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A NOTE ON THE INTERSECTION OF A RADICAL CLASS
WITH THE SUM OF RADICAL CLASSES OF HEMIRINGS

Muhammad Zulfiqar1

Abstract. We extend the notion of intersection of a radical class with the sum of
radical classes of rings due to Y. Lee and R. E. Propes (see [3, 4]) to the intersec-
tion of a radical class with the sum of radical classes of hemirings. A few results
of (see [1, 3, 4]) can be concluded from this paper.
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1. Introduction

The notion of radical classes of hemirings was introduced by D. M. Olson and T. L.
Jenkins [5], as an extension of radical classes of rings (see [3]). The theory was further
enriched by many authors (see [5, 6]).

Y. Lee and R. E. Propes [3] introduced the concept of the sum of two radical classes
of rings. They have shown that the ’sum’ is not a radical class in general. In [6], M.
Zulfiqar generalized a few results of [3]. In the present paper, we extend the notion of
intersection of a radical class with the sum of radical classes of hemirings and gener-
alize a few results of (see [1, 3, 4]) in the framework of hemirings. By this extension
of radical classes of rings (see [1, 3, 4]), a few results of radical classes of rings can be
generalized. In the following we shall be working within the class of all hemirings.

A semiring (A, +, .) is called a hemiring if
(i) ’+’ is commutative
(ii) there exists an element 0 ε A such that 0 is the identity of (A, +) and the zero
element of (A, .).

i.e.0a = a0 = 0, ∀ a ε A

Let ρ1, ρ2 be radical classes of hemirings, then we define their sum

ρ1 + ρ2 = {Aεµ : ρ1(A) + ρ2(A) = A}.

Lower radical classes for hemiring can be constructed similarly to the construction
of lower radicals for rings (see [2]).
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Let A, B ε µ, and B ⊆ A, B is said to be an accessible sub-hemiring of A if there
exists a chain C0, C1, ... ,Cn such that

B = Cn ≤ Cn−1 ≤ Cn−2 ≤ ... ≤ C1 ≤ C0 = A.

Let D1(A) = set of all ideals of A, inductively defined

Dn+1(A) = {C ε A : C ≤ B for B εDn(A)}

Put D(A) =
⋃

n∈N

Dn(A), then D(A) is the collection of all accessible sub-hemirings

of A.
The lower radical for hemirings can be constructed along the ring theoretical lines

(see [2, 6]).
If A is a homomorphically closed class of hemirings, then its lower radical class

LA can be constructed on the ring theoretical lines. If

Y A = {Aεµ : every non-zero homomorphic image of A

has a non-zero accessible A− sub-hemiring}

then it can be established, in a manner similar to that of rings, that Y A = LA.

2. Results

Definition 1. [6] Let ρ1 and ρ2 be radical classes in µ. We define

ρ1 + ρ2 = {Aε µ : ρ1(A) + ρ2(A) = A}

We write ( ρ1 + ρ2)(A) = ρ1(A) + ρ2(A) for all A ε µ.

The following theorem can be obtained on the lines of direction in [3].

Theorem 2. ρ1 ∪ ρ2 ⊆ ρ1 + ρ2

As ρ1 ∪ ρ2 is a homomorphically closed class, therefore, we can consider its lower
radical class L(ρ1 ∪ ρ2). The following theorem was proved by Yu-Lee Lee and R.E.
Propes [3] and we generalize it in the framework of hemiring. Here we give a proof of
this theorem, which is entirely different from [3].

Theorem 3. ρ1 + ρ2 ⊆ L(ρ1 ∪ ρ2)

Proof. Let A ε ρ1 + ρ2. We claim that A ε L(ρ1 ∪ ρ2), on the contrary suppose that
A /∈ L(ρ1 ∪ ρ2). Observe that ρ1 ∪ ρ2 is homomorphically closed. Therefore L(ρ1 ∪
ρ2) exists and

L(ρ1 ∪ ρ2) = Y (ρ1 ∪ ρ2)

Let A /∈ Y(ρ1 ∪ ρ2). Since ρ1 ∪ ρ2 is homomorphically closed, L(ρ1 ∪ ρ2) = Y(ρ1 ∪
ρ2) and

Y (ρ1 ∪ ρ2) = {Aε µ : D(A/I) ∩ (ρ1 ∪ ρ2) 6= 0,∀(0 6= A/I) εHA}
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This implies that there exists I ≤ A such that I 6= A.

⇒ D(A/I) ∩ (ρ1 ∪ ρ2) = 0

⇒ D(A/I) ∩ ρ1 = 0 and D(A/I) ∩ ρ2 = 0

⇒ D1(A/I) ∩ ρ1 = 0, D1(A/I) ∩ ρ2 = 0 (∴ D1(A/I) ⊆ D(A/I))

⇒ ρ1(A/I) = 0, ρ2(A/I) = 0

Let ϕ(A) = A / I, ρ1(ϕ(A)) = 0, then we have

ϕ(ρ1(A) + ρ2(A)) ⊆ ρ1(ϕ(A)) + ρ2(ϕ(A)) (see [5, Lemma 5] )

ϕ(A) ⊆ ρ1(A/I) + ρ2(A/I) = 0(: .ρ1(A/I) = 0, ρ2(A/I) = 0)

ϕ(A) = 0

This implies that A / I = 0 and hence a contradiction. Consequently, we have A ε L(ρ1

∪ ρ2). Therefore
ρ1 + ρ2 ⊆ L(ρ1 ∪ ρ2).

2

Remark 4. Since L(ρ1 ∪ ρ2) is the smallest radical class containing both ρ1 and ρ2, it
follows that ρ1 + ρ2 is a radical class if and only if

ρ1 + ρ2 = L(ρ1 ∪ ρ2) (by Theorem 3)

Theorem 5. [6] The class ρ1 + ρ2 is homomorphically closed.

As ρ1 + ρ2 is a homomorphically closed class, we can define its lower radical class
L(ρ1 + ρ2).

Theorem 6. L(ρ1 + ρ2) = L(ρ1 ∪ ρ2).

Proof. Since L(ρ1 + ρ2) is the smallest radical class containing both ρ1 + ρ2. But
ρ1 + ρ2 ⊆ L(ρ1 ∪ ρ2) (by theorem 3) and hence we have

(1) L(ρ1 + ρ2) ⊆ L(ρ1 ∪ ρ2)

For reverse inclusion, observe that

(2)
ρ1 ∪ ρ2 ⊆ ρ1 + ρ2 (by Theorem 2)
⇒ L(ρ1 ∪ ρ2) ⊆ L(ρ1 + ρ2)

From equation (1) and (2), we get

L(ρ1 + ρ2) = L(ρ1 ∪ ρ2)
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Definition 7. [6] Let ρ1 + ρ2 be a radical class. Then

S(ρ1 + ρ2) = {A ε ω : (ρ1 + ρ2)(A) = 0}
We now investigate conditions under which ρ1 + ρ2 will be a radical class.

Theorem 8. [6] If ρ1 and ρ2 are radical classes and Sρ1 ∩ ρ2 = 0, then ρ1 + ρ2 is a
radical class.

The above result can be extended in the following form :

Theorem 9. If Sρi ∩
n∑

i=1

ρi = 0, then
n∑

i=1

ρi is a radical class.

Proof. Since

(3)
n∑

i=1

ρi ⊆ L(
n∑

i=1

ρi)

For reverse inclusion, we proceed as follows. Let A ε ω such that

A /∈
n∑

i=1

ρi ⇒
n∑

i=1

ρi(A) 6= A

⇒ A /∈ ρ1

⇒ 0 6= A/ρ1(A).

Now consider

D(A/ρ1(A)) ∩
n∑

i=1

ρi

From the proof of Theorem 8, it follows that

D(A/ρ1(A)) ∩
n∑

i=1

ρi = 0

Hence

A /∈ L(
n∑

i=1

ρi)

Thus A /∈
n∑

i=1

ρi implies that A /∈ L(
n∑

i=1

ρi)

Hence

(4) L(
n∑

i=1

ρi) ⊆
n∑

i=1

ρi

From equations (3) and (4), we conclude that

L(
n∑

i=1

ρi) =
n∑

i=1

ρi.
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Hence
n∑

i=1

ρi is a radical class. 2

The following theorem was proved by Yu-Lee Lee and R.E. Propes [4] and we
generalize it in the framework of hemiring. Here we give a proof of this theorem which
is entirely different from [4].

Theorem 10. Let ρ1 and ρ2 be radical classes in some universal class µ of hemirings
and define ρ(A) = ρ1(A) ∩ ρ1(A), and set

ρ = {Aε µ : ρ(A) = A}.
Then ρ = ρ1 ∩ ρ2 and ρ is a radical class of hemirings.

Proof. i) Let A ε ρ and let Ā ε HA. Then

Aε ρ1 ∩ ρ2

⇒ Aε ρ1 and Aε ρ2

Since ρ1 and ρ2 are radical classes, by [5], we have

Ā ε ρ1 and Ā ε ρ2

⇒ Ā ε ρ1 ∩ ρ2 = ρ

⇒ HA ⊆ ρ

Thus ρ is homomorphically closed.
ii) Let {Ia}α εΛ be a family of ρ-semi-ideals of the hemiring A.

Ia ε ρ = ρ1 ∩ ρ2 ∀α ε Λ

⇒ Ia ε ρ1 and Ia ε ρ2 ∀α ε Λ

Since ρ1 and ρ2 are radical classes, then
∑

α ε Λ

Ia ε ρ1 and
∑

α εΛ

Ia ε ρ2

⇒
∑

α ε Λ

Ia ε ρ1 ∩ ρ2

⇒
∑

α ε Λ

Ia ε ρ

Thus maximal ρ-semi-ideal, namely ρ(A) exists.
iii) Let A be a hemiring and I ≤ A such that A / I ε ρ, I ε ρ. Then we have

A/I ε ρ1 ∩ ρ2, I ε ρ1 ∩ ρ2 ⇒ A/I ε ρ1, I ε ρ1 and A/I ε ρ2, I ε ρ2

⇒ Aε ρ1 and A ερ2

⇒ Aε ρ1 ∩ ρ2 = ρ

⇒ Aε ρ.
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By [5] we can conclude that ρ is a radical class.
Next we shall show that

ρ(A) = ρ1(A) ∩ ρ2(A)

Let
ρ = {Aεµ : ρ(A) = A}.

Then

A ερ ⇔ ρ1(A) ∩ ρ2(A) = ρ

⇔ ρ1(A) = A and ρ2(A) = A

⇔ Aε ρ1 and Aε ρ2

⇔ Aε ρ1 ∩ ρ2

⇔ Aε ρ.

Hence
ρ = {Aε µ : ρ(A) = A}

Thus
ρ(A) = ρ1(A) ∩ ρ2(A)

Hence ρ = ρ1 ∩ ρ2 , clearly ρ1 ∩ ρ2 is a radical class and this completes the proof. 2

The following theorem was proved by David M. Burton [1] and we generalize it in the
framework of hemiring.

Theorem 11. Let ρ1, ρ2 and ρ3 be radical classes of hemiring, then

ρ1 ∩ (ρ2 + ρ3) = ρ1 ∩ ρ2 + ρ1 ∩ ρ3

Proof. Let

Aερ1 ∩ (ρ2 + ρ3) ⇒ Aερ1 and Aερ2 + ρ3

⇒ ρ1(A) = A and ρ2(A) + ρ3(A) = A

⇒ ρ2(A) ⊆ ρ1(A).

Thus we have

ρ1(A) ∩ (ρ2(A) + ρ3(A)) = ρ1(A) ∩ ρ2(A) + ρ1(A) ∩ ρ3(A)
= A ∩ ρ2(A) + A ∩ ρ3(A)(by ρ1(A) = A)
= ρ2(A) + ρ3(A)
= A.

Now

ρ1(A) ∩ ρ2(A) + ρ1(A) ∩ ρ3(A) = A

⇒ (ρ1 ∩ ρ2)(A) + (ρ1 ∩ ρ3)(A) = A(by Theorem 10)
⇒ (ρ1 ∩ ρ2 + ρ1 ∩ ρ3)(A) = A

⇒ Aε(ρ1 ∩ ρ2 + ρ1 ∩ ρ3).
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Hence

(5) ρ1 ∩ (ρ2 + ρ3) ⊆ ρ1 ∩ ρ2 + ρ1 ∩ ρ3

Conversely, assume that

Aε(ρ1 ∩ ρ2 + ρ1 ∩ ρ3)
⇒ (ρ1 ∩ ρ2 + ρ1 ∩ ρ3)(A) = A

⇒ (ρ1 ∩ ρ2)(A) + (ρ1 ∩ ρ3)(A) = A

⇒ ρ1(A) ∩ ρ2(A) + ρ1(A) ∩ ρ3(A) = A(6)
⇒ ρ1(A) ∩ [ρ1(A) ∩ ρ2(A) + ρ1(A) ∩ ρ3(A)] = ρ1(A) ∩A = ρ1(A)

Since
ρ1(A) ∩ ρ2(A) ⊆ ρ1(A)

So we have

ρ1(A) ∩ ρ1(A) ∩ ρ2(A) + ρ1(A) ∩ ρ1(A) ∩ ρ3(A) = ρ1(A)
⇒ ρ1(A) ∩ ρ2(A) + ρ1(A) ∩ ρ3(A) = ρ1(A)
⇒ (ρ1 ∩ ρ2)A + (ρ1 ∩ ρ3)A = ρ1(A)
⇒ A = ρ1(A) (Using equation (6))(7)
⇒ Aερ1.

By equation (6) and (7), we have

ρ1(A) ∩ ρ2(A) + ρ1(A) ∩ ρ3(A) = A

⇒ A ∩ ρ2(A) + A ∩ ρ3(A) = A

⇒ ρ2(A) + ρ3(A) = A

⇒ (ρ2 + ρ3)(A) = A

⇒ Aερ2 + ρ3.

Hence
Aε ρ1 ∩ (ρ2 + ρ3)

or

(8) ρ1 ∩ ρ2 + ρ1 ∩ ρ3 ⊆ ρ1 ∩ (ρ2 + ρ3)

By equation (5) and (8), we have

ρ1 ∩ (ρ2 + ρ3) = ρ1 ∩ ρ2 + ρ1 ∩ ρ3

This completes the proof. 2
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