
NOVI SAD J. MATH.
VOL. 39, NO. 1, 2009, 111-121

A LIGHTWEIGHT CONFERENCE MANAGEMENT SYSTEM
ON ASP.NET

Ðord̄e Herceg1, Željko Marčićević2

Abstract. In this paper, a lightweight conference management system is pre-
sented, which was developed on ASP.NET and .NET Framework 3. The system
was used to support two conferences, held in 2008 and 2009. Features of the sys-
tem include participant registration, abstract and article submission, download of
conference materials, multilingual user interface, visit logging, role-based security,
user management and export of data in XML format. Complex software systems
can be difficult to maintain and, in an event of software or hardware failure, they
can cause unacceptable delays. Our aim was to create a system that is easy to de-
ploy, maintain, backup and restore.

AMS Mathematics Subject Classification (2000): 68U35

Key words and phrases: Conference Management Systems, ASP.NET

1. Introduction

A conference management system (CMS) is web-based software application that
supports the organization of scientific conferences. It helps conference organizers,
authors and reviewers perform their conference related duties.

There exist a variety of conference management systems. EasyChair [11] is a well
known system that is free, flexible, and easy to use, and has many features. Its primary
use is to help program chairs manage the refereeing process. However, it is not possi-
ble to install EasyChair on one’s own server. All EasyChair installations are hosted at
the server located at the University of Manchester Computer Science Department, and
access to EasyChair is available on request. ConfTool [12] is another system that pro-
vides similar services. Two versions exist: a free, open/shared source version, which
is limited to a maximum of 150 participants, and a commercial version which is more
flexible and has support for advanced features such as multiple payment options, user
role based access, bulk mail and data export functions. ConfTool can be installed on
one’s own server, and a hosted solution is also offered. OpenConf [13], based on PH-
P/MySQL, also exists in two versions: the Community Edition is free, and the Profes-
sional Edition is offered as a commercial product, with technical support and hosting
service. The free version can be installed on one’s own server, but it is subject to cer-
tain limitations imposed by the OpenConf License, which prohibits hiring a third-party
PHP/MySQL professional to set up and maintain the OpenConf installation. COMS

1Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, Novi Sad, Serbia
e-mail: herceg@dmi.uns.ac.rs

2Higher School of Professional and Business Studies, Vladimira Perića - Valtera 4, Novi Sad, Serbia
e-mail: marcic@uns.ac.rs

112 Ð. Herceg, Ž. Marčićević

[14] is a commercial system which is available as a Web application only. It provides
functions similar to those of other conference management systems.

The decision to develop our own conference management system, instead of using
one of readily available systems, was based on our evaluation of existing conference
management systems and several restrictions placed before us, most notably that the
system must be free of charge, easy to backup and restore, and that all data must be
available even in the event of an unrecoverable system failure. One of the consequences
of these restrictions was that the system had to be hosted on our server.

The CMS has to provide the following features:

• Online application of conference participants
• Online submittal of lecture abstracts and conference papers
• Tracking of participants’ lectures and their submissions
• Support for multiple languages in the user interface
• Support for a download section with conference materials and access control
• Different access rights for guests, authenticated users and administrators
• Simple user management
• Visit logging
• Easy backup of data
• Easy recovery from system failures
• Access to relevant data even in an event of a system failure

2. System architecture and usage scenarios

Microsoft Windows Server 2003 with Internet Information Services and
ASP.NET was chosen as the application server platform. Microsoft SQL Server 2008
was chosen for data storage, except for the download section, which is kept in the
file system. Figure 1 shows the overall structure of the CMS. Both the application
server and SQL Server are hosted on one computer, running under Microsoft Windows
Server 2003. Since the majority of users of the CMS come from the Internet, domain
user accounts are not necessary, and the server does not need to be a domain member.
ASP.NET Forms Authentication with SQL membership [8] was chosen instead. The
user database is kept on the SQL Server.

Figure 1: The structure of the CMS

A lightweight conference management system on ASP.NET 113

Conference participants access the CMS from the Internet, using their web browsers
and a secure (https) channel. Conference organizers can access the CMS either with the
web browser, or using a rich client application, which performs a full database backup
to an XML file. The rich client application connects to a web service, which provides
read-only access to all tables within the CMS database. A simplified form of backup
in XML format can also be obtained from the web application. In this case, the data
from multiple tables is aggregated in one denormalized table, which is then streamed
to the client. This table can be imported into Microsoft Office applications (Excel and
Access) for further processing.

The users are presented a web UI, consisting of a menu on the left, and the main
content on the right (Figure 2). The menu items are generated dynamically, and their
content depends on the user’s access level.

Figure 2: CMS main page, an administrator logged in

A typical usage scenario consists of the following steps:

• A guest user accesses the public part of the CMS and chooses to register.
• The user is presented the choice of entering existing user credentials or creating

a new username and password. An option to email a forgotten password to the
user is also provided.

• If the user chooses to create a new username and password, he/she does so. For
simplicity, user’s email address is his/her username.

• The user logs in to the CMS. New hyperlinks appear, enabling access to the data
entry forms.

• The user fills out the data entry forms and uploads his/her files (if any), or
• The user downloads files assigned to him/her by the administrators, such as re-

viewer’s comments, or preprints.
• The user then logs off the system, or chooses to browse, correct or cancel previ-

ously entered data.

114 Ð. Herceg, Ž. Marčićević

The organizers need to log in to the CMS in the same manner as the ordinary users,
and then can perform the following tasks:

• View and download all submissions, or submissions grouped by section,
• Upload new files to the download section,
• Export all submissions into an XML file,
• Activate and deactivate user accounts,
• Reset users’ passwords.

Guests can perform the following tasks:

• Access all the public information in the CMS
• Download public files from the download section, such as conference announce-

ments, instructions to authors, submission templates, etc.

3. Security in the CMS

Security is an important aspect of every web application [10]. Security in the CMS
is implemented using Forms authentication with URL authorization, which controls
access to specific web application directories by the role a user belongs to (Figure 3).
The root of a restricted directory subtree contains a web.config file, which specifies
access control entries (Listing 1). When an unauthenticated user attempts to access a
restricted page, he/she is redirected to the login page, where user credentials can be
entered.

An additional level of security is implemented in the download handler, which itself
resides in the publicly accessible part of the web site. Since the files from the download
section are not affected by the built-in security infrastructure, any user can request any
file from the download section. As the download section can contain both the publicly
accessible files, and the protected ones, we implemented custom security model, which
relies on custom XML files to specify per-folder security. A simple XML file, named
folderinfo.xml, containing only the <authorization> tag from web.config and its con-
tents, can be placed in any folder of the download section. Upon receiving client’s
request for a file, the download handler first searches for and reads the folderinfo.xml
file. Download is then either granted or denied, based on the access control entries in
the file. On the other hand, if the file is not present, access is granted by default.

<configuration>
...
<system.web>

...
<authorization>

<allow roles="Administrators" />
<deny users="*" />

</authorization>
</system.web>

</configuration>

Listing 1: Authorization configuration section of the web.config file

A lightweight conference management system on ASP.NET 115

Figure 3: URL authorization in the CMS application web site

Three levels of access are defined for the web application: guest, user and admin-
istrator. The first level contains publicly available pages and data, which is accessible
to anyone. The second level, containing data entry forms, is available only to authen-
ticated users (i.e. to the users which have a user account and a password). The data
displayed on web forms is filtered by the current user’s name, effectively restricting the
data that a particular user can see and modify. Users at the second level can only view
and modify their own data. The third level is for conference organizers (i.e. adminis-
trators) and it provides access to all the data, user management and database backup.

The LoginView ASP.NET control was used to restrict the HTML menu items dis-
played to the user, based on role membership. Listing 2 shows two blocks of server-side
code, one of which is processed and presented to the user at a time. The
<AnonymousTemplate> contains hyperlinks which are accessible to all users, and
the <LoggedInTemplate> contains hyperlinks which are visible to the authenticated
users only. In the cases where more subtle control of the user interface was required, a
combination of server-side code and named HTML blocks was used for precise control
of visibility of specific parts of the user interface.

<asp:LoginView ID="LoginView1" runat="server">
<AnonymousTemplate>

<p class="HeadingAdmin"> </p>
<p class="Admin">

<asp:HyperLink ID="hlLogin" runat="server"
NavigateUrl="~/Apps/Login/PLogin.aspx"
Text="Log in" meta:resourcekey="hlLogin" /></p>

116 Ð. Herceg, Ž. Marčićević

<p class="Admin">
<asp:HyperLink ID="hlCreateAccount" runat="server"
NavigateUrl="~/Apps/Login/CreateUser.aspx"
text="Create account"

meta:resourcekey="hlCreateAccount"/></p>
</AnonymousTemplate>
<LoggedInTemplate>

<p class="HeadingAdmin"> </p>
<p class="Admin">

<asp:HyperLink ID="hlMembers"
runat="server" NavigateUrl="~/Apps/Members"

Text="My data" meta:resourcekey="hlMembers" /></p>
<p class="Admin">

<asp:HyperLink ID="hlSignOut" runat="server"
NavigateUrl="~/Apps/Login/Logout.aspx" Text="Sign out"
meta:resourcekey="hlSignOut" /></p>

</LoggedInTemplate>
</asp:LoginView>

Listing 2: Selective display of menu items based on whether the user has logged in

4. Extensions to the ASP.NET HTTP pipeline
The ASP.NET core infrastructure is based on the HTTP pipeline [6]. It is an ex-

tendable, general-purpose framework for server-side programming that serves as the
foundation for ASP.NET pages, as well as web services. In order to implement visit
logging, we developed a HTTP module (marked with italics in Figure 4) which exam-
ines and logs all relevant HTTP requests. Visit logging is triggered by the Applica-
tion.EndRequest event (Listing 3). As the HTTP module is processed before control is
passed to the particular ASP.NET web page, all HTTP requests can be logged, even the
invalid ones. We chose to log only requests for certain file types, such as .aspx, .html
and .htm.

The download handler, which streams the files from the download section to the
client, was implemented as a HTTP handler (marked with italics in Figure 4).

public class LoggingModule: IhttpModule {
...
private void Application_EndRequest(Object source, EventArgs e)
{

HttpApplication application = (HttpApplication)source;
HttpContext context = application.Context;
if (context.AllErrors != null)

return;
string path0 = context.Request.Url.LocalPath.ToLower();
if (((path0.EndsWith(".aspx")) || (path0.EndsWith(".htm")) ||

path0.EndsWith(".html"))) ||
(path0.LastIndexOf(’.’) < path0.LastIndexOf(’/’)))

{
DbDMIWeb.Instance.LogVisit(context);

}
}

}

Listing 3: The Visit logging HttpModule

A lightweight conference management system on ASP.NET 117

Figure 4: Overview of the extensions to the ASP.NET HTTP pipeline

The visit logging HTTP module and the download HTTP handler are registered in
the ASP.NET HTTP pipeline in the system.web section of the web.config file (Listing
4).

<httpModules>
<add name="LoggingModule" type="LoggingModule"/>

</httpModules>
<httpHandlers>

<add verb="*" path="/Apps/Repository/Download.aspx"
type="Download"/>

</httpHandlers>

Listing 4: Registration of HTTP modules and handlers in web.config

5. Multilanguage support

ASP.NET provides support for localization, which is implemented in several classes
in the System.Resources and System.Globalization namespaces. Basically, the .NET
Framework has a mechanism for packaging sets of localized resources with ASP.NET
applications. Every web page in the application is supposed to have as many resource
sets as there are supported languages, for example, a web page main.aspx should have
the files main.aspx.resx and main.aspx.sr.resx, which contain the strings in English
and Serbian language respectively. The localized resources are bound to ASP.NET
controls declaratively, using the meta:resourcekey attribute, as shown in Listing 3.

118 Ð. Herceg, Ž. Marčićević

file MasterPage.master:
...
<asp:HyperLink ID="hlDeadlines" runat="server"

NavigateUrl="~/Datumi.aspx"
Text="Važni datumi"
meta:resourcekey="hlDeadlines">
</asp:HyperLink>

file MasterPage.master.resx:
<root>
...
<data name="hlDeadlines.Text" xml:space="preserve">
<value>Deadlines</value>

</data>
</root>

file MasterPage.master.sr.resx:
<root>
...
<data name="hlDeadlines.Text" xml:space="preserve">
<value>Važni datumi</value>

</data>
</root>

Listing 5: Declarative binding of local resources to an ASP.NET control

One of the problems with the built-in multilanguage support is that each web page
is processed separately on the web server, and the choice of language is not persisted
between different web pages. Therefore, each time a web page is processed, the culture
of the processing thread has to be set to the desired language.

This problem was addressed by implementing the BasePage class, which inherits
from System.Web.UI.Page. The BasePage class provides a special implementation of
the InitializeCulture method (Listing 6), enabling the web page to keep information
about the chosen language as a session variable. This way, each time a BasePage is
instantiated, its thread culture is set automatically to the chosen language. All web
pages in the CMS inherit from BasePage.

The user switches languages by clicking a dedicated hyperlink, which executes
code on the server, that sets the value of the session variable "lang" accordingly. In
addition, current user’s name is extracted from the HttpContext and put into the appro-
priate session variable. The UserName session variable is used throughout the CMS
for user-specific data filtering in data access forms.

public class BasePage {
...
protected override void InitializeCulture()
{

Session["Today"] = DateTime.Today;
Session["UserName"] = HttpContext.Current.User.Identity.Name;

string lan = Session["lang"] as string;

if ((lan == null) || (lan == string.Empty))
{

A lightweight conference management system on ASP.NET 119

lan = "en";
Session["lang"] = lan;

}
else

lan = lan.ToLower();

CultureInfo ci = CultureInfo.CreateSpecificCulture(lan);
Thread.CurrentThread.CurrentUICulture = ci;
Thread.CurrentThread.CurrentCulture = ci;
this.lang = lan;
base.InitializeCulture();

}
}

Listing 6: Setting the current thread’s culture in the BasePage class

6. Backup and export to XML

Backing up the CMS is simple, as only the SQL Server database and the web site
files need to be backed up. This task is easily automated using SQL Server maintenance
plans and a simple shell script. In the event of a critical failure, the CMS can be restored
in only two steps: by restoring the SQL Server database, and the CMS website files.

The application data are represented by a strongly typed dataset and are easily
exported to the XML format for backup or further processing. Using the built-in XML
support and a web service, which was developed specifically to provide backup from a
remote location, we provided export of all the tables from the database in XML format.
A specialized backup client was developed for that purpose. A simplified form of
backup in XML format can also be obtained from the web application (Figure 5). In
this case, the data from several tables is aggregated in one denormalized table, which
is then streamed to the client. This table can be imported into Microsoft Excel or
Microsoft Access for further processing.

Figure 5: A simplified backup of the conference application data in XML format

120 Ð. Herceg, Ž. Marčićević

7. Conclusion

A Conference Management System was developed in ASP.NET on .NET Frame-
work 3, IIS and SQL Server. The system was designed with ease of use and easy
recovery in mind. Some special design requests, such as different levels of authoriza-
tion for different parts of the web site and multilanguage support were addressed using
a combination of the built-in features of ASP.NET and our extensions. Visit logging
was implemented in such a way that it enables visitor tracking and behavior anayl-
sis. In order to satisfy design requirements, features of ASP.NET HTTP pipeline were
utilized, extended and customized as necessary.

References

[1] MacDonald, M., Microsoft .NET Distributed Applications: Integrating XML Web Services
and .NET Remoting. Microsoft Press, 2003.

[2] Spackman, D., Speaker, M., Enterprise Integration Solutions. Microsoft Press, 2005.

[3] Nilsson, J., .NET Enterprise Design with Visual Basic .NET and SQL Server. Sams Pub-
lishing, 2002.

[4] Exstensible Markup Language 1.0 (Second Edition). W3C Recommendation, October 6,
2000.

[5] Ewald, T., Brown, K., Securely Implement Request Processing, Filtering, and Con-
tent Redirection with HTTP Pipelines in ASP.NET. MSDN Magazine Online (2002),
http://msdn.microsoft.com/en-us/magazine/cc188942.aspx (visited
May 2009)

[6] HTTP Handlers and HTTP Modules Overview, MSDN Library,
http://msdn.microsoft.com/en-us/library/bb398986.aspx (visited
May 2009)

[7] The New Dynamic Language Extensibility Model for ASP.NET, Microsoft ASP.NET,
http://www.asp.net/DynamicLanguages/whitepaper/(visited May 2009)

[8] Managing Users by Using Membership, MSDN Library,
http://msdn.microsoft.com/en-us/library/tw292whz.aspx (visited
May 2009)

[9] Microsoft ASP.NET 2.0 Membership API Extented. CoDe Magazine (2007), http://
www.code-magazine.com/Article.aspx?quickid=0703071, (visited May
2009).

[10] Securing ASP.NET Applications, Novologies (2009), http://www.novologies.
com/post/2009/04/08/Securing-ASPNET-Applications.aspx (visited
May 2009)

[11] EasyChair conference management system, http://www.easychair.org/ (visited
May 2009)

[12] ConfTool conference management system, http://www.conftool.net/en/
features.html (visited May 2009)

[13] OpenConf conference management system, http://www.openconf.com/ (visited
May 2009)

http://msdn.microsoft.com/en-us/magazine/cc188942.aspx
http://msdn.microsoft.com/en-us/library/bb398986.aspx
http://www.asp.net/DynamicLanguages/whitepaper/
http://msdn.microsoft.com/en-us/library/tw292whz.aspx
http://www.code-magazine.com/Article.aspx?quickid=0703071
http://www.code-magazine.com/Article.aspx?quickid=0703071
http://www.novologies.com/post/2009/04/08/Securing-ASPNET-Applications.aspx
http://www.novologies.com/post/2009/04/08/Securing-ASPNET-Applications.aspx
http://www.easychair.org/
http://www.conftool.net/en/features.html
http://www.conftool.net/en/features.html
http://www.openconf.com/

A lightweight conference management system on ASP.NET 121

[14] Conference Online-Management System (COMS), http://
www.conference-service.com/conference-support/
conference-management-system.html (visited May 2009)

Received by the editors May 5, 2009

http://www.conference-service.com/conference-support/conference-management-system.html
http://www.conference-service.com/conference-support/conference-management-system.html
http://www.conference-service.com/conference-support/conference-management-system.html

	Introduction
	System architecture and usage scenarios
	Security in the CMS
	Extensions to the ASP.NET HTTP pipeline
	Multilanguage support
	Backup and export to XML
	Conclusion

