A COMMON FIXED POINT THEOREM IN NONARCHIMEDEAN MENGER PM-SPACE

M. Alamgir Khan ${ }^{11}$, Sumitra ${ }^{21}$

Abstract

In the present paper we define the concept of R-weakly commuting mappings in non-Archimedean Menger PM-space and obtain a common fixed point theorem which unifies and generalizes the results of Pant [3] and Vasuki [4.

AMS Mathematics Subject Classification (2000): 47H10, 54H25 Key words and phrases: Non-Archimedean Menger PM-space, R-weakly commuting maps and fixed points

1. Introduction

In 1994, Pant 3 introduced the concept of R-weakly commuting maps in metric spaces. Later on Pathak et al. [2] generalized this idea and gave the concept of R-weakly commuting maps of type (Ag). Vasuki 4 proved some common fixed point theorems for R-weakly commuting maps in fuzzy metric spaces.

The aim of this paper is to define the concept of R-weakly commuting maps and prove a common fixed point theorem in non-Archimedean Menger PMspace.

Hereby we give some preliminary definitions and notations.

2. Preliminaries

Definition 1. Let X be any non-empty set and D be the set of all left continuous distribution functions. An ordered pair (X, F) is said to be non-Archimedean probabilistic metric space (briefly N.A. PM-space) if F is a mapping from $X \times$ X into D satisfying the following conditions, where the value of F at $(x, y) \in$ $X \times X$ is represented by $F_{x, y}$ or $F(x, y)$ for all $x, y \in X$ such that
i) $F(x, y ; t)=1$ for all $t>0$ if and only if $x=y$;
ii) $F(x, y ; t)=F(y, x ; t)$;
iii) $F(x, y ; 0)=0$;
iv) If $F\left(x, y ; t_{1}\right)=F\left(y, z ; t_{2}\right)=1$ then $F\left(x, z ; \max \left\{t_{1}, t_{2}\right\}\right)=1$ for all $x, y, z \in X$.

[^0]Definition 2. A t-norm is a function $\Delta:[0,1] \times[0,1] \rightarrow[0,1]$ which is associative, commutative, non-decreasing in each coordinate and $\Delta(a, 1)=a$ for all $a \in[0,1]$

Definition 3. A non-Archimedean Menger PM-space is an ordered triplet (X, F, Δ), where Δ is a t-norm and (X, F) is a N.A. PM-space satisfying the following condition:

$$
F\left(x, z ; \max \left\{t_{1}, t_{2}\right\}\right) \geq \Delta\left(F\left(x, y ; t_{1}\right), F\left(y, z ; t_{2}\right)\right) \text { for all } x, y, z \in X, t_{1}, t_{2} \geq 0
$$

For details of topological preliminaries on non-Archimedean Menger PMspaces we refer to Cho, Ha and S.S. Chang [1].

Definition 4. An N. A. Menger PM-space (X, F, Δ) is said to be of type $(C)_{g}$ if there exists a $g \in \Omega$ such that $g(F(x, z ; t)) \leq g(F(x, y ; t))+g(F(y, z ; t))$ for all $x, y, z \in X, t \geq 0$, where $\Omega=\{g \mid g:[0,1] \rightarrow[0, \infty)$ is continuous, strictly decreasing $g(1)=0$ and $g(0)<\infty\}$.

Definition 5. An N. A. Menger PM-space (X, F, Δ) is said to be of type $(D)_{g}$ if there exists a $g \in \Omega$ such that $g\left(\Delta\left(t_{1}, t_{2}\right)\right) \leq g\left(t_{1}\right)+g\left(t_{2}\right)$ for all $t_{1}, t_{2} \in[0,1]$.

Remark 1.

i) If N. A. Menger PM-space is of type $(D)_{g}$ then (X, F, Δ) is of type $(C)_{g}$.
ii) If (X, F, Δ) is an N. A. Menger PM-space and $\Delta \geq \Delta(r, s)=\max (r+s-1,1)$, then (X, F, Δ) is of type $(D)_{g}$ for $g \in \Omega$ and $g(t)=1-t$.

Throughout this paper let (X, F, Δ) be a complete N.A. Menger PM-space with a continuous strictly increasing t-norm Δ.

Let $\phi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying the condition (Φ);
$(\Phi) \quad \phi$ is semi-upper continuous from the right and $\phi(t)<t$ for $t>0$.
Definition 6. A sequence $\left\{x_{n}\right\}$ in the N. A Menger PM-space (X, F, Δ) converges to x if and only if for each $\varepsilon>0, \lambda>0$ there exists $M(\varepsilon, \lambda)$ such that $g\left(F\left(x_{n}, x ; \varepsilon\right)\right)<g(1-\lambda)$ for all $n>M$.

Definition 7. A sequence $\left\{x_{n}\right\}$ in the N. A Menger PM-space is a Cauchy sequence if and only if for each $\varepsilon>0, \lambda>0$ there exists an integer $M(\varepsilon, \lambda)$ such that

$$
g\left(F\left(x_{n}, x_{n+p} ; \varepsilon\right)\right)<g(1-\lambda) \text { for all } n \geq M \text { and } p \geq 1
$$

Example 1. Let X be any set with at least two elements. If we define

$$
F(x, x ; t)=1 \text { for all } x \in X, t>0
$$

and

$$
F(x, y ; t)=\left\{\begin{array}{l}
0, t \leq 1 \\
1, t>1
\end{array}\right\}
$$

when $x, y \in X, x \neq y$, then (X, F, Δ) is the N . A.Menger PM-space with $\Delta(a, b)=\min (a, b)$ or $(a . b)$.

Proof. Conditions (i), (ii) and (iii) are trivial.
Let us go for (iv) condition. For this let $F\left(x, y ; t_{1}\right)=1=F\left(y, z ; t_{2}\right), x \neq y$ $y \neq z$, then $t_{1}, t_{2}>1 \Rightarrow \max \left(t_{1}, t_{2}\right)>1 \Rightarrow F\left(x, z ; \max \left(t_{1}, t_{2}\right)\right)=1, x \neq z$.

Also, Menger inequality $F\left(x, z ; \max \left(t_{1}, t_{2}\right)\right) \geq \Delta\left(F\left(x, y ; t_{1}\right), F\left(y, z ; t_{2}\right)\right)$ is obvious. Thus (X, F, Δ) is an N.A. Menger PM-space.

Example 2. Let $X=R$ be the set of real numbers equipped with metric defined as

$$
d(x, y)=|x-y|
$$

Set $F(x, y ; t)=\frac{t}{t+d(x, y)}$.
Then (X, F, Δ) is the N.A. Menger PM-space with Δ as continuous t-norm satisfying $\Delta(r, s)=\min (r, s)$ or $\operatorname{prod}(r, s)$.

Lemma 1. If a function $\phi:[0, \infty) \rightarrow[0, \infty)$ satisfies the condition (Φ) then we get

1. For all $t \geq 0, \lim _{n \rightarrow \infty} \phi^{n}(t)=0$, where $\phi^{n}(t)$ is the $n^{\text {th }}$ iteration of $\phi(t)$.
2. If $\left\{t_{n}\right\}$ is a non decreasing sequence of real numbers and $t_{n+1} \leq \phi\left(t_{n}\right)$, $n=1,2, \ldots$, then $\lim _{n \rightarrow \infty} t_{n}=0$. In particular, if $t \leq \phi(t)$, for each $t \geq 0$, then $t=0$.

Lemma 2. ([1]]) Let $\left\{y_{n}\right\}$ be a sequence in X such that $\lim _{n \rightarrow \infty} F\left(y_{n}, y_{n+1} ; t\right)=1$ for each $t>0$. If the sequence $\left\{y_{n}\right\}$ is not a Cauchy sequence in X, then there exist $\varepsilon_{0}>0, t_{0}>0$, and two sequences $\left\{m_{i}\right\}$ and $\left\{n_{i}\right\}$ of positive integers such that

1. $m_{i}>n_{i}+1$ and $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$.
2. $F\left(y_{m_{i}}, y_{n_{i}} ; t_{0}\right)<1-\varepsilon_{0}$ and $F\left(y_{m_{i}-1}, y_{n_{i}} ; t_{0}\right) \geq 1-\varepsilon_{0}, i=1,2, \ldots$

Definition 8. Two maps A and S of an N.A. Menger PM-space (X, F, Δ) into itself are said to be R-weakly commuting if there exists some $R>0$ such that $g(F(A S x, S A x ; t)) \leq g(F(A x, S x ; t / R))$ for every $x \in X$ and $t>0$.

Weak commutativity implies R-weak commutativity and the converse is true for $R \leq 1$. Using R-weak commutativity Vasuki [4] proved the following result, generalizing the result of Pant [4].

Theorem 1. ([4]). Let $(X, M, *)$ be a complete fuzzy metric space and let f and g be R-weakly commuting self mappings of X satisfying the conditions:
$M(f x, f y, t) \geq r(M(g x, g y, t))$ where $r:[0,1] \rightarrow[0,1]$ is a continuous function such that $r(t)>t$ for each $0 \leq t<1$ and $r(1)=1$ and the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $\left\{x_{n}\right\} \rightarrow x,\left\{y_{n}\right\} \rightarrow y$ implies $M\left(x_{n}, y_{n}, t\right) \rightarrow$ $M(x, y, t)$.

If the range of g contains the range of f and either f or g is continuous, then f and g have a unique common fixed point.

Now, we extend and generalize the above result.

3. Main result

Theorem 2. Let S and T be two continuous self-maps of a complete N. A. Menger PM-space (X, F, Δ). Let A be self-map of X satisfying
(i) $\{A, S\}$ and $\{A, T\}$ are point wise R-weakly commuting and $A(X) \subseteq S(X) \cap T(X)$
(ii)

$$
\begin{aligned}
g(F(A x, A y ; t)) \leq & \phi\left[\max \left\{\begin{array}{l}
g(F(S x, T y ; t)), g(F(S x, A x ; t)) \\
g(F(S x, A y ; t)), g(F(T y, A y ; t))
\end{array}\right\}\right] \\
& \text { for every } x, y \in X
\end{aligned}
$$

where ϕ satisfies the condition (Φ). Then A, S and T have a unique common fixed point in X.

Proof. Let $x_{0} \in X$. Since $A(X) \subseteq S(X)$, there exists $x_{1} \in X$ such that $A x_{0}=S x_{1}$. Again as $A(X) \subseteq T(X)$, there is another point $x_{2} \in X$ such that $A x_{1}=T x_{2}$. Inductively we can choose $x_{2 n+1}$ and $x_{2 n+2}$ in X such that

$$
\begin{equation*}
y_{2 n}=S x_{2 n+1}=A x_{2 n}, T x_{2 n+2}=A x_{2 n+1}=y_{2 n+1} \text { for } n=0,1,2, \ldots \tag{3.1}
\end{equation*}
$$

Let $M_{n}=g\left(F\left(A x_{n}, A x_{n+1} ; t\right)\right), n=0,1,2, \ldots$ then

$$
\begin{align*}
M_{2 n}= & g\left(F\left(A x_{2 n+1}, A x_{2 n} ; t\right)\right) \\
\leq & \phi\left[\max \left\{\begin{array}{l}
g\left(F\left(S x_{2 n+1}, T x_{2 n} ; t\right)\right), g\left(F\left(S x_{2 n+1}, A x_{2 n} ; t\right)\right), \\
g\left(F\left(S x_{2 n+1}, A x_{2 n} ; t\right)\right), g\left(F\left(T x_{2 n}, A x_{2 n} ; t\right)\right)
\end{array}\right\}\right] \\
2) & \phi\left[\max \left\{\begin{array}{l}
g\left(F\left(A x_{2 n}, A x_{2 n-1} ; t\right)\right), g\left(F\left(A x_{2 n}, A x_{2 n+1} ; t\right)\right), \\
g\left(F\left(A x_{2 n}, A x_{2 n} ; t\right)\right), g\left(F\left(A x_{2 n-1}, A x_{2 n} ; t\right)\right)
\end{array}\right\}\right] . \\
3) & \quad M_{2 n}=\phi\left[\left(\max \left\{M_{2 n-1}, M_{2 n}, 0, M_{2 n-1}\right\}\right] .\right. \tag{3.3}
\end{align*}
$$

If $M_{2 n}>M_{2 n-1}$ then by (1.3) $M_{2 n} \geq \phi\left(M_{2 n}\right)$, a contradiction.
If $M_{2 n-1}>M_{2 n}$ then by (1.3) $M_{2 n} \leq \phi\left(M_{2 n-1}\right)$ then by Lemma 1, we get $\lim _{n} M_{2 n}=0$, i.e.,

$$
\lim _{n} g\left(F\left(A x_{2 n+1}, A x_{2 n} ; t\right)\right)=0
$$

Similarly, we can show that $\lim _{n} g\left(F\left(A x_{2 n+2}, A x_{2 n+1} ; t\right)\right)=0$.
Thus we have

$$
\begin{align*}
& \lim _{n} g\left(F\left(A x_{2 n}, A x_{2 n+1} ; t\right)\right)=0 \text { for all } t>0 \\
& \lim _{n} g\left(F\left(y_{n}, y_{n+1} ; t\right)\right)=0 \text { for all } t>0 \tag{3.4}
\end{align*}
$$

Before proceeding the proof of the theorem, we first prove a claim.
Claim. Let $A, S, T: X \rightarrow X$ be maps satisfying (i) and (ii) and $\left\{y_{n}\right\}$ defined by (1.1) such that

$$
\begin{equation*}
\lim _{n} g\left(F\left(y_{n}, y_{n+1} ; t\right)\right)=0 \tag{3.5}
\end{equation*}
$$

for all n is a Cauchy sequence in X.
Proof of Claim. Since $g \in \Omega$ it follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} F\left(y_{n}, y_{n+1} ; t\right)=1 \text { for each } t>0 \\
& \quad \text { if and only if } \lim _{n \rightarrow \infty} g\left(F\left(y_{n}, y_{n+1} ; t\right)\right)=0 \text { for each } t>0
\end{aligned}
$$

By Lemma 2 if $\left\{y_{n}\right\}$ is not a Cauchy sequence in X, there exist $\varepsilon_{0}>0$, $t_{0}>0$ and two sequences $\left\{m_{i}\right\}$ and $\left\{n_{i}\right\}$ of positive integers such that
A) $m_{i}>n_{i}+1$ and $n_{i} \rightarrow \infty$ as $i \rightarrow \infty$;
B) $g\left(F\left(y_{m_{i}}, y_{n_{i}} ; t_{0}\right)\right)>g\left(1-\varepsilon_{0}\right)$ and $g\left(F\left(y_{m_{i}-1}, y_{n_{i}} ; t_{0}\right)\right) \leq g\left(1-\varepsilon_{0}\right)$, $i=1,2, \ldots$

Since $g(t)=1-t$, we have

$$
\begin{align*}
g\left(1-\varepsilon_{0}\right) & <g\left(F\left(y_{m_{i}}, y_{n_{i}} ; t_{0}\right)\right) \\
& \leq g\left(F\left(y_{m_{i}}, y_{m_{i}-1} ; t_{0}\right)\right)+g\left(F\left(y_{m_{i-1}}, y_{n_{i}} ; t_{0}\right)\right) \\
& \leq g\left(F\left(y_{m_{i}}, y_{m_{i}-1} ; t_{0}\right)\right)+g\left(1-\varepsilon_{0}\right) . \tag{3.6}
\end{align*}
$$

As $i \rightarrow \infty$ in (1.6) we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} g\left(F\left(y_{m_{i}}, y_{n_{i}} ; t_{0}\right)\right)=g\left(1-\varepsilon_{0}\right) . \tag{3.7}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
g\left(1-\varepsilon_{0}\right) & <g\left(F\left(y_{m_{i}}, y_{n_{i}}, a ; t_{0}\right)\right) \\
& \leq g\left(F\left(y_{n_{i}}, y_{n_{i}+1} ; t_{0}\right)\right)+g\left(F\left(y_{m_{i}}, y_{n_{i}+1} ; t_{0}\right)\right) \tag{3.8}
\end{align*}
$$

Now, consider $g\left(F\left(y_{m_{i}}, y_{n_{i}+1} ; t_{0}\right)\right)$ in (1.8) and assume that both m_{i} and n_{i} are even. Then, by (ii), we have

$$
\begin{align*}
& g\left(F\left(y_{m_{i}}, y_{n_{i}+1}, a ; t_{0}\right)\right) \\
& \quad= g\left(F\left(A x_{m_{i}}, A x_{n_{i}+1} ; t_{0}\right)\right) \\
& \leq \phi\left[\operatorname { m a x } \left\{g\left(F\left(S x_{m_{i}}, T x_{n_{i}+1} ; t_{0}\right)\right), g\left(F\left(S x_{m_{i}}, A x_{m_{i}} ; t_{0}\right)\right),\right.\right. \\
&\left.\left.g\left(F\left(S x_{m_{i}}, A x_{n_{i}+1} ; t_{0}\right)\right), g\left(F\left(T x_{n_{i}+1}, A x_{n_{i}+1} ; t_{0}\right)\right)\right\}\right] \\
& \leq \phi\left[\operatorname { m a x } \left\{g\left(F\left(y_{m_{i}}, y_{n_{i}} ; t_{0}\right)\right), g\left(F\left(y_{m_{i}-1}, y_{m_{i}} ; t_{0}\right)\right),\right.\right. \tag{3.9}\\
&\left.\left.g\left(F\left(y_{m_{i}-1}, y_{n_{i}+1} ; t_{0}\right)\right), g\left(F\left(y_{n_{i}}, y_{n_{i}+1} ; t_{0}\right)\right)\right\}\right]
\end{align*}
$$

Now, consider $g\left(F\left(y_{m_{i}-1}, y_{n_{i}+1} ; t_{0}\right)\right)$ from (1.9).

$$
\begin{equation*}
g\left(F\left(y_{m_{i}-1}, y_{n_{i}+1} ; t_{0}\right)\right) \leq g\left(F\left(y_{m_{i}-1}, y_{n_{i}} ; t_{0}\right)\right)+g\left(F\left(y_{n_{i}}, y_{n_{i}+1} ; t_{0}\right)\right) \tag{3.10}
\end{equation*}
$$

Using (1.10) in (1.9) and letting $i \rightarrow \infty$.

$$
g\left(1-\varepsilon_{0}\right) \leq \phi\left[\max \left\{g\left(1-\varepsilon_{0}\right), 0, g\left(1-\varepsilon_{0}\right), 0\right\}\right] \text { i.e., } g\left(1-\varepsilon_{0}\right) \leq \phi\left(g\left(1-\varepsilon_{0}\right) .\right.
$$

Which is a contradiction. Hence the sequence $\left\{y_{n}=A x_{n}\right\}$ defined by (1.1) is a Cauchy sequence, which concludes the proof of Claim.

By the completeness of $X,\left\{A x_{n}\right\}$ converges to a point $z \in X$. Consequently, the subsequences $\left\{S x_{2 n+1}\right\}$ and $\left\{T x_{2 n}\right\}$ of $\left\{A x_{n}\right\}$ also converge to $z \in X$. Since A and S are R-weakly commuting, so $g\left(F\left(A S x_{2 n+1}, S A x_{2 n+1} ; t\right)\right) \leq$ $g\left(F\left(A x_{2 n+1}, S x_{2 n+1} ; t / R\right)\right)$, which gives $\lim _{n \rightarrow \infty} A S x_{2 n+1}=\lim _{n \rightarrow \infty} S A x_{2 n+1}=S z$ (as S is continuous).

Now, we claim that $S z=z$.
Suppose that $S z \neq z$. Then, using (ii), we get

$$
\begin{aligned}
& g\left(F\left(A S x_{2 n+1}, A x_{2 n} ; t\right)\right) \\
& \quad \leq \quad \phi\left[\operatorname { m a x } \left\{g\left(F\left(S S x_{2 n+1}, T x_{2 n} ; t\right)\right), g\left(F\left(S S x_{2 n+1}, A S x_{2 n+1} ; t\right)\right),\right.\right. \\
& \left.\left.\quad g\left(F\left(S S x_{2 n+1}, A x_{2 n} ; t\right)\right), g\left(F\left(A x_{2 n}, T x_{2 n} ; t\right)\right)\right\}\right] .
\end{aligned}
$$

Taking $n \rightarrow \infty$ we get,

$$
\begin{aligned}
& g(F(S z, z ; t)) \\
& \quad \leq \phi[\max \{g(F(S z, z ; t)), g(F(S z, S z ; t)), g(F(S z, z ; t)), g(F(z, z ; t))\}] \\
& \quad=\phi(g(F(S z, z, a ; t)))<g(F(S z, z, a ; t))
\end{aligned}
$$

which is a contradiction.
Thus z is a fixed point of S. Similarly, we can show that z is a fixed point of A.

Now, the pair $\{A, T\}$ is R-weakly commuting so

$$
g\left(F\left(A T x_{2 n+1}, T A x_{2 n+1} ; t\right)\right) \leq g\left(F\left(A x_{2 n+1}, T x_{2 n+1} ; t / R\right)\right)
$$

which gives

$$
\lim _{n \rightarrow \infty} A T x_{2 n+1}=\lim _{n \rightarrow \infty} T A x_{2 n+1}=T z \text { (as T is continuous). }
$$

Now, we claim that z is also a fixed point of T.
Suppose that $T z \neq z$, then using (ii) we have

$$
\begin{aligned}
g\left(F\left(A z, A T x_{2 n} ; t\right)\right) \leq & \phi\left[\operatorname { m a x } \left\{g\left(F\left(S z, T^{2} x_{2 n} ; t\right)\right), g(F(S z, A z ; t)),\right.\right. \\
& \left.\left.g\left(F\left(S z, A T x_{2 n} ; t\right)\right), g\left(F\left(T^{2} x_{2 n}, A T x_{2 n} ; t\right)\right)\right\}\right]
\end{aligned}
$$

On taking limit as $n \rightarrow \infty$, it yields

$$
\begin{aligned}
g(F(z, T z ; t)) \leq & \phi[\max \{g(F(z, T z ; t)), g(F(z, z ; t)), \\
& g(F(z, T z ; t)), g(F(T z, T z ; t))\}] .
\end{aligned}
$$

This gives that $z=T z$. Thus z is a common fixed point of A, S and T.
Uniqueness can be proved by using condition (ii).
Taking $T=S$ in the above theorem we get the following corollary unifying Vasuki's theorem [4, which in turn also generalizes the result of Pant [3].
Colorallary 1. Let (X, F, Δ) be a complete N.A. Menger PM-space and S be a continuous self-mapping of X. Let A be another self-mapping of X satisfying that $\{A, S\}$ is R-weakly commuting of type with $A(X) \subseteq S(X)$ and

$$
\begin{aligned}
g(F(A x, A y, a ; t)) \leq \quad & \phi[\max \{g(F(S x, T y ; t)), g(F(S x, A x ; t)), \\
& g(F(S x, A y ; t)), g(F(S y, A y ; t))\}]
\end{aligned}
$$

for each $x, y \in X$ and ϕ satisfies the condition (Φ). Then the maps A and S have a unique common fixed point.

Remark 2. In our generalization the inequality condition (ii) satisfied by the mappings A, S and T is stronger than that of Theorem 1.9 of Vasuki [4.

Example 3. Let $X=R$ and $A, S, T: X \rightarrow X$ be mappings such that

$$
S(x)=2 x-1, T(x)=\left\{\begin{array}{ll}
-1-x, & x<0 \\
2 x-1, & 0 \leq x<1 \\
\frac{x+1}{2}, & x \geq 1
\end{array} \text { and } A(x)= \begin{cases}0, & x=-1 \\
x^{2}, & x \neq-1\end{cases}\right.
$$

Then we see that
(i) (A, S) and (A, T) are point-wise R-weakly commuting.
(ii) $A(X) \subseteq S(X) \cap T(X)$
(iii) ' 1 ' is the unique common fixed point of A, S and T.
(iv) $g(F(A x, A y ; t)) \leq \phi\left[\max \left\{\begin{array}{l}(S x, T y ; t), g(F(S x, A x ; t)), \\ g(F(S x, A y ; t)), g(F(T y, A y ; t))\end{array}\right\}\right]$, for every $x, y \in X$ is also true.
Thus all the conditions of our Theorem 2 are satisfied.

References

[1] Cho, Y. J., Ha, K. S., Chang, S. S., Common fixed point theorems for compatible mappings of type (A) in non-Archimedean Menger PM-space. Math Japonica (46)(1)(1997), 169-179, CMP 1466 131. zbl 883.47038.
[2] Cho, Y. J., Patak, H. K., Kang, S. M., Remarks on R- weakly commuting maps and common fixed point theorems, Bull. Korean Math. Soc. (34) (1997), 247-257.
[3] Pant, R. P., Common fixed points of non-commuting mappings. J. Math. Anal. App. 188 (2)(1994), 436-440.
[4] Vasuki, R., Common fixed points for R-weakly commuting maps in fuzzy metric spaces. Indian J. Pure and Applied Math. (30) (1999), 419-423.

Received by the editors August 25, 2008

[^0]: ${ }^{1}$ Department of Mathematics, Eritrea Institute of Technology, Asmara, Eritrea (N.E. Africa), e-mail: alam_alam3333@yahoo.com
 ${ }^{2}$ Department of Mathematics, Eritrea Institute of Technology, Asmara, Eritrea (N.E. Africa), e-mail: mathsqueen_d@yahoo.com

