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UNIFORM SPACES
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Abstract. In this paper, we consider the almost uniform convergence
and quasi-uniform and almost quasi-uniform ones for nets of functions
with values in generalized uniform spaces. For such nets, the continuity
and quasi-continuity of pointwise limit are studied.
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1. Introduction

In [4] the quasi-uniform convergence in the sense of P.S. Alexandrov [1] was
defined for nets of functions with values in uniform spaces and some character-
izations of the continuity of pointwise limit for such nets were given.

The purpose of the present paper is to extend these results and the quasi-
continuity property in the sense of Kempisty [8] to the nets of functions with
values in generalized uniform spaces.

2. Preliminaries

Let X be a nonempty set and α, β coverings of X. Following J. W. Tuckey
[15] and K. Morita [10], α is called a refinement of the covering β (denoted
α ≺ β) iff for each A ∈ α there exists B ∈ β such that A ⊂ B. By St(x, α) is
denoted the union

⋃
{A ∈ α : x ∈ A} and it is called the star of x with respect

to α. For M ⊂ X the star of M with respect to α is the set

St(M,α) = St1(M, α) =
⋃
{A ∈ α : A ∩M 6= ∅} =

⋃

x∈M

St(x, α).

By recurrence we define Stn+1(M,α) = St1(Stn(M, α), α) for n = 1, 2, ....
A family Σ of coverings of X is called a generalized uniform structure iff for

any α, β ∈ Σ there exists γ ∈ Σ such that γ ≺ α, γ ≺ β.
Especially, Σ is called regular if:
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(a) For any x ∈ X and for any finite family {Ai}i=1,n with Ai ∈ αi ∈ Σ, and

x ∈
n⋂

i=1

Ai, there exists β ∈ Σ such that St(x, β) ⊂
n⋂

i=1

Ai;

(b) For any α ∈ Σ there exists β ∈ Σ with the property that for any B ∈ β
there exist γB ∈ Σ and AB ∈ α such that St(B, γB) ⊂ AB .

If Σ is a generalized uniform structure for X, then (X, Σ) is called a gener-
alized uniform space.

For a generalized uniform space (X, Σ) we will use the topology τΣ [14]
determined by the subbase {A ⊂ X : A ∈ α, α ∈ Σ}.

Let X and Y be topological spaces. Following S. Marcus [9] a function
f : X → Y is said to be quasi-continuous at x ∈ X if for each neighbourhood
U of x and each neighbourhood V of f(x) there exists a nonempty open set,
G ⊂ U such that f(G) ⊂ V . The function f is said to be quasi-continuous on
X if it is quasi-continuous at each x ∈ X.

Lemma 2.1. Fix a natural number, n ≥ 1. Then a function f defined from a
topological space (X, τ) into a regular generalized uniform space (Y, Σ) is quasi-
continuous if and only if for any (x0, α) ∈ X ×Σ and for each neighbourhood V
of x0, there exists a nonempty open set G ⊂ V such that f(G) ⊂ Stn(f(x0), α).

Proof. Suppose that f is quasi-continuous on X. Let (x0, α) ∈ X × Σ and
V an arbitrary neighbourhood of x0. Then, since f(x0) ∈ Stn(f(x0), α) ∈ τΣ,
there exists a nonempty open set G ⊂ V such that f(G) ⊂ Stn(f(x0), α).

Conversely, suppose that for any (x0, α) ∈ X × Σ, and for every neigh-
bourhood V of x0 there exists G ⊂ V such that f(G) ⊂ Stn(f(x0), α). Let
x0 ∈ X and U ∈ τΣ with f(x0) ∈ U . Then there exists β ∈ Σ such that
f(x0) ∈ Stn(f(x0), β) ⊂ U (by Corollary 1.4 [5]). If V is an arbitrary neigh-
bourhood of x0, then there exists a nonempty open set G ⊂ V such that
f(x) ∈ Stn(f(x0), β) ⊂ U for every x ∈ G, that is f is quasi-continuous at
x0, whence f is quasi-continuous on X. 2

Remark 2.1. Analogously, it can be proved that if n ∈ N, n ≥ 1, then a
function f : X → Y is continuous on X iff for any x0 ∈ X and α ∈ Σ there
exists a neighbourhood V of x0 such that f(V ) ⊂ Stn(f(x0), α).

Let (I,≥), (J,≥′) be two directed sets. Following J.L. Kelley [7], a function
h : J → I is said to be a ”K-application” iff for each i ∈ I there exists j ∈ J
such that for every j′ ∈ J , j′ ≥′ j it follows h(j′) ≥ i.

3. Almost uniform convergence

Let (X, τ) be a topological space, (Y, Σ) a generalized uniform space, and
(I,≥) a directed set.
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Definition 3.1. [5] A net (fi)i∈I of functions defined on X into Y converges
almost uniformly to a function f : X → Y if for each x0 ∈ X and α ∈ Σ there
exist i0 ∈ I and a neighbourhood V of x0 such that

(1) {{f(x), fi(x)} : x ∈ V, i ∈ I, i ≥ i0} ≺ α.

This definition is equivalent to the following one:

Definition 3.2. A net (fi)i∈I , fi : X → Y , converges almost uniformly to
f : X → Y if for each x0 ∈ X and α ∈ Σ there exist i0 ∈ I and a neighbourhood
V of x0 such that

(2) fi(x) ∈ St(f(x), α), for every x ∈ V and i ∈ I, i ≥ i0.

Indeed, if relation (1) holds, then for i ∈ I, i ≥ i0 and x ∈ V it results that
there exists A ∈ α such that {f(x), fi(x)} ⊂ A, that is fi(x) ∈ St(f(x), α).

Conversely, if (2) holds, then for i ∈ I, i ≥ i0 and x ∈ V , there exists A ∈ α
such that f(x) ∈ A and fi(x) ∈ A, that is {f(x), fi(x)} ⊂ A. Therefore (1)
holds.

It is known that the limit of an almost uniform convergent net of continuous
functions is continuous too.

Now, we give a similar result for the preservation of the quasi-continuity
property, as follows:

Theorem 3.1. Let (Y, Σ) be a regular generalized uniform space. If a net (fi)i∈I

of quasi-continuous functions defined from X into Y converges almost uniformly
to a function f : X → Y , then f is quasi-continuous.

Proof. Suppose that (fi)i∈I converges almost uniformly to f : X → Y and
that fi is quasi-continuous on X for each i ∈ I and let (x0, α) ∈ X × Σ. Then
there exist i0 ∈ I and V1 a neighbourhood of x0 such that

(3) fi(x) ∈ St(f(x), α), for i ∈ I, i ≥ i0 and x ∈ V1.

Let i ∈ I, i ≥ i0, fixed and V an arbitrary neighbourhood of x0. Since fi is
quasi-continuous there exists a nonempty open set G ⊂ V ′ = V1 ∩ V such that

(4) fi(x) ∈ St(fi(x0), α), for x ∈ G.

Hence, using successively relations (3), (4), (3), we obtain:

f(x) ∈ St(fi(x), α) ⊂ St2(fi(x0), α) ⊂ St3(f(x0), α)

for every x ∈ G. Therefore, by Lemma 2.1, the quasi-continuity of f results. 2

In general, the converse of this theorem is not true. Thus, it is known
that there exist examples of sequences of continuous real functions defined on
a compact set that converge pointwise to continuous functions but they do
not converge uniformly [6]. Taking also into account that the almost uniform
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convergence is equivalent to the uniform one on compact spaces [5] and that the
continuity of functions implies the quasi-continuity, the statement is justified.

In the next theorem we shall show how the almost uniform convergence char-
acterizes the quasi-continuity of pointwise limit under some conditions which do
not suppose by all means the quasi-continuity of net’s terms.

Theorem 3.2. If a net (fi)i∈I of functions defined on X into a regular general-
ized uniform space (Y, Σ) converges almost uniformly to a function f : X → Y ,
then f is quasi-continuous on X if and only if for any (x0, α, i) ∈ X × Σ × I
there exists i1 ∈ I, i1 ≥ i such that, for each neighbourhood V of x0, there exists
a nonempty open set G ⊂ V with the property

(5) fi1(x) ∈ St(fi1(x0), α) , for every x ∈ G.

Proof. Suppose that (fi)i∈I converges almost uniformly on X to a quasi-
continuous function f : X → Y . Let (x0, α, i) ∈ X ×Σ× I. Then, by Corollary
1.2 [5] there exist β0 ∈ Σ and A0 ∈ α such that St2(f(x0), β0) ⊂ A0.

From the almost uniform convergence of the net (fi)i∈I to f , it results that
there exist i0 ∈ I and a neighbourhood V1 of x0 such that

(6) fı̄(x) ∈ St(f(x), β0), for every x ∈ V1 and ı̄ ∈ I, ı̄ ≥ i0.

Let V be an arbitrary neighbourhood of x0. Then, since f is quasi-continuous,
there exists a nonempty open set G ⊂ V ∩ V1 such that

(7) f(x) ∈ St(f(x0), β0) , for every x ∈ G.

Now, let i1 ∈ I, i1 ≥ i, i1 ≥ i0. Then, for every x ∈ G, we have:

(8) fi1(x) ∈ St(f(x), β0) ⊂ St2(f(x0), β0) ⊂ A0

and

(9) fi1(x0) ∈ St(f(x0), β0) ⊂ St2(f(x0), β0) ⊂ A0.

From (8) and (9) it follows

(10) fi1(x) ∈ St(fi1(x0), α) , for every x ∈ G ⊂ V

that is relation (5) holds.
Conversely, suppose that the net (fi)i∈I converges almost uniformly to f

and that relation (5) holds. Let (x0, α) ∈ X × Σ. From the almost uniform
convergence, there exist i0 ∈ I and V1 a neighbourhood of x0 such that

(11) fi(x) ∈ St(f(x), α) , for every i ∈ I, i ≥ i0 and x ∈ V1.

Let i ∈ I, i ≥ i0. Then, by supposition, there exists i1 ≥ i such that for every
neighbourhood V of x0 there exists a nonempty open set G ⊂ V ∩ V1 with the
property that relation (5) holds.
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By using successively relations (11), (5), (11), we get

f(x) ∈ St(fi1(x), α) ⊂ St2(fi1(x0), α) ⊂ St3(f(x0), α)

for every x ∈ G. Thus, by Lemma 2.1, the quasi-continuity of f at x0, is proved.
2

A similar characterization of the continuity, expressed as in the following
theorem, holds.

Theorem 3.3. The pointwise limit f : X → Y of an almost uniform convergent
net of functions (fi)i∈I defined from X to a regular generalized uniform space
(Y, Σ) is continuous on X if and only if for any (x0, α, i) ∈ X × Σ × I there
exist i1 ∈ I, i1 ≥ i and a neighbourhood V of x0 with the property

(12) fi1(V ) ⊂ St(fi1(x0), α).

Proof. The technique of proof is like the previous one. 2

The condition of theorem does not imply the continuity of net’s terms, as
can be seen from the following example:

Example 3.1. Let (gn)n∈N be a sequence of real continuous functions defined
on the interval [0, 1] ⊂ R that converges uniformly on [0, 1] to a continuous
function g : [0, 1] → R, and let the sequence (fn)n≥1 of real functions be defined
on [0, 1] as

fn(x) =

{
gn(x) +

1
n

, x ∈ Q ∩ [0, 1]

gn(x) , x ∈ (R \Q) ∩ [0, 1].

The sequence (fn)n≥1 converges almost uniformly to the continuous function
f : [0, 1] → R, f(x) = g(x), but fn is not continuous at x ∈ [0, 1] for every
n ≥ 1.

4. Quasi-uniform and almost quasi-uniform
convergence

In this section some characterization theorems of the continuity and quasi-
continuity of pointwise limit of nets of functions with values in generalized uni-
form spaces are given.

For such characterizations an extension of the quasi-uniform convergence [4]
is given and a new type of convergence is introduced.

Let (X, τ), (Y, Σ) and (I,≥) be as in the previous section.

Definition 4.1. A net (fi)i∈I , fi : X → Y is called quasi-uniform convergent
to a function f : X → Y if it converges pointwise to f on X and for each α ∈ Σ
there exist a directed set (J,≥′), a ”K-application” h : J → I and a family
{Gj : j ∈ J} ⊂ τ such that

⋃

j∈J

Gj = X and fh(j)(x) ∈ St(f(x), α) for every

x ∈ Gj .
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Theorem 4.1. If (Y, Σ) is a generalized uniform space with a regular structure,
then the limit function f : X → Y of a pointwise convergent net (fi)i∈I of
continuous functions fi : X → Y is continuous if and only if the net converges
quasi-uniformly on X.

Proof. Suppose that the net (fi)i∈I converges pointwise on X to f and that
fi, f are continuous functions on X for each i ∈ I.

Let α ∈ Σ and let gi : X → (Y × Y, τΣ × τΣ) be the function defined by
gi(x) = (fi(x), f(x)), i ∈ I. Since fi and f are continuous on X, the function
gi is continuous on X. Set

Gi = {x ∈ X : fi(x) ∈ St(f(x), α)} , i ∈ I.

We show that Gi = g−1
i

( ⋃

A∈α

(A×A)

)
and

⋃

i∈I

Gi = X.

If x ∈ Gi, then

fi(x) ∈ St(f(x), α) =
⋃
{A : A ∈ α, f(x) ∈ A}.

Therefore there exists Ax ∈ α such that f(x) ∈ Ax and fi(x) ∈ Ax, hence

(fi(x), f(x)) ∈ Ax × Ax ⊂ ∪{A × A : A ∈ α}, that is x ∈ g−1
i

( ⋃

A∈α

(A×A)

)
,

whence Gi ⊂ g−1
i

( ⋃

A∈α

(A×A)

)
.

Conversely, if x ∈ g−1
i

(⋃

A∈α

(A×A)

)
, then (fi(x), f(x)) ∈

⋃

A∈α

(A×A) which

implies that there exists Ax ∈ α such that f(x) ∈ Ax and fi(x) ∈ Ax, hence

fi(x) ∈ St(f(x), α), that is x ∈ Gi, whence g−1
i

( ⋃

A∈α

(A×A)

)
⊂ Gi. It is

evident that Gi ∈ τ since gi is continuous.
Now we show that

⋃

i∈I

Gi = X.

Let x0 ∈ X. From the pointwise convergence of (fi)i∈I to f on X, it results
that for each α ∈ Σ there exists i0 ∈ I such that fi0(x0) ∈ St(f(x0), α), that is
x0 ∈ Gi0 .

Thus, we infer that X =
⋃

i∈I

Gi. Moreover, from the definition of Gi, it

results that for each x ∈ Gi the relation fi(x) ∈ St(f(x), α) holds. Therefore
the quasi-uniform convergence of net (fi)i∈I to f is proved.

Conversely. Suppose that fi is continuous for each i ∈ I and that the net
(fi)i∈I converges quasi-uniformly to f on X. We will prove that f is continuous
on X.

Let α ∈ Σ. Then, from the quasi-uniform convergence of net (fi)i∈I to f ,
there exist a directed set (J,≥′), a ”K-application” h : J → I and a family of
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open sets {Gj : j ∈ I} such that
⋃

j∈J

Gj = X and fh(j)(x) ∈ St(f(x), α) for

every x ∈ Gj .
Let x0 ∈ X. Then there exists j0 ∈ J such that x0 ∈ Gj0 . For each x ∈ Gj0

we have

(13) fh(j0)(x) ∈ St(f(x), α).

From the continuity of fh(j0) it follows that there exists a neighbourhood Uh(j0)

of x0 such that

(14) fh(j0)(x) ∈ St(fh(j0)(x0), α) , for every x ∈ Uh(j0).

Let V = Gj0 ∩Uh(j0). By using successively relations (13), (14), (13), we obtain:

f(x) ∈ St(fh(j0)(x), α) ⊂ St2(fh(j0)(x0), α) ⊂ St3(f(x0), α)

for every x ∈ V . Therefore, for each (x0, α) ∈ X × Σ there exists a neighbour-
hood V of x0 such that f(x) ∈ St3(f(x0), α), whence, according to Remark 2.1,
f is continuous at x0, which finishes the proof. 2

Now we shall prove that the quasi-uniform convergence also ensures the
transfer of quasi-continuity from the terms of a net of functions to its limit.

Theorem 4.2. If a net (fi)i∈I , fi : X → Y of quasi-continuous functions with
values in a regular generalized uniform space (Y, Σ) converges quasi-uniformly
to a function f : X → Y , then f is quasi-continuous on X.

Proof. Let (x0, α) ∈ X × Σ and suppose that the net (fi)i∈I of quasi-
continuous functions converges quasi-uniformly to f . Then there exist a directed
set (J,≥′), a ”K-application” h : J → I and a family of open sets {Gj : j ∈
J} ⊂ τ such that

⋃

j∈J

Gj = X and

(15) fh(j)(x) ∈ St(f(x), α) , for every x ∈ Gj .

Let Gj0 , j0 ∈ J , such that x0 ∈ Gj0 and let V be an arbitrary neighbourhood
of x0. Because fh(j0) is quasi-continuous, it results that there exists an open set
G ⊂ V ∩Gj0 such that

(16) fh(j0)(x) ∈ St(fh(j0)(x0), α) , for every x ∈ G.

Then it follows

f(x) ∈ St(fh(j0)(x), α) ⊂ St2(fh(j0)(x0), α) ⊂ St3(f(x0), α)

for every x ∈ G. According to Lemma 2.1, it results that f is quasi-continuous
at x0, which finishes the proof. 2

To characterize the quasi-continuity of a pointwise limit of a net of continuous
functions with values in a generalized uniform space we are in need of a weaker
quasi-uniform convergence, as follows:
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Definition 4.2. A net (fi)i∈I , fi : X → Y is called almost quasi-uniform
convergent to f : X → Y if it is pointwise convergent to f on X and for each
α ∈ Σ there exist a directed set (J,≥′), a ”K-application” h : J → I and a
family of subsets of X, {Aj : Aj ⊂ X, j ∈ J}, such that:

(a) Aj ⊂ intAj for every j ∈ J ;

(b)
⋃

j∈J

Aj = X;

(c) fh(j)(x) ∈ St(f(x), α) for every x ∈ Aj .

It is easy to see that a quasi-uniform convergent net converges almost quasi-
uniformly.

In general, the converse of this statement is not true, as it results from the
following example:

Example 4.1. Let τ be the usual topology on the set of real numbers and let
there be the sequence (fn)n∈N∗ of real functions:

fn(x) =





0 , for x < − 1
n

1 + nx , for − 1
n
≤ x < 0

1 , for 0 ≤ x

This sequence converges pointwise to the function

f : R→ R , f(x) =
{

0 , for x < 0
1 , for x ≥ 0 ,

but it does not converge quasi-uniformly to f . Indeed, let there be the open
covering

α =
{

(−∞, 0), (−2
3
,
2
3
), (

1
3
, +∞)

}

of R and let (fni)i∈N∗ be an arbitrary subsequence of (fn)n∈N∗ .
If {Gi : i ∈ N∗} ⊂ τ is an arbitrary covering of R, that is R =

⋃

i∈N∗
Gi,

then there exists i0 ∈ N∗ such that (− 1
3ni0

,
1

3ni0

) ⊂ Gi0 . Then, for xi0 ∈

(− 1
3ni0

, 0) ⊂ Gi0 , we have f(xi0) = 0 and fni0
(xi0) = 1 + ni0xi0 > 1− 1

3
=

2
3
,

whence fni0
(xi0) /∈ St(f(xi0), α) = (−2

3
,
2
3
). Hence (fn)n∈N∗ does not converge

quasi-uniformly to f . Nevertheless, it converges almost quasi-uniformly to the
quasi-continuous function f , as it results from the following characterization
theorem of the quasi-continuity:
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Theorem 4.3. A pointwise convergent net (fi)i∈I , fi : X → Y of continuous
functions on X with values in a regular generalized uniform space (Y, Σ) con-
verges to a quasi-continuous function f : X → Y if and only if the net converges
almost quasi-uniformly to f on X.

Proof. Suppose that f is quasi-continuous on X. First we will show that
the function gi : X → Y × Y , gi(x) = (fi(x), f(x)), where the space Y × Y is
endowed with the product topology τΣ × τΣ, is quasi-continuous on X.

Let x0 ∈ X and U1(fi(x0)) × U2(f(x0)) be an arbitrary neighbourhood of
the point (fi(x0), f(x0)) ∈ Y × Y . Then there exists a neighbourhood V1 of x0

such that, for each x ∈ V1, fi(x) ∈ U1(fi(x0)) and for any neighbourhood V of
x0 there exists a nonempty open set G ⊂ V1 ∩V such that f(x) ∈ U2(f(x0)) for
every x ∈ G. Hence (fi(x), f(x)) ∈ U1(fi(x0))×U2(f(x0))for every x ∈ G, that
is gi is quasi-continuous on X. Then, since

⋃

A∈α

(A× A) is open in the product

topology τΣ × τΣ, it results that

g−1
i

( ⋃

A∈α

(A×A)

)
⊂ int g−1

i

( ⋃

A∈α

(A×A)

)

(see Corollary 1 [3]).
Now we show that the family {Ai : i ∈ I} of subsets of X, where Ai =

g−1
i

( ⋃

A∈α

(A×A)

)
, satisfies conditions (a), (b), (c) of the almost quasi-uniform

convergence of the net (fi)i∈I .
From the definition of Ai, obviously, condition (a) is fulfilled, that is Ai ⊂

intAi.
Now let (x0, α) ∈ X × Σ. In virtue of the pointwise convergence of the net

(fi)i∈I , there exists i0 ∈ I such that fi0(x0) ∈ St(f(x0), α). Then, it results
fi0(x0) ∈ ∪{A : f(x0) ∈ A,A ∈ α}, whence (fi0(x0), f(x0)) ∈

⋃

A∈α

(A × A),

which implies x0 ∈ g−1
i0

( ⋃

A∈α

(A×A)

)
, that is x0 ∈ Ai0 . Hence

⋃

i∈I

Ai = X and

therefore condition (b) is fulfilled.
Finally, by definition, for each (x, i) ∈ Ai × I, gi(x) ∈

⋃

A∈α

(A × A), that is

fi(x) ∈ St(f(x), α), hence condition (c) holds.
In conclusion the net (fi)i∈I converges almost quasi-uniformly to f on X.
Conversely, suppose that the net (fi)i∈I of continuous functions converges

almost quasi-uniformly to f on X, that is for each α ∈ Σ there exist a directed
set (J,≥′), a ”K-application” h : J → I and a family {Aj : j ∈ J} of subsets of
X satisfying conditions (a), (b), (c).

Let x0 ∈ X. Then, from condition (b), there exists j0 ∈ J such that x0 ∈ Aj0

and by (a) x0 ∈ intAj0 .
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Since fh(j0) is continuous at x0, there exists a neighbourhood Vj0 of x0 such
that

(17) fh(j0)(x) ∈ St(fh(j0)(x0), α) , for every x ∈ Vj0 .

Let V be an arbitrary neighbourhood of x0 and let G = int (V ∩ Vj0 ∩ intAj0).
It is evident that G ∈ τ , G 6= ∅, G ⊂ V , G ⊂ Vj0 , G ⊂ intAj0 and for every
x ∈ G, the relations

(18) fh(j0)(x) ∈ St(fh(j0)(x0), α)

(19) f(x) ∈ St(fh(j0)(x), α)

hold.
Also, by condition (c), we have

(20) fh(j0)(x0) ∈ St(f(x0), α)

By using successively relations (19), (18), (20) we obtain

f(x) ∈ St(fh(j0)(x), α) ⊂ St2(fh(j0)(x0), α) ⊂ St3(f(x0), α).

That means, by virtue of Lemma 2.1, that f is quasi-continuous at x0, which
completes the proof. 2

Now, by using the quasi-uniform convergence, we will prove a characteriza-
tion theorem for the continuity of pointwise limit of a net whose terms are not,
by all means, continuous functions.

Theorem 4.4. Let (Y, Σ) be a generalized uniform space with a regular struc-
ture. If a net (fi)i∈I , fi : X → Y , is quasi-uniform convergent to a function
f : X → Y , then f is continuous if and only if for any (x0, α) ∈ X × Σ there
exist i1 ∈ I and a neighbourhood V of x0 with the property that for each i ∈ I
there exists i2 ∈ I, i2 ≥ i, such that:

(21) fi1(x) ∈ St(f(x), α) and fi2(x0) ∈ St(fi1(x), α) , for every x ∈ V .

Proof. Suppose that (fi)i∈I converges quasi-uniformly to a continuous func-
tion f on X.

Let (x0, α) ∈ X×Σ and let β ∈ Σ, β ≺ α, such that there exists A0 ∈ α with
the property St2(f(x0), β) ⊂ A0. From the quasi-uniform convergence of (fi)i∈I

it comes that there exist a directed set (J,≥′), a ”K-application” h : J → I and
a family {Gj}j∈J ⊂ τ such that

⋃

j∈J

Gj = X and fh(j)(x) ∈ St(f(x), β) for every

x ∈ Gj .
Let j0 ∈ J with x0 ∈ Gj0 . Then fh(j0)(x) ∈ St(f(x), β) for every x0 ∈ Gj0 .

Hence, taking i1 = h(j0), we have:

(22) fi1(x) ∈ St(f(x), β) , for every x ∈ Gj0 .



On some convergences for nets of functions... 79

Also, from the quasi-uniform convergence of (fi)i∈I , it comes out that the net
converges pointwise to f on X. Therefore, there exists i0 ∈ I such that

(23) fı̄(x0) ∈ St(f(x0), β) , for every ı̄ ∈ I, ı̄ ≥ i0.

But, since f was supposed to be continuous on X, there exists a neighbourhood
V1 of x0 such that

(24) f(x) ∈ St(f(x0), β) , for every x ∈ V1.

Now, let V = V1 ∩ Gj0 and let i ∈ I be chosen arbitrarily. Then, according to
relation (23), for an i2 ∈ I, i2 ≥ i0, i2 ≥ i, we have:

(25) fi2(x0) ∈ St(f(x0), β).

From relations (22), (24), (25), we obtain:

fi1(x) ∈ St(f(x), β) ⊂ St2(f(x0), β) ⊂ A0 for every x ∈ V

and
fi2(x0) ∈ St(f(x0), β) ⊂ St2(f(x0), β) ⊂ A0.

Therefore fi2(x0) ∈ St(fi1(x), α) and also, since β ≺ α, from relation (22), it
results fi1(x) ∈ St(f(x), β) ⊂ St(f(x), α) for every x ∈ V . Hence the necessity
of theorem is proved.

Conversely, suppose that (fi)i∈I converges quasi-uniformly to f and that
relations (21) hold.

Let (x0, α) ∈ X × Σ. From the quasi-uniform convergence of (fi)i∈I to f it
comes out that there exists i0 ∈ I such that

(26) fı̄(x0) ∈ St(f(x0), α) for every ı̄ ∈ I, ı̄ ≥ i0.

Also, from relations (21), there exist i1 ∈ I, a neighbourhood V of x0 and i2 ∈ I,
i2 ≥ i0, such that

(27) fi1(x) ∈ St(f(x), α) and fi2(x0) ∈ St(fi1(x), α) for every x ∈ V .

From relations (26) and (27) we obtain:

f(x) ∈ St(fi1(x), α) ⊂ St2(fi2(x0), α) ⊂ St3(f(x0), α)

for every x ∈ V , that is

(28) f(x) ∈ St3(f(x0), α) for every x ∈ V .

According to Remark 2.1, it comes out that f is continuous at x0, hence the
sufficiency of theorem is proved. 2
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