NOVI SAD J. MATH. Vol. 39, No. 1, 2009, 57-64

A NOTE ON THE INTERSECTION OF A RADICAL CLASS WITH THE SUM OF RADICAL CLASSES OF HEMIRINGS

Muhammad Zulfiqar¹

Abstract. We extend the notion of intersection of a radical class with the sum of radical classes of rings due to Y. Lee and R. E. Propes (see [3,4]) to the intersection of a radical class with the sum of radical classes of hemirings. A few results of (see [1,3,4]) can be concluded from this paper.

AMS Mathematics Subject Classification (2000): 16Y60, 16W50

Key words and phrases: hemiring, sum of radical classes, universal class, accessible sub-hemiring, Yu Lee construction, intersection of radical classes, lower radical, semisimple classes

1. Introduction

The notion of radical classes of hemirings was introduced by D. M. Olson and T. L. Jenkins [5], as an extension of radical classes of rings (see [3]). The theory was further enriched by many authors (see [5,6]).

Y. Lee and R. E. Propes [3] introduced the concept of the sum of two radical classes of rings. They have shown that the 'sum' is not a radical class in general. In [6], M. Zulfiqar generalized a few results of [3]. In the present paper, we extend the notion of intersection of a radical class with the sum of radical classes of hemirings and generalize a few results of (see [1,3,4]) in the framework of hemirings. By this extension of radical classes of rings (see [1,3,4]), a few results of radical classes of rings can be generalized. In the following we shall be working within the class of all hemirings.

A semiring (A, +, .) is called a hemiring if (i) '+' is commutative

(ii) there exists an element 0 ε A such that 0 is the identity of (A, +) and the zero element of (A, .).

$$i.e.0a = a0 = 0, \forall a \in A$$

Let ρ_1 , ρ_2 be radical classes of hemirings, then we define their sum

$$\rho_1 + \rho_2 = \{A \in \mu : \rho_1(A) + \rho_2(A) = A\}.$$

Lower radical classes for hemiring can be constructed similarly to the construction of lower radicals for rings (see [2]).

¹Current address: Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan Permanent address: Department of Mathematics, Govt. College University Lahore, Pakistan e-mail: mzulfiqarshafi@hotmail.com

Let A, B $\varepsilon \mu$, and B \subseteq A, B is said to be an accessible sub-hemiring of A if there exists a chain C_0, C_1, \dots, C_n such that

 $B = C_n \le C_{n-1} \le C_{n-2} \le \dots \le C_1 \le C_0 = A.$

Let $D_1(A) =$ set of all ideals of A, inductively defined

$$D_{n+1}(A) = \{ C \in A : C \leq B \text{ for } B \in D_n(A) \}$$

Put $D(A) = \bigcup_{n \in N} D_n(A)$, then D(A) is the collection of all accessible sub-hemirings of A.

The lower radical for hemirings can be constructed along the ring theoretical lines (see [2, 6]).

If A is a homomorphically closed class of hemirings, then its lower radical class LA can be constructed on the ring theoretical lines. If

$$YA = \{A\varepsilon\mu : \text{every non-zero homomorphic image of } A$$

has a non-zero accessible A – sub-hemiring}

then it can be established, in a manner similar to that of rings, that YA = LA.

2. Results

Definition 1. [6] Let ρ_1 and ρ_2 be radical classes in μ . We define

$$\rho_1 + \rho_2 = \{A \varepsilon \mu : \rho_1(A) + \rho_2(A) = A\}$$

We write $(\rho_1 + \rho_2)(A) = \rho_1(A) + \rho_2(A)$ for all $A \in \mu$.

The following theorem can be obtained on the lines of direction in [3].

Theorem 2. $\rho_1 \cup \rho_2 \subseteq \rho_1 + \rho_2$

As $\rho_1 \cup \rho_2$ is a homomorphically closed class, therefore, we can consider its lower radical class $L(\rho_1 \cup \rho_2)$. The following theorem was proved by Yu-Lee Lee and R.E. Propes [3] and we generalize it in the framework of hemiring. Here we give a proof of this theorem, which is entirely different from [3].

Theorem 3. $\rho_1 + \rho_2 \subseteq L(\rho_1 \cup \rho_2)$

Proof. Let A $\varepsilon \rho_1 + \rho_2$. We claim that A $\varepsilon L(\rho_1 \cup \rho_2)$, on the contrary suppose that A $\notin L(\rho_1 \cup \rho_2)$. Observe that $\rho_1 \cup \rho_2$ is homomorphically closed. Therefore $L(\rho_1 \cup \rho_2)$ exists and

$$L(\rho_1 \cup \rho_2) = Y(\rho_1 \cup \rho_2)$$

Let $A \notin Y(\rho_1 \cup \rho_2)$. Since $\rho_1 \cup \rho_2$ is homomorphically closed, $L(\rho_1 \cup \rho_2) = Y(\rho_1 \cup \rho_2)$ and

$$Y(\rho_1 \cup \rho_2) = \{A \varepsilon \mu : D(A/I) \cap (\rho_1 \cup \rho_2) \neq 0, \forall (0 \neq A/I) \varepsilon HA\}$$

A note on the intersection of a radical class with...

This implies that there exists $I \leq A$ such that $I \neq A$.

$$\Rightarrow D(A/I) \cap (\rho_1 \cup \rho_2) = 0$$

$$\Rightarrow D(A/I) \cap \rho_1 = 0 \text{ and } D(A/I) \cap \rho_2 = 0$$

$$\Rightarrow D_1(A/I) \cap \rho_1 = 0, D_1(A/I) \cap \rho_2 = 0 (\therefore D_1(A/I) \subseteq D(A/I))$$

$$\Rightarrow \rho_1(A/I) = 0, \rho_2(A/I) = 0$$

Let $\varphi(A) = A / I$, $\rho_1(\varphi(A)) = 0$, then we have

$$\varphi(\rho_1(A) + \rho_2(A)) \subseteq \rho_1(\varphi(A)) + \rho_2(\varphi(A)) \text{ (see [5, Lemma 5])}$$
$$\varphi(A) \subseteq \rho_1(A/I) + \rho_2(A/I) = 0(: .\rho_1(A/I) = 0, \rho_2(A/I) = 0)$$
$$\varphi(A) = 0$$

This implies that A / I = 0 and hence a contradiction. Consequently, we have A ε L($\rho_1 \cup \rho_2$). Therefore

$$\rho_1 + \rho_2 \subseteq L(\rho_1 \cup \rho_2).$$

Remark 4. Since $L(\rho_1 \cup \rho_2)$ is the smallest radical class containing both ρ_1 and ρ_2 , it follows that $\rho_1 + \rho_2$ is a radical class if and only if

$$\rho_1 + \rho_2 = L(\rho_1 \cup \rho_2)$$
 (by Theorem 3)

Theorem 5. [6] The class $\rho_1 + \rho_2$ is homomorphically closed.

As $\rho_1 + \rho_2$ is a homomorphically closed class, we can define its lower radical class $L(\rho_1 + \rho_2)$.

Theorem 6. $L(\rho_1 + \rho_2) = L(\rho_1 \cup \rho_2).$

Proof. Since $L(\rho_1 + \rho_2)$ is the smallest radical class containing both $\rho_1 + \rho_2$. But $\rho_1 + \rho_2 \subseteq L(\rho_1 \cup \rho_2)$ (by theorem 3) and hence we have

(1)
$$L(\rho_1 + \rho_2) \subseteq L(\rho_1 \cup \rho_2)$$

For reverse inclusion, observe that

(2)
$$\rho_1 \cup \rho_2 \subseteq \rho_1 + \rho_2 \quad \text{(by Theorem 2)} \\ \Rightarrow L(\rho_1 \cup \rho_2) \subseteq L(\rho_1 + \rho_2)$$

From equation (1) and (2), we get

$$L(\rho_1 + \rho_2) = L(\rho_1 \cup \rho_2)$$

Definition 7. [6] Let $\rho_1 + \rho_2$ be a radical class. Then

$$S(\rho_1 + \rho_2) = \{A \in \omega : (\rho_1 + \rho_2)(A) = 0\}$$

We now investigate conditions under which $\rho_1 + \rho_2$ will be a radical class.

Theorem 8. [6] If ρ_1 and ρ_2 are radical classes and $S\rho_1 \cap \rho_2 = 0$, then $\rho_1 + \rho_2$ is a radical class.

The above result can be extended in the following form :

Theorem 9. If
$$S\rho_i \cap \sum_{i=1}^n \rho_i = 0$$
, then $\sum_{i=1}^n \rho_i$ is a radical class.

Proof. Since

$$\sum_{i=1}^{n} \rho_i \subseteq L(\sum_{i=1}^{n} \rho_i)$$

For reverse inclusion, we proceed as follows. Let A $\varepsilon \omega$ such that

$$A \notin \sum_{i=1}^{n} \rho_i \quad \Rightarrow \quad \sum_{i=1}^{n} \rho_i(A) \neq A$$
$$\Rightarrow \quad A \notin \rho_1$$
$$\Rightarrow \quad 0 \neq A/\rho_1(A).$$

Now consider

$$D(A/\rho_1(A)) \cap \sum_{i=1}^n \rho_i$$

From the proof of Theorem 8, it follows that

$$D(A/\rho_1(A)) \cap \sum_{i=1}^n \rho_i = 0$$

Hence

$$A \notin L(\sum_{i=1}^{n} \rho_i)$$

Thus $A \notin \sum_{i=1}^{n} \rho_i$ implies that $A \notin L(\sum_{i=1}^{n} \rho_i)$ Hence

(4)
$$L(\sum_{i=1}^{n} \rho_i) \subseteq \sum_{i=1}^{n} \rho_i$$

From equations (3) and (4), we conclude that

$$L(\sum_{i=1}^{n} \rho_i) = \sum_{i=1}^{n} \rho_i.$$

(3)

A note on the intersection of a radical class with...

Hence
$$\sum_{i=1}^{n} \rho_i$$
 is a radical class.

The following theorem was proved by Yu-Lee Lee and R.E. Propes [4] and we generalize it in the framework of hemiring. Here we give a proof of this theorem which is entirely different from [4].

Theorem 10. Let ρ_1 and ρ_2 be radical classes in some universal class μ of hemirings and define $\rho(A) = \rho_1(A) \cap \rho_1(A)$, and set

$$\rho = \{A \varepsilon \mu : \rho(A) = A\}.$$

Then $\rho = \rho_1 \cap \rho_2$ and ρ is a radical class of hemirings.

Proof. i) Let A $\varepsilon \rho$ and let $\overline{A} \varepsilon$ HA. Then

$$A \varepsilon \rho_1 \cap \rho_2$$

$$\Rightarrow A \varepsilon \rho_1 \text{ and } A \varepsilon \rho_2$$

Since ρ_1 and ρ_2 are radical classes, by [5], we have

$$\overline{A} \varepsilon \rho_1$$
 and $\overline{A} \varepsilon \rho_2$
 $\Rightarrow \overline{A} \varepsilon \rho_1 \cap \rho_2 = \rho$
 $\Rightarrow HA \subseteq \rho$

Thus ρ is homomorphically closed.

ii) Let $\{I_a\}_{\alpha \in \Lambda}$ be a family of ρ -semi-ideals of the hemiring A.

$$I_a \varepsilon \rho = \rho_1 \cap \rho_2 \ \forall \alpha \varepsilon \Lambda$$
$$\Rightarrow I_a \varepsilon \rho_1 \text{ and } I_a \varepsilon \rho_2 \ \forall \alpha \varepsilon \Lambda$$

Since ρ_1 and ρ_2 are radical classes, then

$$\sum_{\alpha \in \Lambda} I_a \varepsilon \rho_1 \text{ and } \sum_{\alpha \in \Lambda} I_a \varepsilon \rho_2$$
$$\Rightarrow \sum_{\alpha \in \Lambda} I_a \varepsilon \rho_1 \cap \rho_2$$
$$\Rightarrow \sum_{\alpha \in \Lambda} I_a \varepsilon \rho$$

Thus maximal ρ -semi-ideal, namely $\rho(A)$ exists. iii) Let A be a hemiring and I \leq A such that A / I $\varepsilon \rho$, I $\varepsilon \rho$. Then we have

$$\begin{array}{rcl} A/I \mathop{\varepsilon} \rho_1 \cap \rho_2, I \mathop{\varepsilon} \rho_1 \cap \rho_2 & \Rightarrow & A/I \mathop{\varepsilon} \rho_1, I \mathop{\varepsilon} \rho_1 \text{ and } A/I \mathop{\varepsilon} \rho_2, I \mathop{\varepsilon} \rho_2 \\ & \Rightarrow & A \mathop{\varepsilon} \rho_1 \text{ and } A \mathop{\varepsilon} \rho_2 \\ & \Rightarrow & A \mathop{\varepsilon} \rho_1 \cap \rho_2 = \rho \\ & \Rightarrow & A \mathop{\varepsilon} \rho. \end{array}$$

61

By [5] we can conclude that ρ is a radical class. Next we shall show that

$$\rho(A) = \rho_1(A) \cap \rho_2(A)$$

Let

$$\rho = \{A \varepsilon \mu : \rho(A) = A\}.$$

Then

$$\begin{aligned} A \varepsilon \rho & \Leftrightarrow & \rho_1(A) \cap \rho_2(A) = \rho \\ & \Leftrightarrow & \rho_1(A) = A \text{ and } \rho_2(A) = A \\ & \Leftrightarrow & A \varepsilon \rho_1 \text{ and } A \varepsilon \rho_2 \\ & \Leftrightarrow & A \varepsilon \rho_1 \cap \rho_2 \\ & \Leftrightarrow & A \varepsilon \rho. \end{aligned}$$

Hence

$$\rho = \{A \varepsilon \mu : \rho(A) = A\}$$

Thus

$$\rho(A) = \rho_1(A) \cap \rho_2(A)$$

Hence $\rho = \rho_1 \cap \rho_2$, clearly $\rho_1 \cap \rho_2$ is a radical class and this completes the proof. \Box

The following theorem was proved by David M. Burton [1] and we generalize it in the framework of hemiring.

Theorem 11. Let ρ_1 , ρ_2 and ρ_3 be radical classes of hemiring, then

$$\rho_1 \cap (\rho_2 + \rho_3) = \rho_1 \cap \rho_2 + \rho_1 \cap \rho_3$$

Proof. Let

$$\begin{aligned} A\varepsilon\rho_1 \cap (\rho_2 + \rho_3) &\Rightarrow & A\varepsilon\rho_1 \text{ and } A\varepsilon\rho_2 + \rho_3 \\ &\Rightarrow & \rho_1(A) = A \text{ and } \rho_2(A) + \rho_3(A) = A \\ &\Rightarrow & \rho_2(A) \subseteq \rho_1(A). \end{aligned}$$

Thus we have

$$\rho_1(A) \cap (\rho_2(A) + \rho_3(A)) = \rho_1(A) \cap \rho_2(A) + \rho_1(A) \cap \rho_3(A)
= A \cap \rho_2(A) + A \cap \rho_3(A) (by \rho_1(A) = A)
= \rho_2(A) + \rho_3(A)
= A.$$

Now

$$\rho_1(A) \cap \rho_2(A) + \rho_1(A) \cap \rho_3(A) = A$$

$$\Rightarrow \quad (\rho_1 \cap \rho_2)(A) + (\rho_1 \cap \rho_3)(A) = A \text{(by Theorem 10)}$$

$$\Rightarrow \quad (\rho_1 \cap \rho_2 + \rho_1 \cap \rho_3)(A) = A$$

$$\Rightarrow \quad A\varepsilon(\rho_1 \cap \rho_2 + \rho_1 \cap \rho_3).$$

62

A note on the intersection of a radical class with...

Hence

(5)
$$\rho_1 \cap (\rho_2 + \rho_3) \subseteq \rho_1 \cap \rho_2 + \rho_1 \cap \rho_3$$

Conversely, assume that

$$A\varepsilon(\rho_{1} \cap \rho_{2} + \rho_{1} \cap \rho_{3}) \Rightarrow (\rho_{1} \cap \rho_{2} + \rho_{1} \cap \rho_{3})(A) = A \Rightarrow (\rho_{1} \cap \rho_{2})(A) + (\rho_{1} \cap \rho_{3})(A) = A (6) \Rightarrow \rho_{1}(A) \cap \rho_{2}(A) + \rho_{1}(A) \cap \rho_{3}(A) = A \Rightarrow \rho_{1}(A) \cap [\rho_{1}(A) \cap \rho_{2}(A) + \rho_{1}(A) \cap \rho_{3}(A)] = \rho_{1}(A) \cap A = \rho_{1}(A)$$

Since

$$\rho_1(A) \cap \rho_2(A) \subseteq \rho_1(A)$$

So we have

(7)

$$\begin{aligned}
\rho_1(A) \cap \rho_1(A) \cap \rho_2(A) + \rho_1(A) \cap \rho_1(A) \cap \rho_3(A) &= \rho_1(A) \\
\Rightarrow & \rho_1(A) \cap \rho_2(A) + \rho_1(A) \cap \rho_3(A) &= \rho_1(A) \\
\Rightarrow & (\rho_1 \cap \rho_2)A + (\rho_1 \cap \rho_3)A &= \rho_1(A) \\
\Rightarrow & A &= \rho_1(A) \text{ (Using equation (6))} \\
\Rightarrow & A &\varepsilon \rho_1.
\end{aligned}$$

By equation (6) and (7), we have

$$\rho_1(A) \cap \rho_2(A) + \rho_1(A) \cap \rho_3(A) = A$$

$$\Rightarrow A \cap \rho_2(A) + A \cap \rho_3(A) = A$$

$$\Rightarrow \rho_2(A) + \rho_3(A) = A$$

$$\Rightarrow (\rho_2 + \rho_3)(A) = A$$

$$\Rightarrow A \varepsilon \rho_2 + \rho_3.$$

Hence

 $A\,\varepsilon\,\rho_1\cap(\rho_2+\rho_3)$

or

(8)
$$\rho_1 \cap \rho_2 + \rho_1 \cap \rho_3 \subseteq \rho_1 \cap (\rho_2 + \rho_3)$$

By equation (5) and (8), we have

$$\rho_1 \cap (\rho_2 + \rho_3) = \rho_1 \cap \rho_2 + \rho_1 \cap \rho_3$$

This completes the proof.

Acknowledgement

The author thank the referee for his useful comments and suggestions for the improvement of the paper.

References

- [1] Burton, D. M., A First Course in Rings and Ideals. University of New Hompshire, 1970.
- [2] Lee, Y., On the construction of lower radical properties. Pacific J. Math. 28 (1969), 393-395.
- [3] Lee, Y., Propes, R. E., The sum of radical classes, Kyungpook Math. J. 13 (1973), 81-86.
- [4] Lee, Y., Propes, R. E., On intersections and union of radical classes. J. Austral. Math. Soc. 13 (1972), 354-356.
- [5] Olson, D. M., Jenksins, T. L., Radical theory for hemirings, Journal of Natural Sci. and Math. 23 (1983), 23-32.
- [6] Zulfiqar, M., The sum of two radical classes of hemirings, Kyungpook Math. J. 43 (2003), 371-374.

Received by the editors July 12, 2008