THE UNIQUENESS AND UNIVERSALITY OF A GENERALIZED ORDERED SPACE¹

M.S. Kurilić², A. Pavlović³

Abstract. If $\langle L, < \rangle$ is a dense linear order without end points, A and B disjoint and dense subsets of L and \mathcal{O}_{AB} the topology on the set L generated by closed intervals [a, b], where $a \in A$ and $b \in B$, then $\langle L, \mathcal{O}_{AB} \rangle$ is a generalized ordered space. We show that all spaces of the form $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$, where $A, B \subset \mathbb{R}$ are countable sets, are homeomorphic and universal in the class of second countable zero-dimensional spaces.

AMS Mathematics Subject Classification (2000): 54F05, 54D15, 54A10

Key words and phrases: linear order, generalized ordered space, closed interval, the real line, zero-dimensional space, "back and forth"

1. Introduction

We remind the reader that, for a linear order $\langle L, < \rangle$, the standard topology $\mathcal{O}_{<}$ on the set L is generated by the family of all open intervals and then the space $\langle L, \mathcal{O}_{<} \rangle$ is called a *linearly ordered topological space* (LOTS). A topological space $\langle X, \mathcal{O} \rangle$ is called *linearly orderable* if there is a linear order < on X such that $\mathcal{O} = \mathcal{O}_{<}$; suborderable if it is homeomorphic to a subspace of some LOTS; generalized orderable (GO space) if there is a linear order < on X such that $\mathcal{O}_{<} \subset \mathcal{O}$ and each point has a neighborhood base consisting of intervals.

Čech [4] proved that the classes of suborderable and GO spaces coincide. Also it is known (see [4] or [8]) that, if $\langle L, \rangle$ is a linear order and I, A and B are disjoint subsets of L, then

$$\mathcal{P}_{IAB} = \{x : x \in I\} \cup \{[a, \rightarrow) : a \in A\} \cup \{(\leftarrow, b] : b \in B\} \cup \mathcal{O}_{<}$$

is a subbase for a GO topology on L. So, if $\langle L, < \rangle$ is a linear order and $A, B \subset L$ are disjoint sets, then, clearly, the families $\mathcal{P}_{\emptyset AB}$ and

$$\mathcal{B}_{AB} = \{ [a, b] : a \in A \land b \in B \land a < b \}$$

generate the same topology, let us denote it by \mathcal{O}_{AB} , on the set L and $\langle L, \mathcal{O}_{AB} \rangle$ is a GO space. Examples of such a construction are "the two arrows space"

 $^{^1{\}rm This}$ paper is a part of the research project no. 144001, supported by the Ministry of Science and Technological Development, Republic of Serbia

²Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: milos@dmi.uns.ac.rs

³Department of Mathematics and Informatics, University of Novi Sad,

Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, email: apavlovic@dmi.uns.ac.rs

of Alexandroff and Urison ([1], see [5]) and some subspaces of the spaces constructed by Todorčević in [9].

The spaces of the form $\langle L, \mathcal{O}_{AB} \rangle$, where $\langle L, \langle \rangle$ is a dense linear order without end points and A and B are dense and disjoint subsets of L, were investigated in [6] and [7]. In the following theorem we collect some results from [7].

Theorem 1. Let $\langle L, < \rangle$ be a dense linear order without end points and A and B dense, disjoint subsets of L. Then

(a) The space $\langle L, \mathcal{O}_{AB} \rangle$ is zero-dimensional, non-compact, collectionwise normal, hereditarily normal and need not to be perfectly normal;

(b) For the cardinal functions on $\langle L, \mathcal{O}_{AB} \rangle$ we have: $e \leq l \leq c = hc = hl \leq d = hd \leq \min\{|A|, |B|\} \leq w = nw = \max\{|A|, |B|\} \leq |L|, and \chi = \psi = t \leq c.$ (c) $|A| = |B| = \aleph_0 \Rightarrow$ the space $\langle L, \mathcal{O}_{AB} \rangle$ is metrizable $\Rightarrow |A| = |B|$.

For the spaces of the form $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$, where \mathbb{R} is the real line, we have

Fact 1. If A and B are dense disjoint subsets of \mathbb{R} , the space $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$ is

(a) zero-dimensional, non-compact, collectionwise normal, perfectly normal;

(b) hereditarily separable, hereditarily Lindelöf, first countable and $w(\mathbb{R}, \mathcal{O}_{AB})$ = max{|A|, |B|}.

(c) second countable iff $|A| = |B| = \aleph_0$ iff it is metrizable.

If $x = \langle x_n : n \in \mathbb{N} \rangle$ is a sequence in the space $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$ then

x converges to a point $a \in A$ iff it converges to a in the standard topology and there is $n_0 \in \mathbb{N}$ such that $x_n \ge a$, for all $n \ge n_0$;

x converges to a point $b \in B$ iff it converges to b in the standard topology and there is $n_0 \in \mathbb{N}$ such that $x_n \leq b$, for all $n \geq n_0$;

x converges to a point $c \in \mathbb{R} \setminus (A \cup B)$ iff it converges to c in the standard topology.

Proof. (b) follows from Theorem 2(b) and the fact that the set of rationals \mathbb{Q} is dense in the space $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$.

If the space $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$ is metrizable, then, since it is separable, it must be second countable and (c) is true.

Finally, if $O = \bigcup_{i \in I} [a_i, b_i] \in \mathcal{O}_{AB}$, then, since the space is hereditarily Lindelöf, there is a countable subset $C \subset I$ such that $O = \bigcup_{i \in C} [a_i, b_i]$. Thus Ois a F_{σ} set, $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$ is a perfectly normal space and (a) is true.

The statements concerning the convergence of sequences are evident. \Box

In this paper we consider the spaces $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$, where A and B are countable dense disjoint subsets of \mathbb{R} .

2. Uniqueness and universality

If A and B are countable dense disjoint subsets of \mathbb{R} , then, by Fact 1, $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$ is a separable metrizable zero-dimensional space. First, using a variation of Cantor's "back and forth" method, we show that all spaces of this form are homeomorphic.

Theorem 2. If for $i \in \{1, 2\}$ the sets $A_i, B_i \subset \mathbb{R}$ are countable dense and disjoint, then the spaces $\langle \mathbb{R}, \mathcal{O}_{A_i B_i} \rangle$ are homeomorphic.

Proof. Let \mathbb{I} denote the set of all finite partial functions from $A_1 \cup B_1$ to $A_2 \cup B_2$ which are increasing and map elements of A_1 to elements of A_2 and elements of B_1 to elements of B_2 . Since the sets A_1 , A_2 , B_1 and B_2 are dense we have

Claim 1. Let
$$f = \begin{pmatrix} x_0 & x_1 & \cdots & x_n \\ y_0 & y_1 & \cdots & y_n \end{pmatrix} \in \mathbb{I}$$
. Then
 $\forall a^1 \in A_1 \setminus \{x_0, x_1, \dots, x_n\} \; \exists a^2 \in A_2 \; f \cup \{\langle a^1, a^2 \rangle\} \in \mathbb{I};$
 $\forall b^1 \in B_1 \setminus \{x_0, x_1, \dots, x_n\} \; \exists b^2 \in B_2 \; f \cup \{\langle b^1, b^2 \rangle\} \in \mathbb{I};$
 $\forall a^2 \in A_2 \setminus \{y_0, y_1, \dots, y_n\} \; \exists a^1 \in A_1 \; f \cup \{\langle a^1, a^2 \rangle\} \in \mathbb{I};$
 $\forall b^2 \in B_2 \setminus \{y_0, y_1, \dots, y_n\} \; \exists b^1 \in B_1 \; f \cup \{\langle b^1, b^2 \rangle\} \in \mathbb{I}.$

Claim 2. There is an order isomorphism $f : A_1 \cup B_1 \to A_2 \cup B_2$ such that $f[A_1] = A_2$ and $f[B_1] = B_2$.

Proof of Claim 2. Let $A_1 = \{a_k^1 : k \in \omega\}$, $B_1 = \{b_l^1 : l \in \omega\}$, $A_2 = \{a_m^2 : m \in \omega\}$ and $B_2 = \{b_n^2 : n \in \omega\}$ be fixed enumerations of the sets A_1 , B_1 , A_2 and B_2 .

By recursion we construct four sequences of integers, $\langle k_i : i \in \omega \rangle$, $\langle l_i : i \in \omega \rangle$, $\langle m_i : i \in \omega \rangle$ and $\langle n_i : i \in \omega \rangle$, such that for each $j \in \omega$

(1)
$$f_{j} = \begin{pmatrix} a_{k_{0}}^{1} & a_{k_{1}}^{1} & \dots & a_{k_{j}}^{1} & b_{l_{0}}^{1} & b_{l_{1}}^{1} & \dots & b_{l_{j}}^{1} \\ a_{m_{0}}^{2} & a_{m_{1}}^{2} & \dots & a_{m_{j}}^{2} & b_{n_{0}}^{2} & b_{n_{1}}^{2} & \dots & b_{n_{j}}^{2} \end{pmatrix} \in \mathbb{I}.$$

Let $j \in \omega$ and suppose that the sequences $\langle k_i : i < j \rangle$, $\langle l_i : i < j \rangle$, $\langle m_i : i < j \rangle$ and $\langle n_i : i < j \rangle$ are defined such that $f_i \in \mathbb{I}$, for i < j. Using Claim 1 we define k_j , l_j , m_j and n_j such that $f_j = f_{j-1} \cup \{\langle a_{k_j}^1, a_{m_j}^2 \rangle, \langle b_{l_j}^1, b_{n_j}^2 \rangle\} \in \mathbb{I}$.

• If j is an odd number, let

$$\begin{split} k_{j} &= \min\left\{k:a_{k}^{1} \notin \{a_{k_{0}}^{1}, a_{k_{1}}^{1}, \dots, a_{k_{j-1}}^{1}\}\right\},\\ m_{j} &= \min\left\{m \in \omega: f_{j-1} \cup \{\langle a_{k_{j}}^{1}, a_{m}^{2}\rangle\} \in \mathbb{I}\right\},\\ l_{j} &= \min\left\{l:b_{l}^{1} \notin \{b_{l_{0}}^{1}, b_{l_{1}}^{1}, \dots, b_{l_{j-1}}^{1}\}\right\},\\ n_{j} &= \min\left\{n \in \omega: f_{j-1} \cup \{\langle a_{k_{j}}^{1}, a_{m_{j}}^{2}\rangle, \langle b_{l_{j}}^{1}, b_{n}^{2}\rangle\} \in \mathbb{I}\right\}.\end{split}$$

• If j is an even number, let

$$\begin{split} m_j &= \min\left\{m: a_m^2 \not\in \{a_{m_0}^2, a_{m_1}^2, \dots, a_{m_{j-1}}^2\}\right\}, \\ k_j &= \min\left\{k \in \omega: f_{j-1} \cup \{\langle a_k^1, a_{m_j}^2 \rangle\} \in \mathbb{I}\right\}, \\ n_j &= \min\left\{n: b_n^2 \notin \{b_{n_0}^2, b_{n_1}^2, \dots, b_{n_{j-1}}^2\}\right\}, \\ l_j &= \min\left\{l \in \omega: f_{j-1} \cup \{\langle a_{k_j}^1, a_{m_j}^2 \rangle, \langle b_l^1, b_{n_j}^2 \rangle\} \in \mathbb{I}\right\} \end{split}$$

So, the desired sequences are constructed. Clearly $f = \bigcup_{j \in \omega} f_j$ is a function which maps a subset of $A_1 \cup B_1$ onto a subset of $A_2 \cup B_2$.

In order to show that dom $f = A_1 \cup B_1$ and ran $f = A_2 \cup B_2$ we prove that $\{k_i : i \in \omega\} = \{l_i : i \in \omega\} = \{m_i : i \in \omega\} = \{n_i : i \in \omega\} = \omega$. Suppose that $\omega \setminus \{k_i : i \in \omega\} \neq \emptyset$ and $p = \min(\omega \setminus \{k_i : i \in \omega\})$. Then $k \in \{k_i : i \in \omega\}$, for each k < p, and, clearly, there is an odd number j such that $\{a_k^1 : k < p\} \subset \{a_{k_0}^1, \ldots, a_{k_{j-1}}^1\}$ so $p = \min\{k \in \omega : a_k^1 \notin \{a_{k_0}^1, a_{k_1}^1, \ldots, a_{k_{j-1}}^1\}\}$, which, by the construction, implies $p = k_j$. A contradiction. The proof of the other three equalities is similar.

We prove that the function f is increasing. If $x_1, x_2 \in \text{dom } f$ and $x_1 < x_2$, then there is $j \in \omega$ such that $x_1, x_2 \in \text{dom } f_j$ and, since $f_j \in \mathbb{I}$, we have $f(x_1) = f_j(x_1) < f_j(x_2) = f(x_2)$.

Finally we prove that $f[A_1] = A_2$ and $f[B_1] = B_2$. If $a \in A_1$, then there is $j \in \omega$ such that $a \in \text{dom } f_j$ and, by the construction, $f(a) = f_j(a) \in A_2$, thus $f[A_1] \subset A_2$. The proof that $f[B_1] \subset B_2$ is similar and the equalities follow from the fact that $f: A_1 \cup B_1 \to A_2 \cup B_2$ is a bijection. Claim 2 is proved.

Claim 3. The mapping $F : \mathbb{R} \to \mathbb{R}$ defined by

$$F(z) = \sup\{f(x) : x \in A_1 \cup B_1 \land x \le z\}$$

is an order isomorphism which extends f.

Proof of Claim 3. Since f is an increasing function, for $z \in A_1 \cup B_1$ we have F(z) = f(z).

We prove that the function F is increasing. If $x_1, x_2 \in \mathbb{R}$ and $x_1 < x_2$ then, by the density of A_1 , there are $a_1, a_2 \in A_1$ such that $x_1 < a_1 < a_2 < x_2$. Since f is an increasing function, according to the definition of F we have $F(x_1) \leq F(a_1) = f(a_1) < f(a_2) = F(a_2) \leq F(x_2)$.

Finally we prove that F is a surjection. Let $y \in \mathbb{R}$ and $Y = \{w \in A_2 \cup B_2 : w \leq y\}$. Let $X = f^{-1}[Y]$ and let $x = \sup X$. Then it is easy to show that F(x) = y. Claim 3 is proved.

The mapping $F : \langle \mathbb{R}, \mathcal{O}_{A_1B_1} \rangle \to \langle \mathbb{R}, \mathcal{O}_{A_2B_2} \rangle$ is open because for $a_1 \in A_1$, $b_1 \in B_1$ satisfying $a_1 < b_1$, by Claims 2 and 3 we have $F(a_1) \in A_2$, $F(b_1) \in B_2$ and $F[[a_1, b_1]] = [F(a_1), F(b_1)]$.

F is continuous because for $a_2 \in A_2$ and $b_2 \in B_2$ satisfying $a_2 < b_2$ by Claims 2 and 3 we have $F^{-1}(a_2) \in A_1$, $F^{-1}(b_2) \in B_1$ and $F^{-1}[[a_2, b_2]] = [F^{-1}(a_2), F^{-1}(b_2)]$. Thus, the mapping F is a homeomorphism. \Box

Can the last result be extended for uncountable sets A and B? Since there are non-isomorphic uncountable dense subsets of \mathbb{R} , some kind of homogeneity of the sets A and B should be assumed. So, a subset $A \subset \mathbb{R}$ is called \aleph_1 -dense iff it has \aleph_1 -many elements in each interval. In [6], following the construction of Baumgartner from [2] modified by Todorčević (see [10]), the following consistency result is obtained.

Theorem 3. Under the Proper Forcing Axiom, each two spaces of the form $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$, where A and B are disjoint \aleph_1 -dense subsets of \mathbb{R} , are homeomorphic.

More information concerning the Proper Forcing Axiom can be found in [3]. For countable $A, B \subset \mathbb{R}$ the spaces $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$ are second countable and zerodimensional. Now we show that they are universal for all spaces with these two properties.

Theorem 4. Each second countable zero-dimensional space can be embedded in the space $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$, where A and B are countable, disjoint, dense subsets of \mathbb{R} .

Proof. Every zero-dimensional second countable space can be embedded in the Cantor cube 2^{ω} , which is homeomorphic to the Cantor set $C \subset \mathbb{R}$ with the standard topology. Thus, it is sufficient to embed the Cantor set C into the space $\langle \mathbb{R}, \mathcal{O}_{AB} \rangle$, for specially chosen sets A and B.

Let us define the sets A and B. Let $\{B_n : n \in \omega\}$ be an enumeration of the base $\{(p,q) : p, q \in \mathbb{Q}, p < q\}$ for the standard topology on \mathbb{R} . Since the set $\mathbb{R} \setminus C$ is open and dense in the standard topology, from each set $B_n \setminus C$ we can choose two elements, a_n and b_n , such that $\{a_n : n \in \omega\} \cap \{b_n : n \in \omega\} = \emptyset$. Clearly, the sets $A = \{a_n : n \in \omega\}$ and $B = \{b_n : n \in \omega\}$ are dense and disjoint.

It remains to be proved that the standard topology on the Cantor set C coincides with the induced topology $(\mathcal{O}_{AB})_C$. Since $A, B \subset \mathbb{R} \setminus C$ we have $[a,b] \cap C = (a,b) \cap C$, for each $a \in A$ and $b \in B$, such that a < b, which is an open set in the standard topology on the Cantor set. Also, the topology \mathcal{O}_{AB} is finer than the standard topology, which completes the proof. \Box

References

- P. Alexandroff, P. Uryson, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam 14 (1929).
- [2] J. E. Baumgartner, All ℵ₁-dense sets of reals can be isomorphic, Fund. Math. 79 (1973), 101-106.
- [3] J. E. Baumgartner, Application of the Proper Forcing Axiom, in: Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan editors), North-Holland, (Amsterdam, 1984), 913-959.
- [4] E. Čech, Topological spaces, revised by Z. Frolik and M. Katetov, Academic (Czeshoslovak Acad. Sci.), (Prague, 1966).
- [5] R. Engelking, General Topology, Heldermann Verlag, (Berlin, 1989).
- [6] M. S. Kurilić, A. Pavlović, A consequence of the Proper Forcing Axiom in topology, Publ. Math. Debrecen 64/1-2 (2004), 15-20.
- M. S. Kurilić, A. Pavlović, Topologies generated by closed intervals, Novi Sad J. Math. Vol. 35 No. 1 (2005), 187-195.
- [8] D. Lutzer, On generalized ordered spaces, Dissertationes Math 1971, vol. 89.
- S. Todorčević, Aronszajn orderings, Djuro Kurepa memorial volume, Publ. Inst. Math. (Beograd) (N.S.) 57(71)(1995), 29-46.
- [10] S. Todorčević, Partition Problems in Topology, Contemp. Math. 84, Amer. Math. Soc. (Providence, RI, 1989).

Received by the editors December 16, 2006