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GENERAL COMMON FIXED POINT THEOREMS
FOR OCCASIONALLY WEAKLY COMPATIBLE

HYBRID MAPPINGS AND APPLICATIONS

Abdelkrim Aliouche1, Valeriu Popa2

Abstract. We prove general common fixed point theorems for occasion-
ally weakly compatible hybrid pairs of mappings in symmetric spaces sat-
isfying implicit relations which generalize the theorems of [1]-[6], [8]-[14],
[16]-[33], [36], [37], [39], [41], [44], [46]-[49], [51], [56], [58]-[63], [65]-[74],
[76]-[85] and we correct the errors of [6], [21], [34], [47] and [84].
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1. Introduction and preliminaries

It is well known that the Banach contraction principle is a fundamental
result in fixed point theory which has been used and extended in many different
directions. However, it has been observed by Hicks and Rhoades [35] that
some of the defining properties of the metric are not needed in the proof of
certain metric theorems. They established some common fixed point theorems
in symmetric spaces and proved that very general probabilistic structure admits
a compatible symmetric or semi-metric.

Definition 1.1. Let X be a set. A symmetric on X is a mapping d : X ×X →
[0,∞) such that

d(x, y) = 0 iff x = y and d(x, y) = d(y, x) for all x, y ∈ X.

Let B(X) be the set of all nonempty bounded subsets of X. As in [32], we
define the functions δ(A,B) and D(A,B) by

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} for all A,B ∈ B(X).
If A consists of a single point a, we write δ(A, B) = δ(a,B). If B consists

also of a single point b, we write δ(A,B) = d(a, b).
It follows immediately from the definition of δ that
δ(A,B) = δ(B, A) ≥ 0,
δ(A,B) ≤ δ(A,C) + δ(C, B),
δ(A,B) = 0 iff A = B = {a},
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δ(A,A) = diamA for all A,B, C ∈ B(X).
Let A and S be self-mappings of a metric space (X, d) and C(A,S) the set

of coincidence points of A and S.
Jungck [40] defined A and S to be compatible if

lim
n→∞

d (SAxn, ASxn) = 0

whenever {xn} is a sequence in X such that lim
n→∞

Axn = lim
n→∞

Sxn = t for some
t ∈ X.

The same author [52] defined A and S to be R-weakly commuting if there
exists an R > 0 such that

(1.1) d (STx, TSx) ≤ Rd (Tx, Sx) for all x ∈ X.

Pant [53] defined A and S to be pointwise R−weakly commuting if for each
x ∈ X, there exists an R > 0 such that (1.1) holds.

It was proved in [53] that pointwise R−weakly commuting is equivalent to
commutativity at coincidence points. Thus, A and S are pointwise R−weakly
commuting if and only if they are weakly compatible.

Definition 1.2. [42] A and S are said to be weakly compatible if SAu = ASu
for all u ∈ C(A,S).

Thus, A and S are pointwise R−weakly commuting if and only if they are
weakly compatible.

Definition 1.3. [15] A and S are said to be occasionally weakly compatible
(owc) if SAu = ASu for some u ∈ C(A,S).

Remark 1.4. [15] If A and S are weakly compatible, then they are occasionally
weakly compatible, but the following example shows that the converse is not
true in general.

Example 1.5. Let X = [1,∞) with the usual metric. Define A, S : X → X
by: Ax = 3x − 2 and Sx = x2. We have Ax = Sx iff x = 1 or x = 2 and
AS(1) = SA(1) = 1, but AS(2) 6= SA(2). Therefore, A and S are occasionally
weakly compatible, but they are not weakly compatible.

Remark 1.6. Every mapping A : X → X and the identity mapping of X, idX ,
are weakly compatible, while A : X → X and idX are owc iff A has a fixed
point.

Lemma 1.7. [44] If A and S have a unique coincidence point w = Ax = Sx,
then w is the unique common fixed point of A and S.

Definition 1.8. 1) A point x ∈ X is said to be a coincidence point of f and F
if fx ∈ Fx. We denote by C(f, F ) the set of all coincidence points of f and F .

2) A point x ∈ X is a fixed point of F if x ∈ Fx.
3) A point x ∈ X is a stationary point of F or a strict fixed point if Fx = {x}.
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Definition 1.9. [41] The mappings f : X → X and F : X → B(X) are δ-
compatible if limn→∞ δ(Ffxn, fFxn) = 0, whenever {xn} is a sequence in X
such that fFxn ∈ B(X), fxn → t and Fxn → {t} as n →∞ for some t ∈ X.

Definition 1.10. [43] The hybrid pair (f, F ), f : X → X and F : X → B(X)
is weakly compatible iff for all x ∈ C(f, F ), fFx = Ffx.

If the pair (f, F ) is δ-compatible, then it is weakly compatible, but the
converse is not true in general, see [43].

Recently, Abbas and Rhoades [5], extended the notion of owc mappings to
hybrid pairs.

Definition 1.11. [5] The hybrid pair (f, F ), f : X → X and F : X → CB(X)
is owc iff there exists x ∈ C(f, F ) such that fFx ⊂ Ffx.

Example 1.12. Let X = [0, 2] with usual metric. Define f : X → X and
F : X → B(X) by:

fx =
{

0 if x = 0,
2− x if x 6= 0 and Fx =

{
[0, x] if x ≤ 1,
[0, 2x] if x > 1 .

Clearly, C(f, F ) = {0, 1}, Ff0 = fF0 = {0} and Ffx 6= fFx for all
x ∈ (0, 2]. Hence, the pair (f, F ) is owc, but it is not weakly compatible.

Remark 1.13. It is obvious that 0 ∈ F0 = {0} and 1 ∈ F1 = [0, 1]. Therefore,
0 and 1 are fixed points for f and F and only 0 is a stationary fixed point for
f and F .

In [64] and [65], the study of fixed points for mappings satisfying implicit
relations was introduced and the study of a pair of hybrid mappings satisfying
implicit relations was initiated in [66].

2. Implicit relations

Let ψ : R+ → R+ satisfying
(i) ψ(t) < t for all t > 0
(ii) ψ is increasing.
Define Ψ = {ψ : ψ satisfies (i) and (ii) above}.
Let G6 denote the family of all real mappings G(t1, t2, t3, t4, t5, t6) : R6

+ →
R satisfying the following conditions:

(G1) : G is increasing in variable t1 and decreasing in variables t2, t5 and t6.
(G2) : G(t, t, 0, 0, t, t) ≥ 0 for all t > 0.

Example 2.1. G(t1, t2, t3, t4, t5, t6) = t1 − k max{t2, t3, t4, t5, t6}, 0 ≤ k ≤ 1.
(G1) : Obviously.
(G2) : G(t, t, 0, 0, t, t) = 0 for all t > 0.

Example 2.2. G(t1, t2, t3, t4, t5, t6) = tp1−atp2−(1−a)max{αtp3, βtp4, t
p
2
3 t

p
2
6 , t

p
2
5 t

p
2
6 },

0 < a, α, β ≤ 1 and p ≥ 1.
(G1) and (G2) as in Example 2.1
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Example 2.3. G(t1, t2, t3, t4, t5, t6) = t1−at2−b max{t3, t4}−c max{t2, t3, t4}−
d max{t5, t6}, a, b, c > 0, d ≥ 0 and a + d + c ≤ 1.

(G1) : Obviously.
(G2) : G(t, t, 0, 0, t, t) = [1− (a + d + c)]t ≥ 0 for all t > 0.

Example 2.4. G(t1, t2, t3, t4, t5, t6) = t1 − ψ(max{t2, t3, t4, t5, t6}), where ψ ∈
Ψ.

(G1) : Obviously.
(G2) : G(t, t, 0, 0, t, t) = t− ψ(t) > 0 for all t > 0.

Example 2.5.
G(t1, t2, t3, t4, t5, t6) = tp1 − ψ(atp2 − (1 − a)max{αtp3, βtp4, t

p
2
3 t

p
2
6 , t

p
2
5 t

p
2
6 }), 0 <

a, α, β ≤ 1 and ψ ∈ Ψ.
(G1) and (G2) as in Example 2.4.

Example 2.6. G(t1, t2, t3, t4, t5, t6) = t31 − at32 − b
t25t6 + t5t

2
6

t3 + t4 + 1
, where a, b > 0

and a + 2b ≤ 1.
(G1) : Obviously.
(G2) : G(t, t, 0, 0, t, t) = [1− (a + 2b)]t3 ≥ 0 for all t > 0.

Example 2.7. G(t1, t2, t3, t4, t5, t6) = t21−c1 max{t22, t23, t24}−c2 max{t3t6, t4t5}−
c3t5t6,

c1, c2, c3 ≥ 0, c1 + 2c2 + c3 < 1.

Example 2.8. G(t1, t2, t3, t4, t5, t6) = t1 − φ(t2, t3, t4, t5, t6), where φ : R5
+ →

R+ is increasing in variables t2, t5 and t6 and satisfies for all t > 0
φ(t, t, α1t, α2t, α3) < t, where α1 + α2 + α3 = 4.

Example 2.9. G(t1, t2, t3, t4, t5, t6) = t1−h max{t2, t3, t4}−(1−h)(at5+bt6)},
0 ≤ h < 1, a, b ≥ 0 and a + b ≤ 1.

Example 2.10. G(t1, t2, t3, t4, t5, t6) = t2p
1 − aψ0(t

2p
2 )−

(1−a)max{ψ1(t22p), ψ2(t
q
3t

q′
4 )ψ3(tr5t

r′
6 ),

ψ4(
1
2 ts3t

s′
6 ), ψ5(

1
2 tl4t

l′
5 }, where

ψi ∈ Ψ, i = 0, 1, 2, 3, 4, 5, 0 ≤ a ≤ 1 and 0 < p, q, q′, r, r′, s, s′, l, l′ ≤ 1, such that
2p = q + q′ = r + r′ = s + s′ = l + l′.

Example 2.11.
G(t1, t2, t3, t4, t5, t6) = t1− min{max{t3, t4}, t5, t6}−ϕ(max{t2, t3, t4, t5, t6},

ϕ ∈ Ψ.
(G1) : Obvious.
(G2) : G(t, t, 0, 0, t, t) = t− ϕ(t) > 0 for all t > 0.

Example 2.12. G(t1, t2, t3, t4, t5, t6) = t1 −max{t2, (t3 + t4)/2, (t5 + t6)/2}.
Example 2.13. G(t1, ...t6) = t1 − φ(max{t2, t3, t4, k(t5 + t6)/2}), where 0 <
k ≤ 1 and φ ∈ Ψ.

Example 2.14. G(t1, t2, t3, t4, t5, t6) = t1 − max{ct2, ct3, ct4), at5 + bt6}, 0 ≤
c < 1, a, b ≥ 0 and a + b ≤ 1.
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3. Main Results

Theorem 3.1. Let (X, d) be a symmetric space, f, h : X → X and F, H : X →
B(X) satisfying
(3.1)

G(δ(Fx,Hy), d(fx, hy), D(fx, Fx), D(hy, Hy), D(fx, Hy), D(hy, Fx)) < 0

for all x, y ∈ X, where G ∈ G6. Then, f, h,G and H have at most a common
fixed point in X which is a stationary point of F and H.

Proof. Let z be a common fixed point of f, h,G and H. Hence, z = fz ∈ Fz
and z = hz ∈ Hz. Using (3.1) and (G1) we have successfully

0 > G(δ(Fz,Hz), d(fz, hz), D(fz, Fz), D(hz,Hz), D(fz, Hz), D(hz, Fz))
≥ G(δ(Fz,Hz), δ(Fz,Hz), 0, 0, δ(Fz, Hz), δ(Fz, Hz))

which is a contradiction of (G2). Therefore, Fz = Hz = {z}. Assume that
w 6= z is another common fixed point of f, h,G and H. Applying (3.1) and (G1)
we get

0 > G(δ(Fz, Hw), d(fz, hw), D(fz, Fz), D(hw,Hw), D(fz, Hw), D(hw, Fz))
≥ G(d(z, w), d(z, w), 0, 0, d(z, w), d(z, w)).

which is a contradiction of (G2). Thus, z is unique. 2

Theorem 3.2. Let (X, d) be a symmetric space, f, h : X → X and F, H : X →
B(X) satisfying (3.1). Suppose that the pairs (f, F ) and (h, H) are owc. Then,
f, h, G and H have a unique common fixed point in X which is a stationary
point of F and H.

Proof. Since the pairs (f, F ) and (h,H) are owc, there exist u, v ∈ X such
that fu ∈ Fu and fFu ⊂ Ffu and hv ∈ Hv and hHv ⊂ Hhv. It follows that
ffu ∈ Ffu and hhv ∈ Hhv. Let us show that z = fu = hv.

If fu 6= hv, using (3.1) and (G1) we have successfully

0 > G(δ(Fu,Hv), d(fu, hv), D(fu, Fu), D(hv, Hv), D(fu, Hv), D(hv, Fu))
≥ G(d(fu, hv), d(fu, hv), 0, 0, d(fu, hv), d(fu, hv))

which is a contradiction of (G2). Hence fu = hv. We prove that z is a fixed
point of f .

If fz 6= z, using (3.1) and (G1), we get

0 > G(δ(Fz, Hv), d(fz, hv), D(fz, Fz), D(hv, Hv), D(fz,Hv), D(hv, Fz))
≥ G(d(fz, hv), d(fz, hv), 0, 0, d(fz, hv), d(fz, hv))

which is a contradiction of (G2). Hence, z = fz. Similarly, z = hz = fz. On
the other hand, z = fz ∈ Fz and z = hz ∈ Hz and so z is a common fixed
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point of f, h,G and H. By Theorem 3.1, z is unique and is a stationary point
of F and H. 2

Theorem 3.2 generalizes the Theorems of [4, 8, 9, 17, 22, 27, 31, 32, 33, 41,
67, 72, 74, 79, 82, 83].

If we combine Examples 2.10 and 2.11 with Theorem 3.1, we obtain a gen-
eralization of the Theorems of [60] and [51].

Theorem 3.3. Let (X, d) be a symmetric space and f, g, S, T : X → X satis-
fying

(3.2) G(d(fx, gy), d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(Sx, gy)) < 0

for all x, y ∈ X with fx 6= gy, where G satisfies the condition (G2). Suppose
that the pairs (f, S) and (g, T ) are owc. Then, f, g, S and T have a unique
common fixed point in X.

Proof. Since the pairs (f, S) and (g, T ) are owc, there exist u, v ∈ X such
that fu = Su and fSu = Sfu and gv = Tv and gTv = Tgv. Let us show that
z = fu = gv.

If fu 6= gv, using (3.2) we have

G(d(fu, gv), d(Su, Tv), d(fu, Su), d(gv, Tv), d(fu, Tv), d(Su, gv))
= G(d(fu, gv), d(fu, gv), 0, 0, d(fu, gv), d(fu, gv))

which is a contradiction of (G2). Hence, fu = gv. In a similar manner, z =
fz = gz. The uniqueness of z follows from (3.2) and (G2). 2

By Theorem 3.3 and Examples 2.1-2.23 we get the Theorems of [44].
The following Corollary generalizes Theorem 5 of Ciric et al. [25].

Colorallary 3.4. Let (X, d) be a symmetric space and P1, P2, ..., P2n, Q0, Q1 :
X → X satisfying

i) P2(P4...P2n) = (P4...P2n)P2,
P2P4(P6...P2n) = (P6...P2n)P2P4,
.......................................
P2...P2n−2(P2n) = (P2n)P2...P2n−2,
Q0(P4...P2n) = (P4...P2n)Q0,
Q0(P6...P2n) = (P6...P2n)Q0,
..................................
Q0P2n = P2nQ0,
P1(P3...P2n−1) = (P3...P2n−1)P1,
P1P3(P5...P2n−1) = (P5...P2n−1)P1P3,
............................................
P1...P2n−3(P2n−1) = P2n−1(P1...P2n−3),
Q1(P3...P2n−1) = (P3...P2n−1)Q1,
Q1(P5...P2n−1) = (P5...P2n−1)Q1,
.......................................



General common fixed point theorem for occasionally weakly..... 95

Q1P2n−1 = P2n−1Q1,
ii)

d(Q0x,Q1y) < max{ψ(d(P2P4...P2nx, P1P3...P2n−1y)),
ψ(d(P2P4...P2nx,Q0x)), ψ(d(P1P3...P2n−1y, Q1y)),
ψ(d(Q0x, P1P3...P2n−1y)), ψ(d(P2P4...P2nx,Q1y))}

for all x, y ∈ X with Q0x 6= Q1y and ψ satisfies (i). Suppose that the pairs
(Q0, P2P4...P2n) and (Q1, P1P3...P2n−1) are owc. Then, P1, P2, ..., P2n, Q0 and
Q1 have a unique common fixed point in X.

Proof. It follows from Theorem 3.3 and Example 2.4 by putting f = Q0,
g = Q1, S = P2P4...P2n, T = P1P3...P2n−1. 2

In the same manner we can generalize Theorem 6 of Ciric et al. [25].
Theorem 3.3 generalizes also the Theorems of [1, 2, 3, 10, 12, 13, 20, 26, 36,

37, 39, 44, 46, 49, 51, 52, 53, 55, 56, 58, 59, 60, 62, 63, 65, 76, 78, 80, 81].
If we combine Examples 2.10 and 2.11 with Theorem 3.3, we obtain gener-

alizations of the Theorems of [60] and [51].
In the same manner, we can prove the following theorems.

Theorem 3.5. Let (X, d) be a symmetric space, f, h : X → X and F, H : X →
CB(X) satisfying
(3.3)

G(δ(Fx, Hy), d(fx, hy), D(fx, Fx), D(hy, Hy), δ(fx, Hy), δ(hy, Fx)) < 0

for all x, y ∈ X. Suppose that the pairs (f, F ) and (h,H) are owc. Then,
f, h, G and H have a unique common fixed point in X which is a stationary
point of F and H.

If we combine Theorem 3.5 and Examples 2.1 and 2.2, we get corollaries
which generalize Theorems 2.1 and 2.5 of [6].

Theorem 3.6. Let (X, d) be a symmetric space and fn, S, T : X → X, n ≥ 1
satisfying

G(d(f1x, fny), d(Sx, Ty), d(f1x, Sx), d(fny, Ty), d(f1x, Ty), d(Sx, fny)) < 0,

n ≥ 2, for all x, y ∈ X with f1x 6= fny, n ≥ 2, where G satisfies the condition
(G2). Suppose that the pairs (f1, S) and (fn, T ), n ≥ 2 are owc. Then, fn, S
and T have a unique common fixed point in X.

Theorem 3.6 generalizes Theorems of [13, 20, 28, 36, 52, 54, 65].

Theorem 3.7. Let (X, d) be a symmetric space, f, h : X → X and
Fn : X → B(X) satisfying
(3.4)
G(δ(F1x, Fny), d(fx, hy), D(fx, F1x), D(hy, Fny), D(fx, Fny), D(hy, F1x)) < 0,

n ≥ 2, for all x, y ∈ X. Suppose that the pairs (f, F1) and (h, Fn) are owc.
Then, f, h and Fn have a unique common fixed point in X which is a stationary
point of Fn, n ≥ 1.
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Theorem 3.8. Let (X, d) be a symmetric space, f, h : X → X and
Fn : X → CB(X), n ≥ 1 satisfying
(3.5)
G(δ(F1x, Fny), d(fx, hy), D(fx, F1x), D(hy, Fny), δ(fx, Fny), δ(hy, F1x)) < 0

for all x, y ∈ X. Suppose that the pairs (f, F1) and (h, Fn), n ≥ 1 are owc.
Then, f, h and Fn have a unique common fixed point in X which is a stationary
point of Fn, n ≥ 1.

Let L6 denote the family of all real mappings L(t1, t2, t3, t4, t5, t6) : R5
+ → R

satisfying the following conditions:
(L1) : L is increasing in variable t1 and decreasing in variables t2, t5 and t6.
(L2) : L(t, t, 0, 0, 2t) ≥ 0 for all t > 0.
Similarly, we can prove the following theorems.

Theorem 3.9. Let (X, d) be a symmetric space, f, h : X → X and
F,H : X → B(X) satisfying
(3.6)
L(δ(Fx, Hy), d(fx, hy), D(fx, Fx), D(hy,Hy), D(fx,Hy) + D(hy, Fx)) < 0

for all x, y ∈ X, where L ∈ L6. Suppose that the pairs (f, F ) and (h, H) are
owc. Then, f, h,G and H have a unique common fixed point in X which is a
stationary point of F and H.

Theorem 3.9 generalizes a Theorem of [77].
Let Ψ5 denote the set of all functions ψ : [0,∞)5 → [0,∞) such that
(i) ψ is continuous,
(ii) ψ is increasing in all the variables,
(iii) ψ(t1, t2, t3, t4, t5) = 0 if and only if t1 = t2 = t3 = t4 = t5 = 0.

Theorem 3.10. Let (X, d) be a symmetric space, f, h : X → X and F,H :
X → B(X) satisfying

φ1(δ(Fx, Hy))
< ψ1(d(fx, hy), D(fx, Fx), D(hy,Hy), D(fx, Hy), D(hy, Fx))) (3.7)

−ψ2(d(fx, hy), D(fx, Fx), D(hy, Hy), D(fx, Hy), D(hy, Fx)))

for all x, y ∈ X, where ψ1, ψ2 ∈ Ψ5 and φ1(x) = ψ1(x, x, x, x, x) for all x ∈
[0,∞). Suppose that the pairs (f, F ) and (h,H) are owc. Then, f, h,G and H
have a unique common fixed point in X which is a stationary point of F and H.

Proof. Since the pairs (f, F ) and (h,H) are owc, there exist u, v ∈ X such
that fu ∈ Fu and fFu ⊂ Ffu and hv ∈ Hv and hHv ⊂ Hhv. It follows that
ffu ∈ Ffu and hhv ∈ Hhv. Let us show that z = fu = hv.
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If fu 6= hv, using (3.7), we have successfully

φ1(d(fu, hv))
≤ φ1(δ(Fu, Hv))
< ψ1(d(fu, hv), D(fu, Fu), D(hv, Hv), D(fu,Hv), D(hv, Fu)))

−ψ2(d(fu, hv), D(fu, Fu), D(hv,Hv), D(fu, Hv), D(hv, Fu)))
≤ ψ1(d(fu, hv), 0, 0, d(fu, hv), d(fu, hv)))

−ψ2(d(fu, hv), 0, 0, d(fu, hv), d(fu, hv)))
≤ ψ1(d(fu, hv), d(fu, hv), d(fu, hv), d(fu, hv), d(fu, hv)))
= φ1(d(fu, hv))

which is a contradiction. Hence, fu = hv. We prove that z is a fixed point of
f . Similarly, z = hz = fz. On the other hand, z = fz ∈ Fz and z = hz ∈ Hz
and so z is a common fixed point of f, h, G and H. As in Theorem 3.1, applying
(3.7) we obtain that z is unique and is a stationary point of F and H. 2

If f, g, F,H are single-valued in Theorem 3.10, we get a generalization of the
Theorems of Rao et al. [70] and [71].

4. Applications

In this section we establish several common fixed point theorems for hybrid
pairs.

I) Define Φ = {ϕ : R+ → R+ is a Lebesgue integrable mapping which is

summable and satisfies

ε∫

0

ϕ(t)dt > 0 for all ε > 0}. Now, we give examples of

mappings satisfying inequalities of integral type.

Example 4.1.

G(t1, t2, t3, t4, t5, t6) =

t1∫

0

ϕ(t)dt− ψ(max{
t2∫

0

ϕ(t)dt,

t3∫

0

ϕ(t)dt,

t4∫

0

ϕ(t)dt,

t5∫

0

ϕ(t)dt,

t6∫

0

ϕ(t)dt}),

ψ ∈ Ψ.
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Example 4.2.

G(t1, t2, t3, t4, t5, t6) =

= (

t1∫

0

ϕ(t)dt)p − ψ(a(

t2∫

0

ϕ(t)dt)p − (1− a)max{α(

t3∫

0

ϕ(t)dt)p, β(

t4∫

0

ϕ(t)dt)p,

(

t3∫

0

ϕ(t)dt)
p
2 · (

t6∫

0

ϕ(t)dt)
p
2 , (

t5∫

0

ϕ(t)dt)
p
2 · (

t6∫

0

ϕ(t)dt)
p
2 }),

0 ≤ a, α, β ≤ 1, p ≥ 1 and ψ ∈ Ψ.

Example 4.3.

G(t1, t2, t3, t4, t5, t6) =

t1∫

0

ϕ(t)dt− α max{
t2∫

0

ϕ(t)dt,

t3∫

0

ϕ(t)dt,

t4∫

0

ϕ(t)dt}

− (1− α) (a

t5∫

0

ϕ(t)dt + b

t6∫

0

ϕ(t)dt),

0 ≤ α < 1, a, b ≥ 0 and a + b ≤ 1.

Example 4.4.

G(t1, t2, t3, t4, t5, t6) =

t1∫

0

ϕ(t)dt− ψ(max{
t2∫

0

ϕ(t)dt,

t3∫

0

ϕ(t)dt,

t4∫

0

ϕ(t)dt,
1
2
(

t5∫

0

ϕ(t)dt +

t6∫

0

ϕ(t)dt)}),

ψ ∈ Ψ.

Example 4.5. G(t1, t2, t3, t4, t5, t6) =

φ(t1,t2,t3,t4,t5,t6)∫

0

ϕ(t)dt, where φ : R6
+ → R

is increasing in variable t1, decreasing in variables t2, t5 and t6 and satisfies
φ(u,u,0,0,u,u)∫

0

ϕ(t)dt ≥ 0 for all u > 0 and ϕ : R+ → R is a Lebesgue integrable

mapping which is summable.

For example φ(t1, t2, t3, t4, t5, t6) = t1 − k max{t2, t3, t4, t5, t6}, 0 ≤ k ≤ 1

and ϕ(t) =
3π

4(1 + t)2
cos(

3π

4(1 + t)
), t ∈ R+.
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By Theorems 3.2-3.3 and Examples 4.1-4.5, we get generalizations of Theo-
rems of [11, 16, 30], Theorem 2.1 of [8], Theorems of [29], Theorem 2.1 of [61],
and Theorems of [18], [80].

II) Let A ∈ (0,∞], R+
A = [0, A) and F : R+

A → R satisfying
(i) F (0) = 0 and F (t) > 0 for each t ∈ (0, A),
(ii) F is increasing on R+

A,
Define z[0, A) = {F : F satisfies (i) and (ii)}.
The following examples were given in [85].
1) Let F (t) = t, then F ∈ z[0, A) for each A ∈ (0, +∞].
2) Suppose that ϕ is non-negative, Lebesgue integrable on [0, A) and satisfies

ε∫

0

ϕ(t)dt > 0 for each ε ∈ (0, A).

Let F (t) =

t∫

0

ϕ(s)ds, then F ∈ [0, A).

3) Suppose that ψ is non-negative, Lebesgue integrable on [0, A) and satisfies

ε∫

0

ψ(t)dt > 0 for each ε ∈ (0, A)

and ϕ is non-negative, Lebesgue integrable on [0,

A∫

0

ψ(s)ds) and satisfies

ε∫

0

ϕ(t)dt > 0 for each ε ∈ (0,

A∫

0

ψ(s)ds).

Let F (t) =

t∫

0

ψ(s)ds

∫

0

ϕ(u)du, then F ∈ z[0, A).

4) If G ∈ [0, A) and F ∈ z[0, G(A − 0)), then a composition mapping

F ◦G ∈ z[0, A). For instance, let H(t) =

F (t)∫

0

ϕ(s)ds, then H ∈ z[0, A) whenever

F ∈ z[0, A) and ϕ is non-negative, Lebesgue integrable on z[0, F (A− 0)) and
satisfies

ε∫

0

ϕ(t)dt > 0 for each ε ∈ (0, F (A− 0)).
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Example 4.6.

G(t1, t2, t3, t4, t5, t6) = F (t1)− ψ(max{F (t2), F (t3), F (t4), F (t5), F (t6)}),

ψ ∈ Ψ.
(G1) : Obviously.
(G2) : G(t, t, 0, 0, t, t) = 0 for all t > 0.

Example 4.7.

G(t1, t2, t3, t4, t5, t6)
= (F (t1))p − ψ(a(F (t2))p −

(1− a)max{α(F (t3))p, β(F (t4))p, (F (t3))
p
2 · (F (t6))

p
2 ,

(F (t5))
p
2 · (F (t6))

p
2 }),

where 0 ≤ α, a, b ≤ 1 and ψ ∈ Ψ.

Example 4.8. G(t1, t2, t3, t4, t5, t6) = F (t1)−a(t2)F (t2)+ b(t2)(F (t3)+F (t4))
−c(t2)min{F (t5), F (t6)}, where a, b, c : [0,∞) → [0, 1) are increasing func-

tions satisfying the condition a(t) + 2b(t) + c(t) < 1 for all t > 0.

Let A = D = supx,y∈A d(x, y) if D = ∞ and A > D if D < ∞
By Theorems 3.2-3.3 and Examples 4.6-4.8, we get generalizations of the

Theorems of [11], [16], [85], [14] and [22].

Remark 4.9. In the Theorems of [5] and [21], to prove that z = Tz, the
authors used the inequality: d(fx, gy) ≤ H(Tx, Sy)” which is false because
”a ∈ A and b ∈ B implies d(a, b) ≤ H(A,B)” is not true in general, as shown
by the following example

Remark 4.10. Let d(x, y) = |x− y|, A = [0, 1
2 ] and B = [ 14 , 1]. We have 0 ∈ A

and 1 ∈ B, but d(0, 1) = 1 > H(A,B) = 1
2 . Therefore, Theorems of [5] and [21]

are false as it is proved by the following example.

Example 4.11. Let X = {0, 1}, Sx = Tx = 1 − x and Fx = Gx = {0, 1} for
all x ∈ X.

We have T (0) ∈ F (0) and T (1) ∈ F (1); i.e., T and F have coincidence
points. As TF (0) = {0, 1} = FT (0) and TF (1) = {0, 1} = FT (1), it follows
that the pair (T, F ) is weakly compatible and so it is owc. Since T 2(0) 6= T (0)
and T 2(1) 6= T (1), T and F have no common fixed point.

To correct these errors, the function H in [5] and [21] should be replaced by
the function δ.

There are also some errors in [5].
1) In the abstract of [5], the authors said: We obtain several fixed point

theorems for hybrid pairs of single-valued and multivalued occasionally weakly
compatible maps defined on a symmetric space satisfying a contractive condition
of integral type, but their theorems were proved in metric spaces except for
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Corollary 2.4. Therefore, in Theorems 2.1, 2.2, 2.6, 2.7 and Corollaries 2.3, 2.5,
metric space should be replaced by symmetric space.

2) The condition (g1) should be: g is nondecreasing in the 1st 4th and 5th
variables.

3) The condition (g2) is not needed in the proof of Theorem 2.6.
4) The condition (g3) should be only: if u ∈ R+ is such that u ≤ g(u, 0, 0, u, u),

then u = 0.
5) The condition φ(2t) ≤ 2φ(t) is not needed in the proof of Theorem 2.7.
There are also some errors in the paper [6].
1) In the abstract of [6], the authors said: We obtain several fixed point

theorems for hybrid pairs of single valued and multivalued occasionally weakly
compatible maps defined on a symmetric space, using, the δ distance, but their
theorems were proved in metric spaces except for Corollary 2.4. Therefore, in
Theorems 2.1, 2.6, 2.7 and Corollaries 2.2, 2.4, metric space should be replaced
by symmetric space.

The same errors 2), 3), 4) and 5) of [6] are in [6].

Remark 4.12. In the proof of Lemma 1 of [84] and Theorem 2.1 of [34], the
authors applied the inequality

a ≤ b + c =⇒
a∫

0

ϕ(t)dt ≤
b∫

0

ϕ(t)dt +

c∫

0

ϕ(t)dt

which is false in general, as shown by the following example.

Example 4.13. Let ϕ(t) = t, a = 1, b =
1
2

and c =
3
4
. Then

1∫

0

ϕ(t)dt =
1
2

>

1
2∫

0

ϕ(t)dt +

3
4∫

0

ϕ(t)dt

=
1
8

+
9
32

=
13
32

.

To correct these errors, the authors should follow the proof of Theorem 2 of
[73].

Remark 4.14. In the proof of Theorem 1 of [47], the authors applied the
inequality

lim
n→∞

d(xn, xn+1) = 0 =⇒ {xn} is a Cauchy sequence

which is false in general. It suffices to take xn =
1
n

, n ∈ N∗. Thus, to correct

this error, the authors should follow the proof of Theorem 2 of [69].

The following Examples support our Theorem 3.3 and 3.2 respectively.
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Example 4.15. Let X = [0, 10] be endowed with the symmetric d (x, y) =
(x− y)2 and

Sx =
{

3 if x ∈ ]0, 2] ,
0 if x ∈ {0} ∪ ]2, 10] , fx =





0 if x = 0,
x + 2 if x ∈ ]0, 2] ,
x− 2 if x ∈ ]2, 10]

,

Tx =
{

0 if x ∈ [0, 2] ,
4 if x ∈ ]2, 10] , gx =





0 if x = 0,
x + 5 if x ∈ ]0, 2] ,
x− 2 if x ∈ ]2, 10]

.

The pairs (S, f) and (T, g) are owc because Sf(0) = fS(0) = Tg(0) =
gT (0) = 0, but Sf(1) = 0 6= fS(1) = 1 and Tg(6) = 4 6= gT (6) = 2.

Now, we begin to verify the rest of conditions of Theorem 3.3.
Let F (t1, t2, t3, t4, t5, t6) = t1 − h max {t2, t3, t4, t5, t6)}, 0 < h ≤ 1.
Now, we verify that (A,S) and (B, T ) satisfy all the conditions of Theorem

3.2. Set

R = d(Sx, Ty)− h max{d(fx, gy), d(fx, fx),
d(gy, Ty), d(gy, Sx), d(fx, Ty)}, 0 < h ≤ 1.

We have the following cases.
1) If x = 0 and y ∈ (0, 2], we get R = −h(y + 5)2 < 0 for all 0 < h ≤ 1.
2) If x = 0 and y ∈ (2, 10], we get

R = 16− h max
y∈(2,10]

{
(y − 2)2, (y − 6)2, 16

}
< 0

for h >
16
64

=
1
4

and so there exists 0 < h ≤ 1.

3) If x ∈ (0, 2] and y = 0, we get

R = 9− h max
x∈(0,2]

{
(x + 2)2 , (x− 1)2 , 9

}
< 0

for h >
9
16

and so there exists 0 < h ≤ 1.

4) If x, y ∈ (0, 2] we get

R = 9− h max
{

(x− y − 3)2, (x− 1)2 , (y + 5)2,
(y + 2)2, (x + 2)2

}
< 0

for h >
9
49

and so there exists 0 ≤ h ≤ 1.

5) If x ∈ (0, 2] and y ∈ (2, 10], we get

R = 1− h max
{

(x− y + 4)2 , (x− 1)2 , (y − 6)2 ,

(y − 5)2 , (x− 1)2

}
< 0

for h >
1
36

and so there exists 0 ≤ h ≤ 1.

6) If x ∈ (2, 10] and y = 0, we get R < 0 for all 0 < h ≤ 1.
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In the same manner, if x ∈ (2, 10] and y ∈ (0, 2], we get R < 0 for all
0 < h ≤ 1.

7) If x, y ∈ (2, 10] we get

R = 16− h max
x,y∈(2,10]

{
(x− y)2, (x− 2)2 , (y − 6)2,

(y − 2)2 , (x− 6)2

}
< 0

for h >
16
64

=
1
4

and so there exists 0 < h ≤ 1. All conditions of Theorem 3.4
are verified and 0 is the unique common fixed point of f , g, S and T .

Example 4.16. Let X = [0, 10] be endowed with the symmetric d (x, y) =
(x− y)2 and

Sx =
{

[1, 3] if x ∈ ]0, 2] ,
{0} if x ∈ {0} ∪ ]2, 10] , fx =





0 if x = 0,
x + 2 if x ∈ ]0, 2] ,
x− 2 if x ∈ ]2, 10]

,

Tx =
{ {0} if x ∈ [0, 2] ,

[1, 4] if x ∈ ]2, 10] , gx =





0 if x = 0,
x + 5 if x ∈ ]0, 2] ,
x− 2 if x ∈ ]2, 10]

.

The pairs (S, f) and (T, g) are owc because Sf(0) = fS(0) = Tg(0) =
gT (0) = {0}, but Sf(1) = {0} 6= fS(1) = f([1, 3]) = (0, 1] ∪ [3, 4] and Tg(3) =
{0} 6= gT (3) = g([1, 4]) = [6, 7] ∪ (0, 2].

Now, we begin to verify the rest of conditions of Theorem 3.2.
Let F (t1, t2, t3, t4, t5, t6) = t1 − h max {t2, t3, t4, t5, t6)}, 0 < h ≤ 1.

Now, we verify that (A, S) and (B, T ) satisfy all the conditions of Theorem
4.2. Set

R = δ(Sx, Ty)− h max{d(fx, gy), D(fx, Sx),
D(gy, Ty), D(gy, Sx), D(fx, Ty)}

We have the following cases.
1) If x = 0 and y ∈ (0, 2], we get R = −h(y + 5)2 < 0 for all 0 < h ≤ 1.

2) If x = 0 and y ∈ (2, 10], we get

δ(Sx, Ty) = 16 =
1
4

max
y∈(2,10]

(y − 2)2

=
1
4

max
y∈(2,10]

d(fx, gy)

<
1
4

max{d(fx, gy), D(fx, Sx), D(gy, Ty),

D(gy, Sx), D(fx, Ty)}
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4) If x ∈ (0, 2] and y = 0, we get

δ(Sx, Ty) = 9 =
9
16

max
x∈(0,2]

(x + 2)2

=
9
16

max
x∈(0,2]

d(fx, gy)

≤ 9
16

max{d(fx, gy), D(fx, Sx), D(gy, Ty),

D(gy, Sx), D(fx, Ty)}

5) If x, y ∈ (0, 2] we get

δ(Sx, Ty) = 9 =
9
49

max
y∈(0,2]

(y + 5)2

=
9
49

max
y∈(0,2]

D(gy, Ty).

<
9
49

max{d(fx, gy), D(fx, Sx), D(gy, Ty),

D(gy, Sx), D(fx, Ty)}

6) If x ∈ (0, 2] and y ∈ (2, 10], we get

δ(Sx, Ty) = 9 =
9
25

max
y∈(0,2]

(y − 5)2

=
9
25

max
y∈(0,2]

D(gy, Sx).

<
9
25

max{d(fx, gy), D(fx, Sx), D(gy, Ty),

D(gy, Sx), D(fx, Ty)}

7) If x ∈ (2, 10] and y = 0, we get R < 0 for all 0 < h ≤ 1.
In the same manner, if x ∈ (2, 10] and y ∈ (0, 2], we get R < 0 for all

0 < h ≤ 1.
8) If x, y ∈ (2, 10] we get

δ(Sx, Ty) = 16 =
16
64

max
y∈(0,2]

(y − 2)2

=
1
4

max
y∈(0,2]

D(gy, Sx).

<
1
4

max{d(fx, gy), D(fx, Sx), D(gy, Ty),

D(gy, Sx), D(fx, Ty)}

All the conditions of Theorem 3.2 are satisfied and 0 is the unique common
fixed point of f, g, S and T which is a stationary point of S and T .
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