses of univalent functions in Complex Analysis. Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
[9] Shanmugam, T.N., Sivasubramanian, S., Kamali, M., On the unified class of k-uniformly convex functions associated with Sălăgean derivative. J. Approx. Theory and Appl. 1(2) (2005), 141-155.
[10] Silverman, H., Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 51 (1975), 109-116.
[11] Silverman, H., A survey with open problems on univalent functions whose coefficients are negative. Rocky Mt. J. Math. 21 (1991), 1099-1125.
[12] Silverman, H., Integral means for univalent functions with negative coefficients. Houston J. Math., 23 (1997), 169-174.
[13] Srivastava, H.M., Owa, S., Chatterjea, S.K., A note on certain classes of starlike functions. Rend. Sem. Mat. Univ Padova. 77 (1987), 115-124.
[14] Srivastava, H.M., Saigo. M., Owa. S., A class of distortion theorems involving certain operator of fractional calculus. J. Math. Anal. Appl. 131 (1988), 412-420.
[15] Uralegaddi, B. A., Somanatha, C., Certain classes of univalent functions, in Current Topics in Analytic Function Theory. (Eds. H.M.Srivastava and S.Owa), pp. 371-374, Singapore: World Scientific, 1992.

Received by the editors June 30, 2008

[^0]: ${ }^{1}$ School of Science and Humanities, VIT University, Vellore-632 014, India, e-mail: gmsmoorthy@yahoo.com
 ${ }^{2}$ Department of Mathematics, University College of Engineering, Tindivanam, Anna University-Chennai, Saram-604 307, India, e-mail: sivasaisastha@rediffmail.com
 ${ }^{3} 10 / 11$, Ganpati Vihar, Opposite Sector 5, Udaipur 313002, Rajasthan, India, e-mail: rkraina_7@hotmail.com

