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THE UNIQUENESS AND UNIVERSALITY OF A
GENERALIZED ORDERED SPACE1

M.S. Kurilić2, A. Pavlović3

Abstract. If 〈L, <〉 is a dense linear order without end points, A
and B disjoint and dense subsets of L and OAB the topology on the
set L generated by closed intervals [a, b], where a ∈ A and b ∈ B, then
〈L,OAB〉 is a generalized ordered space. We show that all spaces of the
form 〈R,OAB〉, where A, B ⊂ R are countable sets, are homeomorphic
and universal in the class of second countable zero-dimensional spaces.
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1. Introduction

We remind the reader that, for a linear order 〈L,<〉, the standard topology
O< on the set L is generated by the family of all open intervals and then the
space 〈L,O<〉 is called a linearly ordered topological space (LOTS). A topological
space 〈X,O〉 is called linearly orderable if there is a linear order < on X such
that O = O<; suborderable if it is homeomorphic to a subspace of some LOTS;
generalized orderable (GO space) if there is a linear order < on X such that
O< ⊂ O and each point has a neighborhood base consisting of intervals.

Čech [4] proved that the classes of suborderable and GO spaces coincide.
Also it is known (see [4] or [8]) that, if 〈L,<〉 is a linear order and I, A and B
are disjoint subsets of L, then

PIAB = {x : x ∈ I} ∪ {[a,→) : a ∈ A} ∪ {(←, b] : b ∈ B} ∪ O<

is a subbase for a GO topology on L. So, if 〈L,<〉 is a linear order and A,B ⊂ L
are disjoint sets, then, clearly, the families P∅AB and

BAB = {[a, b] : a ∈ A ∧ b ∈ B ∧ a < b}

generate the same topology, let us denote it by OAB , on the set L and 〈L,OAB〉
is a GO space. Examples of such a construction are “the two arrows space”
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of Alexandroff and Urison ([1], see [5]) and some subspaces of the spaces con-
structed by Todorčević in [9].

The spaces of the form 〈L,OAB〉, where 〈L,<〉 is a dense linear order without
end points and A and B are dense and disjoint subsets of L, were investigated
in [6] and [7]. In the following theorem we collect some results from [7].

Theorem 1. Let 〈L,<〉 be a dense linear order without end points and A and
B dense, disjoint subsets of L. Then

(a) The space 〈L,OAB〉 is zero-dimensional, non-compact, collectionwise
normal, hereditarily normal and need not to be perfectly normal;

(b) For the cardinal functions on 〈L,OAB〉 we have: e ≤ l ≤ c = hc = hl ≤
d = hd ≤ min{|A|, |B|} ≤ w = nw = max{|A|, |B|} ≤ |L|, and χ = ψ = t ≤ c.

(c) |A| = |B| = ℵ0 ⇒ the space 〈L,OAB〉 is metrizable ⇒ |A| = |B|.
For the spaces of the form 〈R,OAB〉, where R is the real line, we have

Fact 1. If A and B are dense disjoint subsets of R, the space 〈R,OAB〉 is
(a) zero-dimensional, non-compact, collectionwise normal, perfectly normal;
(b) hereditarily separable, hereditarily Lindelöf, first countable and w(R,OAB)

= max{|A|, |B|}.
(c) second countable iff |A| = |B| = ℵ0 iff it is metrizable.

If x = 〈xn : n ∈ N〉 is a sequence in the space 〈R,OAB〉 then
x converges to a point a ∈ A iff it converges to a in the standard topology

and there is n0 ∈ N such that xn ≥ a, for all n ≥ n0;
x converges to a point b ∈ B iff it converges to b in the standard topology

and there is n0 ∈ N such that xn ≤ b, for all n ≥ n0;
x converges to a point c ∈ R \ (A ∪ B) iff it converges to c in the standard

topology.

Proof. (b) follows from Theorem 2(b) and the fact that the set of rationals
Q is dense in the space 〈R,OAB〉.

If the space 〈R,OAB〉 is metrizable, then, since it is separable, it must be
second countable and (c) is true.

Finally, if O =
⋃

i∈I [ai, bi] ∈ OAB , then, since the space is hereditarily
Lindelöf, there is a countable subset C ⊂ I such that O =

⋃
i∈C [ai, bi]. Thus O

is a Fσ set, 〈R,OAB〉 is a perfectly normal space and (a) is true.
The statements concerning the convergence of sequences are evident. 2

In this paper we consider the spaces 〈R,OAB〉, where A and B are countable
dense disjoint subsets of R.

2. Uniqueness and universality

If A and B are countable dense disjoint subsets of R, then, by Fact 1,
〈R,OAB〉 is a separable metrizable zero-dimensional space. First, using a varia-
tion of Cantor’s “back and forth” method, we show that all spaces of this form
are homeomorphic.
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Theorem 2. If for i ∈ {1, 2} the sets Ai, Bi ⊂ R are countable dense and
disjoint, then the spaces 〈R,OAiBi〉 are homeomorphic.

Proof. Let I denote the set of all finite partial functions from A1 ∪ B1 to
A2 ∪ B2 which are increasing and map elements of A1 to elements of A2 and
elements of B1 to elements of B2. Since the sets A1, A2, B1 and B2 are dense
we have

Claim 1. Let f =
(

x0 x1 . . . xn

y0 y1 . . . yn

)
∈ I. Then

∀a1 ∈ A1 \ {x0, x1, . . . , xn} ∃a2 ∈ A2 f ∪ {〈a1, a2〉} ∈ I;
∀b1 ∈ B1 \ {x0, x1, . . . , xn} ∃b2 ∈ B2 f ∪ {〈b1, b2〉} ∈ I;
∀a2 ∈ A2 \ {y0, y1, . . . , yn} ∃a1 ∈ A1 f ∪ {〈a1, a2〉} ∈ I;
∀b2 ∈ B2 \ {y0, y1, . . . , yn} ∃b1 ∈ B1 f ∪ {〈b1, b2〉} ∈ I.

Claim 2. There is an order isomorphism f : A1 ∪ B1 → A2 ∪ B2 such that
f [A1] = A2 and f [B1] = B2.

Proof of Claim 2. Let A1 = {a1
k : k ∈ ω}, B1 = {b1

l : l ∈ ω}, A2 = {a2
m : m ∈ ω}

and B2 = {b2
n : n ∈ ω} be fixed enumerations of the sets A1, B1, A2 and B2.

By recursion we construct four sequences of integers, 〈ki : i ∈ ω〉, 〈li : i ∈ ω〉,
〈mi : i ∈ ω〉 and 〈ni : i ∈ ω〉, such that for each j ∈ ω

(1) fj =
(

a1
k0

a1
k1

. . . a1
kj

b1
l0

b1
l1

. . . b1
lj

a2
m0

a2
m1

. . . a2
mj

b2
n0

b2
n1

. . . b2
nj

)
∈ I .

Let j ∈ ω and suppose that the sequences 〈ki : i < j〉, 〈li : i < j〉, 〈mi : i < j〉
and 〈ni : i < j〉 are defined such that fi ∈ I, for i < j. Using Claim 1 we define
kj , lj , mj and nj such that fj = fj−1 ∪ {〈a1

kj
, a2

mj
〉, 〈b1

lj
, b2

nj
〉} ∈ I .

• If j is an odd number, let

kj = min
{

k : a1
k 6∈ {a1

k0
, a1

k1
, . . . , a1

kj−1
}
}

,

mj = min
{

m ∈ ω : fj−1 ∪ {〈a1
kj

, a2
m〉} ∈ I

}
,

lj = min
{

l : b1
l 6∈ {b1

l0 , b
1
l1 , . . . , b

1
lj−1

}
}

,

nj = min
{

n ∈ ω : fj−1 ∪ {〈a1
kj

, a2
mj
〉, 〈b1

lj , b
2
n〉} ∈ I

}
.

• If j is an even number, let

mj = min
{

m : a2
m 6∈ {a2

m0
, a2

m1
, . . . , a2

mj−1
}
}

,

kj = min
{

k ∈ ω : fj−1 ∪ {〈a1
k, a2

mj
〉} ∈ I

}
,

nj = min
{

n : b2
n 6∈ {b2

n0
, b2

n1
, . . . , b2

nj−1
}
}

,

lj = min
{

l ∈ ω : fj−1 ∪ {〈a1
kj

, a2
mj
〉, 〈b1

l , b
2
nj
〉} ∈ I

}
.
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So, the desired sequences are constructed. Clearly f =
⋃

j∈ω fj is a function
which maps a subset of A1 ∪B1 onto a subset of A2 ∪B2.

In order to show that dom f = A1 ∪ B1 and ran f = A2 ∪ B2 we prove
that {ki : i ∈ ω} = {li : i ∈ ω} = {mi : i ∈ ω} = {ni : i ∈ ω} = ω.
Suppose that ω \ {ki : i ∈ ω} 6= ∅ and p = min(ω \ {ki : i ∈ ω}). Then
k ∈ {ki : i ∈ ω}, for each k < p, and, clearly, there is an odd number j such that
{a1

k : k < p} ⊂ {a1
k0

, . . . , a1
kj−1

} so p = min{k ∈ ω : a1
k 6∈ {a1

k0
, a1

k1
, . . . , a1

kj−1
}},

which, by the construction, implies p = kj . A contradiction. The proof of the
other three equalities is similar.

We prove that the function f is increasing. If x1, x2 ∈ dom f and x1 < x2,
then there is j ∈ ω such that x1, x2 ∈ dom fj and, since fj ∈ I, we have
f(x1) = fj(x1) < fj(x2) = f(x2).

Finally we prove that f [A1] = A2 and f [B1] = B2. If a ∈ A1, then there is
j ∈ ω such that a ∈ dom fj and, by the construction, f(a) = fj(a) ∈ A2, thus
f [A1] ⊂ A2. The proof that f [B1] ⊂ B2 is similar and the equalities follow from
the fact that f : A1 ∪B1 → A2 ∪B2 is a bijection. Claim 2 is proved.

Claim 3. The mapping F : R→ R defined by

F (z) = sup{f(x) : x ∈ A1 ∪B1 ∧ x ≤ z}
is an order isomorphism which extends f .

Proof of Claim 3. Since f is an increasing function, for z ∈ A1 ∪ B1 we have
F (z) = f(z).

We prove that the function F is increasing. If x1, x2 ∈ R and x1 < x2 then,
by the density of A1, there are a1, a2 ∈ A1 such that x1 < a1 < a2 < x2.
Since f is an increasing function, according to the definition of F we have
F (x1) ≤ F (a1) = f(a1) < f(a2) = F (a2) ≤ F (x2).

Finally we prove that F is a surjection. Let y ∈ R and Y = {w ∈ A2 ∪B2 :
w ≤ y}. Let X = f−1[Y ] and let x = sup X. Then it is easy to show that
F (x) = y. Claim 3 is proved.

The mapping F : 〈R,OA1B1〉 → 〈R,OA2B2〉 is open because for a1 ∈ A1,
b1 ∈ B1 satisfying a1 < b1, by Claims 2 and 3 we have F (a1) ∈ A2, F (b1) ∈ B2

and F [[a1, b1]] = [F (a1), F (b1)].
F is continuous because for a2 ∈ A2 and b2 ∈ B2 satisfying a2 < b2 by

Claims 2 and 3 we have F−1(a2) ∈ A1, F−1(b2) ∈ B1 and F−1[[a2, b2]] =
[F−1(a2), F−1(b2)]. Thus, the mapping F is a homeomorphism. 2

Can the last result be extended for uncountable sets A and B? Since there
are non-isomorphic uncountable dense subsets of R, some kind of homogeneity
of the sets A and B should be assumed. So, a subset A ⊂ R is called ℵ1-dense
iff it has ℵ1-many elements in each interval. In [6], following the construction
of Baumgartner from [2] modified by Todorčević (see [10]), the following con-
sistency result is obtained.

Theorem 3. Under the Proper Forcing Axiom, each two spaces of the form
〈R,OAB〉, where A and B are disjoint ℵ1-dense subsets of R, are homeomorphic.
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More information concerning the Proper Forcing Axiom can be found in [3].
For countable A,B ⊂ R the spaces 〈R,OAB〉 are second countable and zero-

dimensional. Now we show that they are universal for all spaces with these two
properties.

Theorem 4. Each second countable zero-dimensional space can be embedded in
the space 〈R,OAB〉, where A and B are countable, disjoint, dense subsets of R.

Proof. Every zero-dimensional second countable space can be embedded in
the Cantor cube 2ω, which is homeomorphic to the Cantor set C ⊂ R with the
standard topology. Thus, it is sufficient to embed the Cantor set C into the
space 〈R,OAB〉, for specially chosen sets A and B.

Let us define the sets A and B. Let {Bn : n ∈ ω} be an enumeration of the
base {(p, q) : p, q ∈ Q, p < q} for the standard topology on R. Since the set
R \C is open and dense in the standard topology, from each set Bn \C we can
choose two elements, an and bn, such that {an : n ∈ ω} ∩ {bn : n ∈ ω} = ∅.
Clearly, the sets A = {an : n ∈ ω} and B = {bn : n ∈ ω} are dense and disjoint.

It remains to be proved that the standard topology on the Cantor set C
coincides with the induced topology (OAB)C . Since A,B ⊂ R \ C we have
[a, b] ∩ C = (a, b) ∩ C, for each a ∈ A and b ∈ B, such that a < b, which is an
open set in the standard topology on the Cantor set. Also, the topology OAB

is finer than the standard topology, which completes the proof. 2
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