THE UNIQUENESS AND UNIVERSALITY OF A GENERALIZED ORDERED SPACE ${ }^{\square}$

M.S. Kurilid ${ }^{212}$, A. Pavlovid ${ }^{3}$

Abstract

If $\langle L,<\rangle$ is a dense linear order without end points, A and B disjoint and dense subsets of L and $\mathcal{O}_{A B}$ the topology on the set L generated by closed intervals $[a, b]$, where $a \in A$ and $b \in B$, then $\left\langle L, \mathcal{O}_{A B}\right\rangle$ is a generalized ordered space. We show that all spaces of the form $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$, where $A, B \subset \mathbb{R}$ are countable sets, are homeomorphic and universal in the class of second countable zero-dimensional spaces.

AMS Mathematics Subject Classification (2000): 54F05, 54D15, 54A10
Key words and phrases: linear order, generalized ordered space, closed interval, the real line, zero-dimensional space, "back and forth"

1. Introduction

We remind the reader that, for a linear order $\langle L,<\rangle$, the standard topology $\mathcal{O}_{<}$on the set L is generated by the family of all open intervals and then the space $\left\langle L, \mathcal{O}_{<}\right\rangle$is called a linearly ordered topological space (LOTS). A topological space $\langle X, \mathcal{O}\rangle$ is called linearly orderable if there is a linear order $<$ on X such that $\mathcal{O}=\mathcal{O}_{<}$; suborderable if it is homeomorphic to a subspace of some LOTS; generalized orderable ($G O$ space) if there is a linear order $<$ on X such that $\mathcal{O}_{<} \subset \mathcal{O}$ and each point has a neighborhood base consisting of intervals.

Čech 4] proved that the classes of suborderable and GO spaces coincide. Also it is known (see [4] or [8) that, if $\langle L,<\rangle$ is a linear order and I, A and B are disjoint subsets of L, then

$$
\mathcal{P}_{I A B}=\{x: x \in I\} \cup\{[a, \rightarrow): a \in A\} \cup\{(\leftarrow, b]: b \in B\} \cup \mathcal{O}_{<}
$$

is a subbase for a GO topology on L. So, if $\langle L,<\rangle$ is a linear order and $A, B \subset L$ are disjoint sets, then, clearly, the families $\mathcal{P}_{\emptyset A B}$ and

$$
\mathcal{B}_{A B}=\{[a, b]: a \in A \wedge b \in B \wedge a<b\}
$$

generate the same topology, let us denote it by $\mathcal{O}_{A B}$, on the set L and $\left\langle L, \mathcal{O}_{A B}\right\rangle$ is a GO space. Examples of such a construction are "the two arrows space"

[^0]of Alexandroff and Urison ([1] , see [5]) and some subspaces of the spaces constructed by Todorčević in 9 .

The spaces of the form $\left\langle L, \mathcal{O}_{A B}\right\rangle$, where $\langle L,<\rangle$ is a dense linear order without end points and A and B are dense and disjoint subsets of L, were investigated in [6] and [7]. In the following theorem we collect some results from [7].

Theorem 1. Let $\langle L,<\rangle$ be a dense linear order without end points and A and B dense, disjoint subsets of L. Then
(a) The space $\left\langle L, \mathcal{O}_{A B}\right\rangle$ is zero-dimensional, non-compact, collectionwise normal, hereditarily normal and need not to be perfectly normal;
(b) For the cardinal functions on $\left\langle L, \mathcal{O}_{A B}\right\rangle$ we have: $e \leq l \leq c=h c=h l \leq$ $d=h d \leq \min \{|A|,|B|\} \leq w=n w=\max \{|A|,|B|\} \leq|L|$, and $\chi=\psi=t \leq c$.
(c) $|A|=|B|=\aleph_{0} \Rightarrow$ the space $\left\langle L, \mathcal{O}_{A B}\right\rangle$ is metrizable $\Rightarrow|A|=|B|$.

For the spaces of the form $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$, where \mathbb{R} is the real line, we have
Fact 1. If A and B are dense disjoint subsets of \mathbb{R}, the space $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$ is
(a) zero-dimensional, non-compact, collectionwise normal, perfectly normal;
(b) hereditarily separable, hereditarily Lindelöf, first countable and $w\left(\mathbb{R}, \mathcal{O}_{A B}\right)$
$=\max \{|A|,|B|\}$.
(c) second countable iff $|A|=|B|=\aleph_{0}$ iff it is metrizable.

If $x=\left\langle x_{n}: n \in \mathbb{N}\right\rangle$ is a sequence in the space $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$ then
x converges to a point $a \in A$ iff it converges to a in the standard topology and there is $n_{0} \in \mathbb{N}$ such that $x_{n} \geq a$, for all $n \geq n_{0}$;
x converges to a point $b \in B$ iff it converges to b in the standard topology and there is $n_{0} \in \mathbb{N}$ such that $x_{n} \leq b$, for all $n \geq n_{0}$;
x converges to a point $c \in \mathbb{R} \backslash(A \cup B)$ iff it converges to c in the standard topology.

Proof. (b) follows from Theorem 2(b) and the fact that the set of rationals \mathbb{Q} is dense in the space $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$.

If the space $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$ is metrizable, then, since it is separable, it must be second countable and (c) is true.

Finally, if $O=\bigcup_{i \in I}\left[a_{i}, b_{i}\right] \in \mathcal{O}_{A B}$, then, since the space is hereditarily Lindelöf, there is a countable subset $C \subset I$ such that $O=\bigcup_{i \in C}\left[a_{i}, b_{i}\right]$. Thus O is a F_{σ} set, $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$ is a perfectly normal space and (a) is true.

The statements concerning the convergence of sequences are evident.
In this paper we consider the spaces $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$, where A and B are countable dense disjoint subsets of \mathbb{R}.

2. Uniqueness and universality

If A and B are countable dense disjoint subsets of \mathbb{R}, then, by Fact 1 $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$ is a separable metrizable zero-dimensional space. First, using a variation of Cantor's "back and forth" method, we show that all spaces of this form are homeomorphic.

Theorem 2. If for $i \in\{1,2\}$ the sets $A_{i}, B_{i} \subset \mathbb{R}$ are countable dense and disjoint, then the spaces $\left\langle\mathbb{R}, \mathcal{O}_{A_{i} B_{i}}\right\rangle$ are homeomorphic.

Proof. Let \mathbb{I} denote the set of all finite partial functions from $A_{1} \cup B_{1}$ to $A_{2} \cup B_{2}$ which are increasing and map elements of A_{1} to elements of A_{2} and elements of B_{1} to elements of B_{2}. Since the sets A_{1}, A_{2}, B_{1} and B_{2} are dense we have
Claim 1. Let $f=\left(\begin{array}{llll}x_{0} & x_{1} & \ldots & x_{n} \\ y_{0} & y_{1} & \ldots & y_{n}\end{array}\right) \in \mathbb{I}$. Then

$$
\begin{aligned}
& \forall a^{1} \in A_{1} \backslash\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \quad \exists a^{2} \in A_{2} \quad f \cup\left\{\left\langle a^{1}, a^{2}\right\rangle\right\} \in \mathbb{I} ; \\
& \forall b^{1} \in B_{1} \backslash\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \quad \exists b^{2} \in B_{2} \quad f \cup\left\{\left\langle b^{1}, b^{2}\right\rangle\right\} \in \mathbb{I} ; \\
& \forall a^{2} \in A_{2} \backslash\left\{y_{0}, y_{1}, \ldots, y_{n}\right\} \exists a^{1} \in A_{1} \quad f \cup\left\{\left\langle a^{1}, a^{2}\right\rangle\right\} \in \mathbb{I} ; \\
& \forall b^{2} \in B_{2} \backslash\left\{y_{0}, y_{1}, \ldots, y_{n}\right\} \exists b^{1} \in B_{1} \quad f \cup\left\{\left\langle b^{1}, b^{2}\right\rangle\right\} \in \mathbb{I} .
\end{aligned}
$$

Claim 2. There is an order isomorphism $f: A_{1} \cup B_{1} \rightarrow A_{2} \cup B_{2}$ such that $f\left[A_{1}\right]=A_{2}$ and $f\left[B_{1}\right]=B_{2}$.

Proof of Claim 2. Let $A_{1}=\left\{a_{k}^{1}: k \in \omega\right\}, B_{1}=\left\{b_{l}^{1}: l \in \omega\right\}, A_{2}=\left\{a_{m}^{2}: m \in \omega\right\}$ and $B_{2}=\left\{b_{n}^{2}: n \in \omega\right\}$ be fixed enumerations of the sets A_{1}, B_{1}, A_{2} and B_{2}.

By recursion we construct four sequences of integers, $\left\langle k_{i}: i \in \omega\right\rangle,\left\langle l_{i}: i \in \omega\right\rangle$, $\left\langle m_{i}: i \in \omega\right\rangle$ and $\left\langle n_{i}: i \in \omega\right\rangle$, such that for each $j \in \omega$

$$
f_{j}=\left(\begin{array}{cccccccc}
a_{k_{0}}^{1} & a_{k_{1}}^{1} & \ldots & a_{k_{j}}^{1} & b_{l_{0}}^{1} & b_{l_{1}}^{1} & \ldots & b_{l_{j}}^{1} \tag{1}\\
a_{m_{0}}^{2} & a_{m_{1}}^{2} & \ldots & a_{m_{j}}^{2} & b_{n_{0}}^{2} & b_{n_{1}}^{2} & \ldots & b_{n_{j}}^{2}
\end{array}\right) \in \mathbb{I} .
$$

Let $j \in \omega$ and suppose that the sequences $\left\langle k_{i}: i<j\right\rangle,\left\langle l_{i}: i<j\right\rangle,\left\langle m_{i}: i<j\right\rangle$ and $\left\langle n_{i}: i<j\right\rangle$ are defined such that $f_{i} \in \mathbb{I}$, for $i<j$. Using Claim 1 we define k_{j}, l_{j}, m_{j} and n_{j} such that $f_{j}=f_{j-1} \cup\left\{\left\langle a_{k_{j}}^{1}, a_{m_{j}}^{2}\right\rangle,\left\langle b_{l_{j}}^{1}, b_{n_{j}}^{2}\right\rangle\right\} \in \mathbb{I}$.

- If j is an odd number, let

$$
\begin{aligned}
k_{j} & =\min \left\{k: a_{k}^{1} \notin\left\{a_{k_{0}}^{1}, a_{k_{1}}^{1}, \ldots, a_{k_{j-1}}^{1}\right\}\right\} \\
m_{j} & =\min \left\{m \in \omega: f_{j-1} \cup\left\{\left\langle a_{k_{j}}^{1}, a_{m}^{2}\right\rangle\right\} \in \mathbb{I}\right\} \\
l_{j} & =\min \left\{l: b_{l}^{1} \notin\left\{b_{l_{0}}^{1}, b_{l_{1}}^{1}, \ldots, b_{l_{j-1}}^{1}\right\}\right\} \\
n_{j} & =\min \left\{n \in \omega: f_{j-1} \cup\left\{\left\langle a_{k_{j}}^{1}, a_{m_{j}}^{2}\right\rangle,\left\langle b_{l_{j}}^{1}, b_{n}^{2}\right\rangle\right\} \in \mathbb{I}\right\} .
\end{aligned}
$$

- If j is an even number, let

$$
\begin{aligned}
m_{j} & =\min \left\{m: a_{m}^{2} \notin\left\{a_{m_{0}}^{2}, a_{m_{1}}^{2}, \ldots, a_{m_{j-1}}^{2}\right\}\right\} \\
k_{j} & =\min \left\{k \in \omega: f_{j-1} \cup\left\{\left\langle a_{k}^{1}, a_{m_{j}}^{2}\right\rangle\right\} \in \mathbb{I}\right\} \\
n_{j} & =\min \left\{n: b_{n}^{2} \notin\left\{b_{n_{0}}^{2}, b_{n_{1}}^{2}, \ldots, b_{n_{j-1}}^{2}\right\}\right\}, \\
l_{j} & =\min \left\{l \in \omega: f_{j-1} \cup\left\{\left\langle a_{k_{j}}^{1}, a_{m_{j}}^{2}\right\rangle,\left\langle b_{l}^{1}, b_{n_{j}}^{2}\right\rangle\right\} \in \mathbb{I}\right\} .
\end{aligned}
$$

So, the desired sequences are constructed. Clearly $f=\bigcup_{j \in \omega} f_{j}$ is a function which maps a subset of $A_{1} \cup B_{1}$ onto a subset of $A_{2} \cup B_{2}$.

In order to show that $\operatorname{dom} f=A_{1} \cup B_{1}$ and $\operatorname{ran} f=A_{2} \cup B_{2}$ we prove that $\left\{k_{i}: i \in \omega\right\}=\left\{l_{i}: i \in \omega\right\}=\left\{m_{i}: i \in \omega\right\}=\left\{n_{i}: i \in \omega\right\}=\omega$. Suppose that $\omega \backslash\left\{k_{i}: i \in \omega\right\} \neq \emptyset$ and $p=\min \left(\omega \backslash\left\{k_{i}: i \in \omega\right\}\right)$. Then $k \in\left\{k_{i}: i \in \omega\right\}$, for each $k<p$, and, clearly, there is an odd number j such that $\left\{a_{k}^{1}: k<p\right\} \subset\left\{a_{k_{0}}^{1}, \ldots, a_{k_{j-1}}^{1}\right\}$ so $p=\min \left\{k \in \omega: a_{k}^{1} \notin\left\{a_{k_{0}}^{1}, a_{k_{1}}^{1}, \ldots, a_{k_{j-1}}^{1}\right\}\right\}$, which, by the construction, implies $p=k_{j}$. A contradiction. The proof of the other three equalities is similar.

We prove that the function f is increasing. If $x_{1}, x_{2} \in \operatorname{dom} f$ and $x_{1}<x_{2}$, then there is $j \in \omega$ such that $x_{1}, x_{2} \in \operatorname{dom} f_{j}$ and, since $f_{j} \in \mathbb{I}$, we have $f\left(x_{1}\right)=f_{j}\left(x_{1}\right)<f_{j}\left(x_{2}\right)=f\left(x_{2}\right)$.

Finally we prove that $f\left[A_{1}\right]=A_{2}$ and $f\left[B_{1}\right]=B_{2}$. If $a \in A_{1}$, then there is $j \in \omega$ such that $a \in \operatorname{dom} f_{j}$ and, by the construction, $f(a)=f_{j}(a) \in A_{2}$, thus $f\left[A_{1}\right] \subset A_{2}$. The proof that $f\left[B_{1}\right] \subset B_{2}$ is similar and the equalities follow from the fact that $f: A_{1} \cup B_{1} \rightarrow A_{2} \cup B_{2}$ is a bijection. Claim 2 is proved.
Claim 3. The mapping $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
F(z)=\sup \left\{f(x): x \in A_{1} \cup B_{1} \wedge x \leq z\right\}
$$

is an order isomorphism which extends f.
Proof of Claim 3. Since f is an increasing function, for $z \in A_{1} \cup B_{1}$ we have $F(z)=f(z)$.

We prove that the function F is increasing. If $x_{1}, x_{2} \in \mathbb{R}$ and $x_{1}<x_{2}$ then, by the density of A_{1}, there are $a_{1}, a_{2} \in A_{1}$ such that $x_{1}<a_{1}<a_{2}<x_{2}$. Since f is an increasing function, according to the definition of F we have $F\left(x_{1}\right) \leq F\left(a_{1}\right)=f\left(a_{1}\right)<f\left(a_{2}\right)=F\left(a_{2}\right) \leq F\left(x_{2}\right)$.

Finally we prove that F is a surjection. Let $y \in \mathbb{R}$ and $Y=\left\{w \in A_{2} \cup B_{2}\right.$: $w \leq y\}$. Let $X=f^{-1}[Y]$ and let $x=\sup X$. Then it is easy to show that $F(x)=y$. Claim 3 is proved.

The mapping $F:\left\langle\mathbb{R}, \mathcal{O}_{A_{1} B_{1}}\right\rangle \rightarrow\left\langle\mathbb{R}, \mathcal{O}_{A_{2} B_{2}}\right\rangle$ is open because for $a_{1} \in A_{1}$, $b_{1} \in B_{1}$ satisfying $a_{1}<b_{1}$, by Claims 2 and 3 we have $F\left(a_{1}\right) \in A_{2}, F\left(b_{1}\right) \in B_{2}$ and $F\left[\left[a_{1}, b_{1}\right]\right]=\left[F\left(a_{1}\right), F\left(b_{1}\right)\right]$.
F is continuous because for $a_{2} \in A_{2}$ and $b_{2} \in B_{2}$ satisfying $a_{2}<b_{2}$ by Claims 2 and 3 we have $F^{-1}\left(a_{2}\right) \in A_{1}, F^{-1}\left(b_{2}\right) \in B_{1}$ and $F^{-1}\left[\left[a_{2}, b_{2}\right]\right]=$ $\left[F^{-1}\left(a_{2}\right), F^{-1}\left(b_{2}\right)\right]$. Thus, the mapping F is a homeomorphism.

Can the last result be extended for uncountable sets A and B ? Since there are non-isomorphic uncountable dense subsets of \mathbb{R}, some kind of homogeneity of the sets A and B should be assumed. So, a subset $A \subset \mathbb{R}$ is called \aleph_{1}-dense iff it has \aleph_{1}-many elements in each interval. In [6], following the construction of Baumgartner from [2] modified by Todorčević (see [10]), the following consistency result is obtained.

Theorem 3. Under the Proper Forcing Axiom, each two spaces of the form $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$, where A and B are disjoint \aleph_{1}-dense subsets of \mathbb{R}, are homeomorphic.

More information concerning the Proper Forcing Axiom can be found in [3].
For countable $A, B \subset \mathbb{R}$ the spaces $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$ are second countable and zerodimensional. Now we show that they are universal for all spaces with these two properties.

Theorem 4. Each second countable zero-dimensional space can be embedded in the space $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$, where A and B are countable, disjoint, dense subsets of \mathbb{R}.

Proof. Every zero-dimensional second countable space can be embedded in the Cantor cube 2^{ω}, which is homeomorphic to the Cantor set $C \subset \mathbb{R}$ with the standard topology. Thus, it is sufficient to embed the Cantor set C into the space $\left\langle\mathbb{R}, \mathcal{O}_{A B}\right\rangle$, for specially chosen sets A and B.

Let us define the sets A and B. Let $\left\{B_{n}: n \in \omega\right\}$ be an enumeration of the base $\{(p, q): p, q \in \mathbb{Q}, p<q\}$ for the standard topology on \mathbb{R}. Since the set $\mathbb{R} \backslash C$ is open and dense in the standard topology, from each set $B_{n} \backslash C$ we can choose two elements, a_{n} and b_{n}, such that $\left\{a_{n}: n \in \omega\right\} \cap\left\{b_{n}: n \in \omega\right\}=\emptyset$. Clearly, the sets $A=\left\{a_{n}: n \in \omega\right\}$ and $B=\left\{b_{n}: n \in \omega\right\}$ are dense and disjoint.

It remains to be proved that the standard topology on the Cantor set C coincides with the induced topology $\left(\mathcal{O}_{A B}\right)_{C}$. Since $A, B \subset \mathbb{R} \backslash C$ we have $[a, b] \cap C=(a, b) \cap C$, for each $a \in A$ and $b \in B$, such that $a<b$, which is an open set in the standard topology on the Cantor set. Also, the topology $\mathcal{O}_{A B}$ is finer than the standard topology, which completes the proof.

References

[1] P. Alexandroff, P. Uryson, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam 14 (1929).
[2] J. E. Baumgartner, All \aleph_{1}-dense sets of reals can be isomorphic, Fund. Math. 79 (1973), 101-106.
[3] J. E. Baumgartner, Application of the Proper Forcing Axiom, in: Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan editors), North-Holland, (Amsterdam, 1984), 913-959.
[4] E. Čech, Topological spaces, revised by Z. Frolik and M. Katetov, Academic (Czeshoslovak Acad. Sci.), (Prague, 1966).
[5] R. Engelking, General Topology, Heldermann Verlag, (Berlin, 1989).
[6] M. S. Kurilić, A. Pavlović, A consequence of the Proper Forcing Axiom in topology, Publ. Math. Debrecen 64/1-2 (2004), 15-20.
[7] M. S. Kurilić, A. Pavlović, Topologies generated by closed intervals, Novi Sad J. Math. Vol. 35 No. 1 (2005), 187-195.
[8] D. Lutzer, On generalized ordered spaces, Dissertationes Math 1971, vol. 89.
[9] S. Todorčević, Aronszajn orderings, Djuro Kurepa memorial volume, Publ. Inst. Math. (Beograd) (N.S.) 57(71)(1995), 29-46.
[10] S. Todorčević, Partition Problems in Topology, Contemp. Math. 84, Amer. Math. Soc. (Providence, RI, 1989).

[^0]: ${ }^{1}$ This paper is a part of the research project no. 144001 , supported by the Ministry of Science and Technological Development, Republic of Serbia
 ${ }^{2}$ Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: milos@dmi.uns.ac.rs
 ${ }^{3}$ Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, email: apavlovic@dmi.uns.ac.rs

