
Novi Sad J. Math.
Vol. 39, No. 1, 2009, 123-130

ON OPTIMAL MULTIPOINT METHODS FOR
SOLVING NONLINEAR EQUATIONS1

Miodrag S. Petković2

Abstract. A general class of three-point iterative methods for solving
nonlinear equations is constructed. Its order of convergence reaches eight
with only four function evaluations per iteration, which means that the
proposed methods possess as high as possible computational efficiency in
the sense of the Kung-Traub hypothesis (1974). Numerical examples are
included to demonstrate a spectacular convergence speed with only few
function evaluations.
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During the last decade, multipoint iterative methods for solving nonlinear
equations have been presented in many papers. The main goal and motivation
of these papers were the construction of new methods with computational effi-
ciency as high as possible, which assumes the design of iterative methods having
the convergence as fast as possible under the condition that the number of func-
tion evaluations per iteration is fixed. This demand is close to the Kung-Traub
conjecture [4] from 1974 that multipoint methods without memory, requiring
n + 1 function evaluations per iteration, have the order of convergence at most
rn = 2n. Multipoint methods which satisfy the Kung-Traub conjecture are often
called optimal methods; consequently, rn = 2n is the optimal order. The class
of optimal n-point methods of the order 2n will be denoted with Ψ2n .

The aim of this paper is to construct a general family of three-point it-
erative methods for solving nonlinear equations, which requires four function
evaluations per iteration and has the convergence order r3 = 23 = 8. The pre-
sented approach can be applied for developing optimal methods of higher order
(precisely, of the order 2n (n ≥ 3)), as demonstrated in [8].

In this paper we will use the following assertion (see [10, Theorem 2.4]):

Theorem 1. Let φ1(x), φ2(x), . . . , φs(x) be iterative functions with the orders
r1, r2, . . . , rs, respectively. Then the iterative function

φ(x) = φ1

(
φ2

(· · · (φs(x)
) · · · ))

defines the composite iterative method of the order r1r2 · · · rs.
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Let α be a simple zero of a real, sufficiently smooth, function f and let
u(x) = f(x)/f ′(x). Assume that p is a real function defined in the neighborhood
of 0. To construct optimal three-point methods, we start with a three-step
iterative scheme





1◦ y = N(x) = x− f(x)
f ′(x)

,

2◦ z = y − p(t)
f(y)
f ′(x)

, t =
f(y)
f(x)

,

3◦ x̂ = N(z) = z − f(z)
f ′(z)

,

(1)

where x = xm is a current approximation to α, x̂ = xm+1 is a new approximation
(m = 0, 1, . . .) and N denotes the Newton operator. Regarding this scheme, the
first task in constructing optimal three-point methods is

(1) the determination of the form of a real function p to ensure the fourth
order of convergence of two-step methods consisting of the steps 1◦ and 2◦ of
(1). Since the third step defines Newton’s method of the second order, according
to Theorem 1 we would obtain the order 4 · 2 = 8. However, such a method is
not optimal since it requires five function evaluations instead of four. For this
reason, the second task is

2) the reduction of function evaluations by approximating the derivative
f ′(z) in the third step of (1) in such a way that quadratic convergence of the
modified Newton method is preserved. Using the idea presented in [8], we
approximate f ′(z) by the derivative of the Hermite interpolation polynomial of
the third degree which fits f.

Task 1: The choice of p(t)

We state the following assertion.

Theorem 2. Let p be any real function satisfying p(0) = 1, p′(0) = 2 and
|p′′(0)| < ∞. If an initial approximation x = x0 is sufficiently close to α, then
the order of convergence of the family of two-step methods

(2)





1◦ y = N(x) = x− f(x)
f ′(x)

,

2◦ x̂ = y − p(t)
f(y)
f(x)

is four.

Proof. Let ck = f (k)(α)/(k!f ′(α)) (k = 2, 3, . . .) and let us introduce the errors

ε = x− α, η = y − α.

Using the Taylor series we find

(3) f(x) = f ′(α)
(
ε + c2ε

2 + c3ε
3 + c4ε

4 + O(ε5)
)
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and

(4) f ′(x) = f ′(α)
(
1 + 2c2ε + 3c3ε

2 + 4c4ε
3 + O(ε4)

)
.

Hence, in view of (3) and (4), we obtain

(5) η = ε− f(x)
f ′(x)

= c2ε
2 + (2c3 − 2c2

2)ε
3 + (4c3

2 − 7c2c3 + 3c4)ε4 + O(ε5).

Furthermore, we have

(6) f(y) = f ′(α)
(
η + c2η

2 + c3η
3 + c4η

4 + O(η5)
)
.

Let us represent the function p by its Taylor’s polynomial of the second order
at the point t = 0,

(7) p(t) = p(0) + p′(0)t +
p′′(0)

2
t2, t = f(y)/f(x).

Now, using (3)–(7) we obtain

x̂− α = η − p(t)
f(y)
f ′(x)

=
[
−2c3(p(0)− 1) + c2

2(4p(0)− p′(0)− 2)
]
ε3 +

[
−3c4(p(0)− 1) + c2c3(−7 + 14p(0)− 4p′(0))

+c3
2(4− 13p(0) + 7p′(0)− p′′(0)/2)

]
ε4 + O(ε5).

Hence, taking into account the conditions p(0) = 1 and p′(0) = 2, we find

(8) x̂− α =
[
c3
2(5− p′′(0)/2)− c2c3

]
ε4 + O(ε5).

Therefore, the order of convergence of the considered family of two-step methods
(2) is four and the theorem is proved. ¤.

Remark 1. In regard to (5) and (1), setting δ = z − α = x̂− α (= O(ε4)), we
find

(9) N(z)− α = c2δ
2 + (2c3 − 2c2

2)δ
3 + (4c3

2 − 7c2c3 + 3c4)δ4 + O(δ5).

The iterative formula (2) generates a wide class of optimal two-point meth-
ods; for example,

p(t) =
1 + βt

1 + (β − 2)t

leads to King’s family [2]

Kf (β; x) = x− u(x)− f(x− u(x))
f ′(x)

· f(x) + βf(x− u(x))
f(x) + (β − 2)f(x− u(x))

,
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where β is a real parameter. Let us note that King’s family gives the well-known
Ostrowski’s method [6] as a special case when β = 0,

(10) Of (x) = Kf (0; x) = x− u(x)− u(x)f(x− u(x))
f(x)− 2f(x− u(x))

.

The choice β = 1 generates Kou’s method [3], while β = 2 gives Chun’s method
[1].

Taking p(t) =
1
t

( 2
1 +

√
1− 4t

− 1
)

in (2) we obtain Euler-like method

(11) Ef (x) = x− 2u(x)

1 +

√
1− 4f(x− u(x))

f(x)

,

proposed in [7] (see, also, [9]), while the choice p(t) =
t2 − t− 1

t− 1
in (2) yields

Maheshwari’s method [5]

(12) Mf (x) = x− u(x)
{[

f
(
x− u(x)

)]2
f(x)2

− f(x)
f
(
x− u(x)

)− f(x)

}
.

The order of convergence of these two-point methods is 4 and they require 3
function evaluations per iteration. Therefore, Kf , Ef ,Mf ∈ Ψ4.

Task 2: Reduction of function evaluations

As already mentioned, the use of Newton’s method

(13) N(z) = z − f(z)
f ′(z)

in the third step of the three-step scheme (1) is rather inefficient since two new
function evaluations are needed. For this reason, we will replace the derivative
f ′(z) appearing in (13) by the derivative h′(z) of the Hermite interpolation
polynomial h(z), constructed for the nodes x, y and z to fit f.

Let us form the Hermite interpolation polynomial of the third order for the
nodes x, y and z,

(14) h(t) = a1 + a2(t− x) + a3(t− x)2 + a4(t− x)3,

which satisfies the following conditions

h(x) = f(x),(15)
h(y) = f(y),(16)
h(z) = f(z),(17)

and

(18) h′(x) = f ′(x).
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We have exactly four conditions for determining four unknown coefficients a1, a2,
a3, a4 in (14). From the conditions (15) and (18) we immediately find

a1 = f(x), a2 = f ′(x).

The remaining two coefficients a3 and a4 are found from the system of two
linear equations which is formed putting y and then z in (14) and using the
conditions (16) and (17). We get

a3 =
(z − x)f [y, x]
(z − y)(y − x)

− (y − x)f [z, x]
(z − y)(z − x)

− f ′(x)
( 1

z − x
+

1
y − x

)
,

a4 =
f [z, x]

(z − y)(z − x)
− f [y, x]

(z − y)(y − x)
+

f ′(x)
(z − x)(y − x)

,

where f [x, y] =
f(x)− f(y)

x− y
. Differentiating (14) yields

(19) h′(t) = a2 + 2a3(t− x) + 3a4(t− x)2.

Putting t = z and substituting the coefficients a2, a3 and a4 in (19), we obtain

(20) h′(z) = 2
(
f [z, x]− f [y, x]

)
+ f [z, y] +

y − z

y − x

(
f [y, x]− f ′(x)

)
.

Now we replace the derivative f ′(z) appearing in the Newton method (13)
by h′(z), calculated by (20), to construct the modified Newton method:

(21) Ñ2(z) = z − f(z)
h′(z)

.

Employing the modified Newton method (21) to (1), we construct the fol-
lowing family of three-point methods





1◦ y = N(x) = x− f(x)
f ′(x)

,

2◦ z = y − p(t)
f(y)
f ′(x)

,

3◦ x̂ = Ñ2(z) = z − f(z)
h′(z)

,

(22)

assuming that the function p satisfies p(0) = 1, p′(0) = 2, |p′′(0)| < ∞. In what
follows we will prove that the family of three-point methods (22) is optimal, that
is, its order of convergence reaches eight using only four function evaluations.

Theorem 3. If a real function p satisfies the conditions of Theorem 2, then the
order of convergence of the family of three-point methods (22) is eight.
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Proof. Using the expression of the error of the Hermite interpolation (see, e,g.,
[10]) for the interpolation nodes x, y, z of the multiplicities 2, 1 and 1 (according
to the conditions (15)–(18)), we can write for the Hermite polynomial (14)

(23) f(t)− h(t) =
f (4)(ξ)

4!
(t− x)2(t− y)(t− z),

where ξ belongs to the interval determined by the nodes x, y and z. By the
logarithmic differentiation, from (23) it follows

f ′(t)− h′(t) =
[
f(t)− h(t)

]( 2
t− x

+
1

t− y
+

1
t− z

)
,

whence, for t = z, we find

(24) f ′(z)− h′(z) =
f (4)(ξ)

4!
(z − x)2(z − y).

Since z − α = O(ε4) (see Remark 1) and y − α = O(ε2) (see (5)), we have

z−x = (z−α)−(x−α) = O(ε4)−O(ε) = O(ε), z−y = (z−α)−(y−α) = O(ε2).

According to this, we get from (24)

(25) f ′(z)− h′(z) = O(ε4), that is, h′(z) = f ′(z)
(
1 + O(ε4)

)
.

Now we determine the order of convergence of the three-point method (22).
Let ε̂ = x̂− α. In regard to (8), Remark 1 and (25) we obtain

(26) ε̂ = z − α− f(z)
h′(z)

= δ − f(z)
f ′(z)

(
1 + O(ε4)

) = δ − f(z)
f ′(z)

(
1 + O(ε4)

)
.

Since δ = O(ε4) (in regard to (8) and Remark 1) we have f(z) = (z − α)g(z) =
O(δ) = O(ε4) (g(α) 6= 0). According to this and (9), from (26) we get

(27) ε̂ = c2δ
2 + (2c3 − 2c2

2)δ
3 + (4c3

2 − 7c2c3 + 3c4)δ4 + O(ε8) = O(ε8).

This completes the proof of Theorem 3. ¤

We note that the established family of three-point methods (22) supports
the Kung-Traub conjecture for n = 3, that is, IM(22) ∈ Ψ8, where IM stands
for iterative method. Following the presented approach based on the use of the
Hermite interpolation polynomial, we can develop optimal n-point methods, see
[8]. In the k-th step we approximate f ′ by the derivative h′(k−1) of the Hermitian
polynomial h(k−1) of the third order constructed at the nodes represented by the
three last approximations to the desired zero α. In the case of the iterative scheme
(22) these approximations (nodes) are z, y and x. In this way we obtain modified
Newton’s methods Ñk−1 (k = 3, . . . , n) of the second order. For example, the
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family of optimal four-point methods of the order 24 = 16, requiring 5 function
evaluations, has the form





1◦ y = N(x) = x− f(x)
f ′(x)

,

2◦ z = y − p(t)
f(y)
f ′(x)

,

3◦ w = Ñ2(z) = z − f(z)
h′(2)(z)

,

4◦ x̂ = Ñ3(w) = w − f(w)
h′(3)(w)

,

(28)

where h′(3)(w) is calculated using the nodes w, z and y. More details on n-point
methods for arbitrary n may be found in [8].

Example 1. We applied the three-point methods (22) of the order r3 = 23 = 8
to the function f(x) = (x − 1)(x12 + x2 + 1) sin(5x) to find sufficiently close
approximations to the zero α = 1 of f. We chose x0 = 1.1 as the initial ap-
proximation. The absolute values |xk − α| in the first three iterations are given
in Table 1, where A(−q) means A × 10−q. The package Mathematica 6 with
multiprecision arithmetic was used.

Three-point methods |x1 − α| |x2 − α| |x3 − α|{
Ostrowski’s IM (10), Ñ2

}
7.89(−6) 1.24(−74) 6.23(−1186)

{
Euler-like IM (11), Ñ2

}
7.88(−6) 6.34(−75) 1.61(−1179)

{
Maheshvari’s IM (12), Ñ2

}
5.36(−6) 6.38(−76) 1.33(−1179)

Table 1 Results obtained by the three-point methods (22)

Example 2. The four-point methods (28) were applied to the function from
Example 1 using the same initial approximation x0 = 1.1. The obtained results
are displayed in Table 2.

Four-point methods |x1 − α| |x2 − α| |x3 − α|{
Ostrowski’s IM (10), Ñ2, Ñ3

}
2.50(−10) 3.06(−149) 7.68(−2372)

{
Euler-like IM (11), Ñ2, Ñ3

}
2.37(−10) 1.99(−143) 1.29(−2357)

{
Maheshvari’s IM (12), Ñ2, Ñ3

}
1.41(−10) 1.16(−148) 5.01(−2358)

Table 2 Results obtained by the four-point methods (28)

From Tables 1 and 2 we observe extraordinary accuracy of the produced
approximations, obtained using only few function evaluations. Such an accuracy
is not needed in practice at present, but has a theoretical importance. We
emphasize that our primary aim was to construct a general class of very efficient
multipoint methods that supports the Kung-Traub conjecture.
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