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A COMMON FIXED POINT THEOREM IN NON-
ARCHIMEDEAN MENGER PM-SPACE

M. Alamgir Khan1, Sumitra2

Abstract. In the present paper we define the concept of R-weakly
commuting mappings in non-Archimedean Menger PM-space and obtain
a common fixed point theorem which unifies and generalizes the results
of Pant [3] and Vasuki [4].
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1. Introduction

In 1994, Pant [3] introduced the concept of R-weakly commuting maps in
metric spaces. Later on Pathak et al. [2] generalized this idea and gave the
concept of R-weakly commuting maps of type (Ag). Vasuki [4] proved some
common fixed point theorems for R-weakly commuting maps in fuzzy metric
spaces.

The aim of this paper is to define the concept of R-weakly commuting maps
and prove a common fixed point theorem in non-Archimedean Menger PM-
space.

Hereby we give some preliminary definitions and notations.

2. Preliminaries

Definition 1. Let X be any non-empty set and D be the set of all left continuous
distribution functions. An ordered pair (X, F) is said to be non-Archimedean
probabilistic metric space (briefly N.A. PM-space) if F is a mapping from X ×
X into D satisfying the following conditions, where the value of F at (x, y) ∈
X ×X is represented by Fx,y or F (x, y) for all x, y ∈ X such that

i) F (x, y; t) = 1 for all t > 0 if and only if x = y;
ii) F (x, y; t) = F (y, x; t);
iii) F (x, y; 0) = 0;
iv) If F (x, y; t1) = F (y, z; t2) = 1 then F (x, z; max{t1, t2}) = 1 for all

x, y, z ∈ X.
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Definition 2. A t-norm is a function ∆ : [0, 1] × [0, 1] → [0, 1] which is asso-
ciative, commutative, non-decreasing in each coordinate and ∆(a, 1) = a for all
a ∈ [0, 1]

Definition 3. A non-Archimedean Menger PM-space is an ordered triplet
(X, F, ∆), where ∆ is a t-norm and (X, F ) is a N.A. PM-space satisfying the
following condition:

F (x, z;max{t1, t2}) ≥ ∆(F (x, y; t1), F (y, z; t2)) for all x, y, z ∈ X, t1, t2 ≥ 0.

For details of topological preliminaries on non-Archimedean Menger PM-
spaces we refer to Cho, Ha and S.S. Chang [1].

Definition 4. An N. A. Menger PM-space (X, F, ∆) is said to be of type (C)g

if there exists a g ∈ Ω such that g(F (x, z; t)) ≤ g(F (x, y; t)) + g(F (y, z; t)) for
all x, y, z ∈ X, t ≥ 0, where Ω = {g|g : [0, 1] → [0,∞) is continuous, strictly
decreasing g(1) = 0 and g(0) < ∞}.
Definition 5. An N. A. Menger PM-space (X, F,∆) is said to be of type (D)g

if there exists a g ∈ Ω such that g(∆(t1, t2)) ≤ g(t1) + g(t2) for all t1, t2 ∈ [0, 1].

Remark 1.
i) If N. A. Menger PM-space is of type (D)g then (X, F,∆) is of type (C)g.
ii) If (X, F,∆) is an N. A. Menger PM-space and ∆ ≥ ∆(r, s) = max (r + s− 1, 1),

then (X,F, ∆) is of type (D)g for g ∈ Ω and g(t) = 1− t.

Throughout this paper let (X, F, ∆) be a complete N.A. Menger PM-space
with a continuous strictly increasing t-norm ∆.

Let φ : [0,∞) → [0,∞) be a function satisfying the condition (Φ);

(Φ) φ is semi-upper continuous from the right and φ(t) < t for t > 0.

Definition 6. A sequence {xn} in the N. A Menger PM-space (X, F,∆) con-
verges to x if and only if for each ε > 0, λ > 0 there exists M(ε, λ) such that
g(F (xn, x; ε)) < g(1− λ) for all n > M .

Definition 7. A sequence {xn} in the N. A Menger PM-space is a Cauchy
sequence if and only if for each ε > 0, λ > 0 there exists an integer M(ε, λ) such
that

g(F (xn, xn+p; ε)) < g(1− λ) for all n ≥ M and p ≥ 1.

Example 1. Let X be any set with at least two elements. If we define

F (x, x; t) = 1 for all x ∈ X, t > 0

and

F (x, y; t) =
{

0, t ≤ 1
1, t > 1

}

when x, y ∈ X, x 6= y, then (X, F,∆) is the N. A.Menger PM-space with
∆ (a, b) = min (a, b) or (a.b).
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Proof. Conditions (i), (ii) and (iii) are trivial.
Let us go for (iv) condition. For this let F (x, y; t1) = 1 = F (y, z; t2), x 6= y

y 6= z, then t1, t2 > 1 ⇒ max (t1, t2) > 1 ⇒ F (x, z; max (t1, t2)) = 1, x 6= z.
Also, Menger inequality F (x, z ;max (t1, t2)) ≥ ∆ (F (x, y; t1) , F (y, z; t2))

is obvious. Thus (X, F, ∆) is an N.A. Menger PM-space. 2

Example 2. Let X = R be the set of real numbers equipped with metric
defined as

d(x, y) = |x− y|
Set F (x, y; t) = t

t+d(x,y) .
Then (X,F, ∆) is the N.A. Menger PM-space with ∆ as continuous t-norm

satisfying ∆(r, s) = min(r, s) or prod(r, s).

Lemma 1. If a function φ : [0,∞) → [0,∞) satisfies the condition (Φ) then we
get

1. For all t ≥ 0, lim
n→∞

φn(t) = 0, where φn(t) is the nth iteration of φ(t).

2. If {tn} is a non decreasing sequence of real numbers and tn+1 ≤ φ(tn),
n = 1, 2, . . ., then lim

n→∞
tn = 0. In particular, if t ≤ φ(t), for each t ≥ 0,

then t = 0.

Lemma 2. ([1]) Let {yn} be a sequence in X such that lim
n→∞

F (yn, yn+1; t) = 1

for each t > 0. If the sequence {yn} is not a Cauchy sequence in X, then there
exist ε0 > 0, t0 > 0, and two sequences {mi} and {ni} of positive integers such
that

1. mi > ni + 1 and ni →∞ as i →∞.

2. F (ymi , yni ; t0) < 1− ε0 and F (ymi−1, yni ; t0) ≥ 1− ε0, i = 1, 2, . . .

Definition 8. Two maps A and S of an N.A. Menger PM-space (X, F, ∆) into
itself are said to be R-weakly commuting if there exists some R > 0 such that
g(F (ASx, SAx; t)) ≤ g(F (Ax, Sx; t/R)) for every x ∈ X and t > 0.

Weak commutativity implies R-weak commutativity and the converse is true
for R ≤ 1. Using R-weak commutativity Vasuki [4] proved the following result,
generalizing the result of Pant [4].

Theorem 1. ([4]). Let (X, M, ∗) be a complete fuzzy metric space and let f
and g be R-weakly commuting self mappings of X satisfying the conditions:

M (fx, fy, t) ≥ r (M (gx, gy, t)) where r : [0, 1] → [0, 1] is a continuous
function such that r (t) > t for each 0 ≤ t < 1 and r (1) = 1 and the sequences
{xn} and {yn} in X such that {xn} → x, {yn} → y implies M (xn, yn, t) →
M (x, y, t).

If the range of g contains the range of f and either f or g is continuous,
then f and g have a unique common fixed point.

Now, we extend and generalize the above result.
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3. Main result

Theorem 2. Let S and T be two continuous self-maps of a complete N. A.
Menger PM-space (X, F, ∆). Let A be self-map of X satisfying

(i) {A,S} and {A, T} are point wise R-weakly commuting and
A(X) ⊆ S(X) ∩ T (X)

(ii)

g(F (Ax,Ay; t)) ≤ φ

[
max

{
g(F (Sx, Ty; t)), g(F (Sx,Ax; t)),
g(F (Sx, Ay; t)), g(F (Ty, Ay; t))

}]
,

for every x, y ∈ X,

where φ satisfies the condition (Φ). Then A, S and T have a unique common
fixed point in X.

Proof. Let x0 ∈ X. Since A(X) ⊆ S(X), there exists x1 ∈ X such that
Ax0 = Sx1. Again as A(X) ⊆ T (X), there is another point x2 ∈ X such that
Ax1 = Tx2. Inductively we can choose x2n+1 and x2n+2 in X such that

(3.1) y2n = Sx2n+1 = Ax2n, Tx2n+2 = Ax2n+1 = y2n+1 for n = 0, 1, 2, . . .

Let Mn = g(F (Axn, Axn+1; t)), n = 0, 1, 2, . . . then

M2n = g(F (Ax2n+1, Ax2n; t))

≤ φ

[
max

{
g(F (Sx2n+1, Tx2n; t)), g(F (Sx2n+1, Ax2n; t)),
g(F (Sx2n+1, Ax2n; t)), g(F (Tx2n, Ax2n; t))

}]

= φ

[
max

{
g(F (Ax2n, Ax2n−1; t)), g(F (Ax2n, Ax2n+1 ; t)),
g(F (Ax2n, Ax2n; t)), g(F (Ax2n−1, Ax2n; t))

}]
.(3.2)

(3.3) M2n = φ [(max {M2n−1,M2n, 0,M2n−1}].

If M2n > M2n−1 then by (1.3) M2n ≥ φ(M2n), a contradiction.
If M2n−1 > M2n then by (1.3) M2n ≤ φ(M2n−1) then by Lemma 1, we get

limn M2n = 0, i.e.,
lim
n

g (F (Ax2n+1, Ax2n; t)) = 0.

Similarly, we can show that limn g (F (Ax2n+2, Ax2n+1; t)) = 0.
Thus we have

(3.4)
limn g (F (Ax2n, Ax2n+1; t)) = 0 for all t > 0.
limn g (F (yn, yn+1; t)) = 0 for all t > 0.

Before proceeding the proof of the theorem, we first prove a claim.

Claim. Let A,S, T : X → X be maps satisfying (i) and (ii) and {yn} defined by
(1.1) such that
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(3.5) lim
n

g (F (yn, yn+1; t)) = 0

for all n is a Cauchy sequence in X.

Proof of Claim. Since g ∈ Ω it follows that

lim
n→∞

F (yn, yn+1; t) = 1 for each t > 0

if and only if lim
n→∞

g(F (yn, yn+1; t)) = 0 for each t > 0

By Lemma 2 if {yn} is not a Cauchy sequence in X, there exist ε0 > 0,
t0 > 0 and two sequences {mi} and {ni} of positive integers such that

A) mi > ni + 1 and ni →∞ as i →∞;
B) g(F (ymi

, yni
; t0)) > g(1 − ε0 ) and g(F (ymi−1, yni

; t0)) ≤ g(1 − ε0),
i = 1, 2, . . .

Since g(t) = 1− t, we have

g(1− ε0) < g(F (ymi , yni ; t0))
≤ g(F (ymi , ymi−1; t0)) + g(F (ymi−1 , yni ; t0))
≤ g(F (ymi , ymi−1; t0)) + g(1− ε0).(3.6)

As i →∞ in (1.6) we get

(3.7) lim
n→∞

g(F (ymi , yni ; t0)) = g(1− ε0).

On the other hand, we have

g(1− ε0) < g(F (ymi , yni , a; t0))
≤ g(F (yni , yni+1; t0)) + g(F (ymi , yni+1; t0))(3.8)

Now, consider g(F (ymi , yni+1; t0)) in (1.8) and assume that both mi and ni are
even. Then, by (ii), we have

g(F (ymi , yni+1, a; t0))
= g(F (Axmi , Axni+1 ; t0))
≤ φ[max{g(F (Sxmi , Txni+1; t0)), g(F (Sxmi , Axmi ; t0)),

g(F (Sxmi , Axni+1 ; t0)), g(F (Txni+1, Axni+1; t0))}]
≤ φ[max{g(F (ymi , yni ; t0)), g(F (ymi−1, ymi ; t0)),(3.9)

g(F (ymi−1, yni+1 ; t0)), g(F (yni , yni+1 ; t0))}]

Now, consider g(F (ymi−1, yni+1; t0)) from (1.9).

(3.10) g(F (ymi−1, yni+1 ; t0)) ≤ g(F (ymi−1, yni ; t0)) + g(F (yni , yni+1; t0)).
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Using (1.10) in (1.9) and letting i →∞.

g(1− ε0) ≤ φ [max{g(1− ε0), 0, g(1− ε0), 0}] i.e., g(1− ε0) ≤ φ (g(1− ε0).

Which is a contradiction. Hence the sequence {yn = Axn} defined by (1.1) is a
Cauchy sequence, which concludes the proof of Claim.

By the completeness of X, {Axn} converges to a point z ∈ X. Consequently,
the subsequences {Sx2n+1} and {Tx2n} of {Axn} also converge to z ∈ X.
Since A and S are R-weakly commuting, so g(F (ASx2n+1, SAx2n+1; t)) ≤
g(F (Ax2n+1, Sx2n+1; t/R)), which gives lim

n→∞
ASx2n+1 = lim

n→∞
SAx2n+1 = Sz

(as S is continuous).
Now, we claim that Sz = z.
Suppose that Sz 6= z. Then, using (ii), we get

g(F (ASx2n+1, Ax2n; t))
≤ φ[max{g(F (SSx2n+1, Tx2n ; t)), g(F (SSx2n+1, ASx2n+1; t)),

g(F (SSx2n+1, Ax2n; t)) , g(F (Ax2n, Tx2n; t))}].

Taking n →∞ we get,

g(F (Sz, z ; t))
≤ φ[max{g(F (Sz, z ; t)), g(F (Sz, Sz ; t)), g(F (Sz, z ; t)), g(F (z, z ; t))}]
= φ(g(F (Sz, z, a; t))) < g(F (Sz, z, a; t)),

which is a contradiction.
Thus z is a fixed point of S. Similarly, we can show that z is a fixed point

of A.
Now, the pair {A, T} is R-weakly commuting so

g(F (ATx2n+1, TAx2n+1; t)) ≤ g(F (Ax2n+1, Tx2n+1; t/R))

which gives

lim
n→∞

ATx2n+1 = lim
n→∞

TAx2n+1 = Tz (as T is continuous).

Now, we claim that z is also a fixed point of T .
Suppose that Tz 6= z, then using (ii) we have

g(F (Az,ATx2n ; t)) ≤ φ[max{g(F (Sz, T 2x2n ; t)), g(F (Sz,Az ; t)),
g(F (Sz,ATx2n ; t)), g(F (T 2x2n, ATx2n ; t))}].

On taking limit as n →∞, it yields

g(F (z, Tz ; t)) ≤ φ[max{g(F (z, Tz ; t)), g(F (z, z ; t)),
g(F (z, Tz ; t)), g(F (Tz, Tz ; t))}].
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This gives that z = Tz. Thus z is a common fixed point of A, S and T .
Uniqueness can be proved by using condition (ii). 2

Taking T = S in the above theorem we get the following corollary unifying
Vasuki’s theorem [4], which in turn also generalizes the result of Pant [3].

Colorallary 1. Let (X,F, ∆) be a complete N.A. Menger PM-space and S be
a continuous self-mapping of X. Let A be another self-mapping of X satisfying
that {A,S} is R-weakly commuting of type with A(X) ⊆ S(X) and

g(F (Ax, Ay, a; t)) ≤ φ[max{g(F (Sx, Ty ; t)), g(F (Sx,Ax ; t)),
g(F (Sx, Ay ; t)), g(F (Sy, Ay ; t))}]

for each x, y ∈ X and φ satisfies the condition (Φ) . Then the maps A and S
have a unique common fixed point.

Remark 2. In our generalization the inequality condition (ii) satisfied by the
mappings A , S and T is stronger than that of Theorem 1.9 of Vasuki [4].

Example 3. Let X = R and A,S, T : X → X be mappings such that

S (x) = 2x− 1, T (x) =





−1− x, x < 0
2x− 1, 0 ≤ x < 1
x + 1

2
, x ≥ 1

and A (x) =

{
0, x = −1
x2, x 6= −1

.

Then we see that
(i) (A,S) and (A, T ) are point-wise R-weakly commuting.
(ii) A (X) ⊆ S (X) ∩ T (X)
(iii) ‘1’ is the unique common fixed point of A, S and T .

(iv) g(F (Ax,Ay ; t)) ≤ φ

[
max

{
(Sx, Ty ; t), g(F (Sx, Ax; t)),
g(F (Sx, Ay ; t)), g(F (Ty, Ay; t))

}]
,

for every x, y ∈ X is also true.
Thus all the conditions of our Theorem 2 are satisfied.
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