UNIQUENESS OF MEROMORPHIC FUNCTIONS WHOSE n-TH DERIVATIVE SHARE ONE OR TWO VALUES

Abhijit Banerjec ${ }^{11}$, Sonali Mukherjed ${ }^{21}$

Abstract

We deal with the problem of uniqueness of meromorphic functions when their n-th derivatives share one or two values and improve all the results recently obtained by Jun and Mori [15. We also provide an answer to the question of Yang [9].

AMS Mathematics Subject Classification (2000): 30D35
Key words and phrases: Uniqueness, meromorphic functions, weighted sharing, shared values

1. Introduction and Definitions.

In the paper by meromorphic function we always mean a function which is meromorphic in the open complex plane \mathbb{C}. We use the standard notations and definitions of the value distribution theory available in [2]. We denote by $T(r)$ the maximum of $T(r, f)$ and $T(r, g)$. The notation $S(r)$ stands for any quantity satisfying $S(r)=o(T(r))$ as $r \longrightarrow \infty$, outside of a possible exceptional set of finite linear measure. If for some $a \in \mathbb{C} \cup\{\infty\}, f$ and g have the same set of a-points with the same multiplicities, we say that f and g share the value a CM (counting multiplicities), and if we do not consider the multiplicities then f, g are said to share the value a IM (ignoring multiplicities).

In [9, C. C. Yang asked the following:
What can be said about two entire functions f, g share the value $0 C M$ and their first derivatives share the value 1 CM ?
A substantial amount of work has already been done on the question of Yang or its related topics and continuous efforts are being put on to relax the hypothesis \{c.f. [3], [9- 15 \}.
As an attempt to answer the question of Yang, improving the result of K. Shibazaki, Yi [12] obtained the following theorem.

Theorem A. Let f and g be two entire functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 CM. If $\delta(0 ; f)+\delta(0 ; g)>1$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Considering meromorphic functions Yi and Yang [13] proved the following result.

[^0]Theorem B. Let f and, g be two meromorphic functions satisfying $\delta(\infty ; f)=$ $\delta(\infty ; g)=1$. If f^{\prime} and g^{\prime} share the value $1 C M$ with $\delta(0 ; f)+\delta(0 ; g)>1$ then either $f \equiv g$ or $f^{\prime} g^{\prime} \equiv 1$.

In [13], the following question was asked:
Whether it is possible to replace the first derivatives f^{\prime} and g^{\prime} in Theorem B by n-th derivatives $f^{(n)}$ and $g^{(n)}$?
In this direction the following result was proved in [14].
Theorem C. Let f and g be two meromorphic functions such that $\Theta(\infty ; f)=$ $\Theta(\infty ; g)=1$. If $f^{(n)}$ and $g^{(n)}$ share the value 1 CM with $\delta(0 ; f)+\delta(0 ; g)>1$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Recently, to deal with the question of Yang [9], Jun and Mori [15] obtained the following results which are different from Theorem B.
Theorem D. Let f and g be two meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share 1 CM. If $\Delta:=\Theta(\infty ; f)+\Theta(\infty ; g)+\Theta(0 ; f)+\Theta(0 ; g)>4-\frac{2}{5 n+4}$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Jun and Mori [15] also investigated the situation where two derivatives of the meromorphic functions share two values namely 1 and ∞ as follows.

Theorem E. Let f and g be two meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share 1 and ∞ CM. If $\Delta_{1}:=\Theta(\infty ; f)+\Theta(0 ; f)+\Theta(0 ; g)>3-\frac{1}{4 n+3}$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.
Theorem F. Let f and g be two meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share 1 CM and ∞ IM. If $\Delta_{1}>3-\frac{1}{4 n+4}$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

We now introduce the notion of gradation of sharing known as weighted sharing which measures how close a shared value is to being shared CM or to being shared IM.

Definition 1.1. [5, 6] Let k be a nonnegative integer or infinity. For $a \in$ $\mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq k$ and $1+k$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then z_{0} is an a-point of f with multiplicity $m(\leq k)$ if and only if it is an a-point of g with multiplicity $m(\leq k)$ and z_{0} is an a-point of f with multiplicity $m(>k)$ if and only if it is an a-point of g with multiplicity $n(>k)$, where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly, if f, g share (a, k) then f, g share (a, p) for all integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

In the paper we employ the above notions to improve all the results of Jun and Mori [15]. We also investigate the situation when the sharing of zeros of $f^{(n)}$
and $g^{(n)}$ is taken into account as these types of problems are seldom studied. Lastly, we obtain a result which will provide a specific answer corresponding to the question of Yang [9] as mentioned above. The following theorems are the main results of the paper.

Theorem 1.1. Let f and g be two meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share $(1,2)$. If $\Delta>4-\frac{1}{n+2}$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Theorem 1.2. Let f and g be two meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share $(1,2)$ and $(\infty ; \infty)$. If $\Delta_{1}>3-\frac{1}{n+2}$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Theorem 1.3. Let f and g be two meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share $(1,2)$ and $(\infty ; 0)$. If $\Delta_{1}>3-\frac{1}{n+3}$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Theorem 1.4. Let f and g be two meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share $(1,2)$ and $(0 ; \infty)$. If $\Delta>4-\frac{1}{n+2}$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Theorem 1.5. Let f and g be two meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share $(1,2)$ and $(0 ; 0)$. If $\Delta>4-\frac{2}{3 n+4}$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Theorem 1.6. Let f and g be two meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share $(1,2)$ and f, g share $(0 ; 0)$. If $\Delta_{2}:=2 \Theta(0 ; f)+\Theta(\infty ; f)+\Theta(\infty ; g)>$ $4-\frac{1}{2 n+2}$ then either $f \equiv g$ or $f^{(n)} g^{(n)} \equiv 1$.

Definition 1.2. [5] Let p be a positive integer and $a \in \mathbb{C} \cup\{\infty\}$.
(i) $N(r, a ; f \mid \geq p) \overline{(N}(r, a ; f \mid \geq p))$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not less than p.
(ii) $N(r, a ; f \mid \leq p) \overline{(N}(r, a ; f \mid \leq p))$ denotes the counting function (reduced counting function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.3. [7] Let $a, b \in \mathbb{C} \cup\{\infty\}$. We denote by $N(r, a ; f \mid g=b)$ the counting function of those a-points of f, counted according to multiplicity, which are b-points of g.

Definition 1.4. [7] Let $a, b \in \mathbb{C} \cup\{\infty\}$. We denote by $N(r, a ; f \mid g \neq b)$ the counting function of those a-points of f, counted according to multiplicity, which are not the b-points of g.

Definition 1.5. Let $a \in \mathbb{C} \cup\{\infty\}$ and m, n and p be three positive integers. We denote by $N_{p}(r, a ; g \mid m \leq f \leq n)\left(N_{p}(r, a ; g \mid f \geq m)\right)$ the counting function of those a-points of g which are also the a-points of f, with multiplicities lying between m and n (not less than m), where an a-point of g with multiplicity t is counted times if $t \leq p$ and p times if $t>p$. In a similar way we can define $N(r, a ; g \mid m \leq f \leq n)$.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F, G be two non-constant meromorphic functions. Henceforth we shall denote by H the following function.

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{2.1}
\end{equation*}
$$

Lemma 2.1. If for two positive integers p, and $k, N_{p}\left(r, 0 ; f^{(k)} \mid f \neq 0\right)$ denotes the counting function of those zeros of of $f^{(k)}$ which are not the zeros of f, where a zero of $f^{(k)}$ with multiplicity m is counted m times if $m \leq p$ and p times if $m>p$ then

$$
\begin{aligned}
N_{p}\left(r, 0 ; f^{(k)} \mid f \neq 0\right) \leq & N_{k}(r, 0 ; f)+k \bar{N}(r, \infty ; f) \\
& -\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; \left.\frac{f^{(k)}}{f} \right\rvert\, \geq m\right)+S(r, f)
\end{aligned}
$$

Proof. By the first fundamental theorem and Milloux theorem $\{$ p. 55 [2] $\}$ we get

$$
\begin{aligned}
& N\left(r, 0 ; f^{(k)} \mid f \neq 0\right) \\
& \quad \leq N\left(r, 0 ; \frac{f^{(k)}}{f}\right) \\
& \quad \leq N\left(r, \infty ; \frac{f^{(k)}}{f}\right)+m\left(r, \frac{f^{(k)}}{f}\right)+O(1) \\
& \quad=N(r, 0 ; f \mid<k)+k \bar{N}(r, 0 ; f \mid \geq k)+k \bar{N}(r, \infty ; f)+S(r, f) \\
& \quad=N_{k}(r, 0 ; f)+k \bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

Now

$$
\begin{aligned}
& N_{p}\left(r, 0 ; \frac{f^{(k)}}{f}\right)+\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; \left.\frac{f^{(k)}}{f} \right\rvert\, \geq m\right)=N\left(r, 0 ; \frac{f^{(k)}}{f}\right) \\
\leq & N_{k}(r, 0 ; f)+k \bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

Since $N_{p}\left(r, 0 ; f^{(k)} \mid f \neq 0\right) \leq N_{p}\left(r, 0 ; \frac{f^{(k)}}{f}\right)$, the lemma follows from the above.

Lemma 2.2. For two positive integers p and k $N_{p}\left(r, 0 ; f^{(k)}\right) \leq N_{p+k}(r, 0 ; f)+k \bar{N}(r, \infty ; f)-\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; \left.\frac{f^{(k)}}{f} \right\rvert\, \geq m\right)+S(r, f)$.

Proof. We note that

$$
\begin{aligned}
& N_{p}\left(r, 0 ; f^{(k)} \mid f \geq k+1\right) \\
& \quad=\quad N(r, 0 ; f \mid k \leq f \leq k+p-1)-k \bar{N}(r, 0 ; f \mid k \leq f \leq k+p-1) \\
& \quad+p \bar{N}(r, 0 ; f \mid \geq k+p) .
\end{aligned}
$$

Using Lemma 2.1 we get

$$
\begin{aligned}
& N_{p}\left(r, 0 ; f^{(k)}\right) \\
&= N_{p}\left(r, 0 ; f^{(k)} \mid f \neq 0\right)+N_{p}\left(r, 0 ; f^{(k)} \mid f \geq k+1\right) \\
&+N_{p}\left(r, 0 ; f^{(k)} \mid 1 \leq f \leq k\right) \\
& \leq N_{k}(r, 0 ; f)+k \bar{N}(r, \infty ; f)-\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; \left.\frac{f^{(k)}}{f} \right\rvert\, \geq m\right) \\
&+N_{p}\left(r, 0 ; f^{(k)} \mid f \geq k+1\right)+N_{p}\left(r, 0 ; f^{(k)} \mid 1 \leq f \leq k\right)+S(r, f) \\
& \leq N_{p+k}(r, 0 ; f)+k \bar{N}(r, \infty ; f)-\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; \left.\frac{f^{(k)}}{f} \right\rvert\, \geq m\right)+S(r, f) .
\end{aligned}
$$

Lemma 2.3. For two positive integers p and k

$$
\begin{aligned}
& N_{p}\left(r, 0 ; f^{(k)}\right) \\
& \quad \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}(r, 0 ; f)-\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; f^{(k)}|f \neq 0| \geq m\right),
\end{aligned}
$$

where by $\bar{N}\left(r, 0 ; f^{(k)}|f \neq 0| \geq m\right)$ we mean the reduced counting function of those zeros of $f^{(k)}$ with multiplicities not less than m which are not the zeros of f.

Proof. Since

$$
N\left(r, 0 ; f^{(k)}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N(r, 0 ; f)+S(r, f)
$$

it follows that

$$
\begin{aligned}
N_{p}\left(r, 0 ; f^{(k)}\right) \leq & T\left(r, f^{(k)}\right)-T(r, f)+N(r, 0 ; f) \\
& -\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; f^{(k)} \mid \geq m\right)+S(r, f)
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; f^{(k)} \mid \geq m\right)= & \sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; f^{(k)} \mid f \geq m\right) \\
& +\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; f^{(k)}|f \neq 0| \geq m\right)
\end{aligned}
$$

Also, since

$$
N(r, 0 ; f)-\sum_{m=p+1}^{\infty} \bar{N}\left(r, 0 ; f^{(k)} \mid f \geq m\right)=N_{p+k}(r, 0 ; f)
$$

the lemma follows from the above.
Lemma 2.4. [6] If F, G share $(1,2)$ then one of the following cases holds. (i)

$$
\begin{aligned}
\max \{T(r, F), T(r, G)\} \leq & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; F) \\
& +N_{2}(r, \infty ; G)+S(r, F)+S(r, G)
\end{aligned}
$$

(ii) $F \equiv G$
(iii) $F G \equiv 1$.

Lemma 2.5. If F, G share $(1,2)$ and (∞, k), where $0 \leq k \leq \infty$ then one of the following cases holds.
(i)

$$
\begin{aligned}
\max \{T(r, F), T(r, G)\} \leq & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G) \\
& +\bar{N}_{*}(r, \infty ; F, G)+S(r, F)+S(r, G)
\end{aligned}
$$

(ii) $F \equiv G$
(iii) $F G \equiv 1$.

Proof. We omit the proof since the proof since it can be carried out in the line of the proof of Lemma 2.13 [1].
Lemma 2.6. If F, G share $(1,2)$ and $(0, k)$, where $0 \leq k \leq \infty$ then one of the following cases holds.
(i)

$$
\begin{aligned}
\max \{T(r, F), T(r, G)\} \leq & N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+\bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G) \\
& +\bar{N}_{*}(r, 0 ; F, G)+S(r, F)+S(r, G)
\end{aligned}
$$

(ii) $F \equiv G$
(iii) $F G \equiv 1$.

Proof. Noting that F, G share $(1,2)$ and $(0, k)$ implies $\frac{1}{F}$ and $\frac{1}{G}$ share $(1,2)$ and (∞, k) and also from the first fundamental theorem we have $T(r, F)=$ $T\left(r, \frac{1}{F}\right)+O(1)$, the lemma can be proved in the line of the proof of Lemma 2.5

3. Proofs of the theorems

Proof of Theorem [1.1]. Let $F=f^{(n)}$ and $G=g^{(n)}$. Since

$$
\begin{aligned}
& T\left(r, f^{(n)}\right)=N\left(r, \infty ; f^{(n)}\right)+m\left(r, f^{(n)}\right) \\
& \quad \leq N(r, \infty ; f)+n \bar{N}(r, \infty ; f)+m(r, f)+S(r, f) \\
& \quad \leq T(r, f)+n \bar{N}(r, \infty ; f)+S(r, f) \\
& \quad \leq(n+1) T(r, f)+S(r, f)
\end{aligned}
$$

and

$$
T\left(r, g^{(n)}\right) \leq(n+1) T(r, g)+S(r, g)
$$

it follows that $S(r, F)$ and $S(r, G)$ can be replaced by $S(r, f)$ and $S(r, g)$ respectively. If possible, we suppose that Case (i) of Lemma 2.4 holds. Then we have from Lemmas 2.2 2.3

$$
\begin{aligned}
& T\left(r, f^{(n)}\right)=T(r, F) \\
& \leq N_{2}(r, 0 ; F)+N_{2}(r, \infty ; F)+N_{2}(r, 0 ; G)+N_{2}(r, \infty ; G) \\
&+S(r, F)+S(r, G) \\
& \leq N_{2}\left(r, 0 ; f^{(n)}\right)+N_{2}\left(r, 0 ; g^{(n)}\right)+2(\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)) \\
&+S(r, f)+S(r, g) \\
& \leq T\left(r, f^{(n)}\right)-T(r, f)+N_{n+2}(r, 0 ; f)+N_{n+2}(r, 0 ; g) \\
&+(n+2)(\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g))+S(r),
\end{aligned}
$$

that is,
(3.1) $T(r, f) \leq(n+2)\{\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)\}+S(r)$

In a similar way we can obtain
(3.2) $T(r, g) \leq(n+2)\{\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)\}+S(r)$

Combining (3.1) and (3.2) we get for $\varepsilon>0$ that

$$
\left(\Delta-4+\frac{1}{n+2}-\varepsilon\right) T(r) \leq S(r)
$$

Since $\Delta>4-\frac{1}{n+2}$ we can choose a δ such that $\Delta>4-\frac{1}{n+2}+\delta$ and so for $0<\varepsilon<\delta$ we obtain a contradiction. Hence by Lemma 2.4 we have either $f^{(n)} \equiv g^{(n)}$ or $f^{(n)} g^{(n)} \equiv 1$. If $f^{(n)} \equiv g^{(n)}$, then $f(z)=g(z)+p(z)$ where $p(z)$ is a polynomial of degree at most $n-1$. We claim that $p(z) \equiv 0$. Otherwise we have

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, p ; f)+S(r, f) \\
& \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; g)+S(r) \\
& \leq(4-\Delta+\varepsilon) T(r)+S(r)
\end{aligned}
$$

Similarly we get

$$
T(r, g) \leq(4-\Delta+\varepsilon) T(r)+S(r)
$$

So we have

$$
(\Delta-3-\varepsilon) T(r) \leq S(r)
$$

Noting that $\Delta>4-\frac{1}{n+2}$ and choosing $0<\varepsilon<\Delta-3$ we get a contradiction. So $f(z) \equiv g(z)$ and the proof is complete.
Proof of Theorem 1.2. Let F and G be defined as in the proof of Theorem 1.1 . According to the statement of the theorem $\bar{N}_{*}(r, \infty, F, G) \equiv 0$. If possible, we suppose that Case (i) of Lemma 2.5holds. Then we have from Lemmas 2.2 2.2.3

$$
\begin{aligned}
T\left(r, f^{(n)}\right)=T(r, F) \leq & N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+2 \bar{N}(r, \infty ; F) \\
& +S(r, F)+S(r, G) \\
\leq & T\left(r, f^{(n)}\right)-T(r, f)+N_{n+2}(r, 0 ; f)+N_{n+2}(r, 0 ; g) \\
& +(n+2) \bar{N}(r, \infty ; f)+S(r),
\end{aligned}
$$

Now, proceeding in the same way as in Theorem 1.1 we get

$$
\left(\Delta_{1}-3+\frac{1}{n+2}-\varepsilon\right) T(r) \leq S(r),
$$

from which we can deduce a contradiction. Hence by Lemma 2.5 we have either $f^{(n)} \equiv g^{(n)}$ or $f^{(n)} g^{(n)} \equiv 1$. Now again, following the same method as in the proof of Theorem 1.2 we can prove the theorem.

Proof of Theorem 1.3. Let F and G be defined as in the proof of Theorem 1.1 We note that here $\bar{N}_{*}(r, \infty, F, G) \leq \bar{N}(r, \infty ; f)$. Now we can prove the theorem in the line of proof of Theorem 1.2

Proof of Theorem 1.5. Let F and G be defined as in the proof of Theorem 1.1. According to the statement of the theorem $\bar{N}_{*}(r, 0, F, G) \leq \bar{N}(r, 0 ; F)=$ $\frac{1}{2} \bar{N}(r, 0 ; F)+\frac{1}{2} \bar{N}(r, 0 ; G)$. If possible, let us suppose that Case (i) of Lemma 2.6 holds. Then we have from Lemmas $2.2[2.3$

$$
\begin{aligned}
T\left(r, f^{(n)}\right)=T(r, F) \leq & N_{2}(r, \infty ; F)+N_{2}(r, \infty ; G)+\frac{3}{2} \bar{N}(r, 0 ; F)+\frac{3}{2} \bar{N}(r, 0 ; G) \\
& +S(r, F)+S(r, G) \\
\leq & T\left(r, f^{(n)}\right)-T(r, f)+\frac{3}{2} N_{n+1}(r, 0 ; f)+\frac{3}{2} N_{n+1}(r, 0 ; g) \\
& +\left(\frac{n}{2}+2\right) \bar{N}(r, \infty ; f)+\left(\frac{3 n}{2}+2\right) \bar{N}(r, \infty ; g)+S(r),
\end{aligned}
$$

that is
(3.3)
$T(r, f) \leq\left(\frac{3 n}{2}+2\right)(\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g))+S(r)$

In a similar manner we can obtain
(3.4)
$T(r, g) \leq\left(\frac{3 n}{2}+2\right)(\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g))+S(r)$
Combining (3.3) and (3.4) we get for $\varepsilon>0$ that

$$
\left(\Delta-4+\frac{2}{3 n+4}-\varepsilon\right) T(r) \leq S(r),
$$

Since $\varepsilon>0$ be arbitrary we obtain a contradiction. Hence by Lemma 2.6 we have either $f^{(n)} \equiv g^{(n)}$ or $f^{(n)} g^{(n)} \equiv 1$. If $f^{(n)} \equiv g^{(n)}$, then $f(z)=g(z)+p(z)$ where $p(z)$ is a polynomial of degree at most $n-1$. We claim that $p(z) \equiv 0$. Otherwise we have

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, p ; f)+S(r, f) \\
& \leq \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)+S(r) \\
& \leq(4-\Delta+\varepsilon) T(r)+S(r)
\end{aligned}
$$

Similarly we get

$$
T(r, g) \leq(4-\Delta+\varepsilon) T(r)+S(r)
$$

So we obtain

$$
(\Delta-3-\varepsilon) T(r) \leq S(r)
$$

Since $\Delta>4-\frac{2}{3 n+4}$ and $\varepsilon>0$ be arbitrary we get a contradiction. So $f(z) \equiv g(z)$ and the proof is complete.

Proof of Theorem 1.4. Let F and G be defined as in the proof of Theorem 1.1. We note that here $N_{*}(r, 0, F, G) \equiv 0$. Now, proceeding in the same way as in the proof of Theorem 1.5 we can prove the theorem.

Proof of Theorem 1.6. Let F and G be defined as in the proof of Theorem 1.1. Case 1 Let $H \not \equiv 0$.
From (2.1) it can be easily calculated that the possible poles of H occur at (i) common zeros of F and G with different multiplicities, (ii) zeros of $F(G)$ which are not zeros of $G(F)$, (iii) those 1 points of F and G whose multiplicities are different (iv) those poles of F and G whose multiplicities are different, (v) zeros of $F^{\prime}\left(G^{\prime}\right)$ which are not the zeros of $F(F-1)(G(G-1))$.
Since H has only simple poles we get

$$
\begin{aligned}
(3.5) N(r, \infty ; H) \leq & \bar{N}(r, \infty ; F \mid \geq 2)+\bar{N}(r, \infty ; G \mid \geq 2)+\bar{N}_{*}(r, 1 ; F, G) \\
& +\bar{N}\left(r, 0 ; f^{(n)} \mid f \neq 0\right)+\bar{N}\left(r, 0 ; g^{(n)} \mid g \neq 0\right) \\
& +\bar{N}_{*}(r, 0 ; f, g)+\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)
\end{aligned}
$$

where $\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)$ is the reduced counting function of those zeros of F^{\prime} which are not the zeros of $F(F-1)$ and $\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)$ is similarly defined. Let z_{0} be a
simple zero of $F-1$. Then by a simple calculation we see that z_{0} is a zero of H and hence

$$
\begin{equation*}
N(r, 1 ; F \mid=1) \leq N(r, 0 ; H) \leq N(r, \infty ; H)+S(r, F) \tag{3.6}
\end{equation*}
$$

By the second fundamental theorem we get

$$
\begin{equation*}
T(r, F) \leq \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+\bar{N}(r, 1 ; F)-N_{0}\left(r, 0 ; F^{\prime}\right)+S(r, F) \tag{3.7}
\end{equation*}
$$

So, from (3.5), (3.6) and (3.7) we get

$$
\begin{align*}
& T(r, F) \tag{3.8}\\
& \leq \quad \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+N(r, 1 ; F \mid=1)+\bar{N}(r, 1 ; F \mid \geq 2) \\
& \quad-N_{0}\left(r, 0 ; F^{\prime}\right)+S(r, F) \\
& \leq \\
& \hline
\end{align*}
$$

Since F, G share (1,2), using Lemma 2.1] we obtain

$$
\begin{aligned}
& \bar{N}(r, 1 ; F \mid \geq 2)+\bar{N}(r, 1 ; F \mid \geq 3)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right) \leq \\
& \quad \bar{N}\left(r, 0 ; G^{\prime} \mid G \neq 0\right) \leq \bar{N}(r, 0 ; G)+\bar{N}(r ; \infty ; G)
\end{aligned}
$$

So, using Lemma 2.3 and Lemma 2.1 from (3.8) we get

$$
\begin{aligned}
T(r, f) \leq & N_{n+1}(r, 0 ; f)+N_{n+1}(r, 0 ; g)+N_{n}(r, 0 ; f)+N_{n}(r, 0 ; g)+\bar{N}(r, 0 ; f) \\
& +(n+2) \bar{N}(r, \infty ; f)+(2 n+2) \bar{N}(r, \infty ; g)+S(r, f) \\
\leq & (2 n+2)(2 \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g))+S(r)
\end{aligned}
$$

So we get

$$
\left(\Delta_{2}-4+\frac{1}{2 n+2}-\varepsilon\right) T(r) \leq S(r)
$$

which is a contradiction for arbitrary $\varepsilon>0$.
Case 2 Next we suppose that $H \equiv 0$. Then by integration we get from (2.1)

$$
\begin{equation*}
\frac{1}{F-1} \equiv \frac{b G+a-b}{G-1} \tag{3.9}
\end{equation*}
$$

where a, b are constants and $a \neq 0$. From (3.9) it is clear that $F=f^{(n)}$ and $G=g^{(n)}$ share ($1, \infty$). Also

$$
\begin{equation*}
T(r, F)=T(r, G)+O(1) \tag{3.10}
\end{equation*}
$$

We now consider the following cases.
Subcase 2.1 Let $b=0$. From (3.9) we obtain

$$
f=\frac{1}{a} g+p(z),
$$

where $p(z)$ is a polynomial of degree at most $n-1$. We claim that $p(z) \equiv 0$. Otherwise we have

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, p ; f)+S(r, f) \\
& \leq 2 \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+S(r) \\
& \leq\left(4-\Delta_{2}+\varepsilon\right) T(r)+S(r)
\end{aligned}
$$

that is

$$
\left(\Delta_{2}-3-\varepsilon\right) T(r) \leq S(r)
$$

which is a contradiction for arbitrary $\varepsilon>0$. So

$$
\begin{equation*}
f=\frac{1}{a} g . \tag{3.11}
\end{equation*}
$$

Differentiating (3.11) n times we get

$$
f^{(n)}=\frac{1}{a} g^{(n)} .
$$

The above equation together with the fact that $f^{(n)}$ and $g^{(n)}$ share $(1, \infty)$ yields $a=1$.
Subcase 2.2 Let $b \neq 0$ and $a \neq b$.
If $b=-1$, then from (3.9) we have

$$
F=\frac{-a}{G-a-1} .
$$

Therefore

$$
\bar{N}(r, a+1 ; G)=\bar{N}(r, \infty ; F)=\bar{N}(r, \infty ; f)
$$

Since from Lemma 2.3 we have

$$
\begin{aligned}
T(r, g) & \leq T\left(r, g^{(n)}\right)+N_{p+n}(r, 0 ; g)-N_{p}\left(r, 0 ; g^{(n)}\right)+S(r) \\
& \leq T\left(r, g^{(n)}\right)+N_{p+n}(r, 0 ; g)-N_{p}\left(r, 0 ; g^{(n)} \mid g=0\right)+S(r) \\
& \leq T\left(r, g^{(n)}\right)+N_{n}(r, 0 ; g)+S(r)
\end{aligned}
$$

by the second fundamental theorem we get

$$
\begin{aligned}
T(r, g) & \leq T(r, G)+N_{n}(r, 0 ; g) \\
& \leq \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+\bar{N}(r, a+1 ; G)+N_{n}(r, 0 ; g)+S(r, g) \\
& \leq N_{n}(r, 0 ; g)+N_{n+1}(r, 0 ; g)+(n+1) \bar{N}(r, \infty ; g)+\bar{N}(r, \infty ; f)+S(r, g) \\
& \leq(n+1)(2 \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; g)+\bar{N}(r, \infty ; f))+S(r, g)
\end{aligned}
$$

Without loss of generality, we suppose that there exists a set I with infinite measure such that $T(r, f) \leq T(r, g)$ for $r \in I$.
So, for $r \in I$ we have

$$
\left(\Delta_{2}-4+\frac{1}{n+1}-\varepsilon\right) T(r, g) \leq S(r, g)
$$

Since $\Delta_{2}>4-\frac{1}{2 n+2}$ and $\varepsilon>0$ we get a contradiction from the above.
If $b \neq-1$, from (3.9) we obtain that

$$
F-\left(1+\frac{1}{b}\right)=\frac{-a}{b^{2}[G+(a-b) / b]} .
$$

Therefore

$$
\bar{N}(r,(b-a) / b ; G)=\bar{N}(r, \infty ; F-(1+1 / b))=\bar{N}(r, \infty ; f)
$$

Using the second fundamental theorem and the same argument as used in the case when $b=-1$ we can get a contradiction.
Subcase 2.3 Let $b \neq 0$ and $a=b$.
If $b=-1$, then from (3.9) we have

$$
F G=1
$$

that is

$$
f^{(n)} g^{(n)}=1
$$

If $b \neq-1$, from (3.9) we have

$$
\frac{1}{F}=\frac{b G}{(1+b) G-1}
$$

Hence from Lemma 2.2 we have

$$
\begin{aligned}
\bar{N}(r, 1 /(1+b) ; G) & =\bar{N}\left(r, 0 ; f^{(n)}\right) \\
& \leq N_{n+1}(r, 0 ; f)+n \bar{N}(r, \infty ; f)
\end{aligned}
$$

So, by the second fundamental theorem and Lemma 2.2 we get

$$
\begin{aligned}
T(r, g) \leq & T(r, G)+N_{n}(r, 0 ; g) \\
\leq & \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+\bar{N}(r, 1 /(1+b) ; G)+N_{n}(r, 0 ; g)+S(r, g) \\
\leq & N_{n}(r, 0 ; g)+N_{n+1}(r, 0 ; g)+N_{n+1}(r, 0 ; f)+n \bar{N}(r, \infty ; f) \\
& +(n+1) \bar{N}(r, \infty ; g)+S(r, g) \\
\leq & (2 n+1)(2 \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; g)+\bar{N}(r, \infty ; f))+S(r, g) .
\end{aligned}
$$

So for $r \in I$ we have

$$
\left(\Delta_{2}-4+\frac{1}{2 n+1}-\varepsilon\right) T(r, g) \leq S(r, g)
$$

which is a contradiction for arbitrary $\varepsilon>0$.

Acknowledgement

The first author is grateful to Prof. W.R. Lü for supplying him the electronic file of the paper (15].

References

[1] Banerjee, A., Uniqueness of meromorphic function that share two sets. Southeast Asian Bull. Math. 31 (2007), 7-18.
[2] Hayman, W.K., Meromorphic Functions. Oxford: The Clarendon Press, 1964.
[3] Hua, H.X., Sharing values and a conjecture due to C.C. Yang. Pacific J. Math., 275(1) (1996), 75-84.
[4] Lahiri, I., Value distribution of certain differential polynomials. Int. J. Math. Math. Sci. 28(2) (2001), 83-91.
[5] Lahiri, I., Weighted sharing and uniqueness of meromorphic functions. Nagoya Math. J., 161 (2001), 193-206.
[6] Lahiri, I., Weighted value sharing and uniqueness of meromorphic functions. Complex Variables, 46 (2001), 241-253.
[7] Lahiri, I., A.Banerjee, Weighted sharing of two sets. Kyungpook Math. J. Vol. 46(1) (2006), 79-87.
[8] Shibazaki, K., Unicity theorems for entire functions of finite order. Mem. National Defense Acad. Japan, 21(3) (1981), 67-71.
[9] Yang, C.C., On two entire functions which together with their first derivatives have the same zero. J. Math. Anal. Appl., 56 (1976), 1-6.
[10] Yi, H.X., A question of C.C. Yang on the uniqueness of entire functions. Kodai Math. J., 13 (1990), 39-46.
[11] Yi, H.X., Uniqueness of meromorphic functions and a question of C.C. Yang. Complex Var. Theory Appl., 14 (1990), 169-176.
[12] Yi, H.X., Unicity theorems for entire or meromorphic functions. Acta Math. Sinica (N.S.), 10 (1994), 121-131.
[13] Yi, H.X., Yang, C.C., Unicity theorems for two meromorphic functions with their first derivatives having the same 1 points. Acta Math. Sinica, 34(5) (1991), 675680.
[14] Yi, H.X., Yang, C.C., A uniqueness theorem for meromorphic functions whose n-th derivative share the same 1-points. J. D'Anal. Math. 62 (1994), 261-270.
[15] Jun, Y.W., Mori, S., Some unicity results for meromorphic functions whose n-th derivatives share the same 1-points. Chin. Quart. J. Math. 20(3) (2005), 226-231.

Received by the editors June 20, 2007

[^0]: ${ }^{1}$ Department of Mathematics, West Bengal State University, Barasat, North 24 Prgs., West Bengal, India.
 e-mail: abanerjee_kal@yahoo.co.in, abanerjee_kal@rediffmail.com., abanerjeekal@gmail.com.
 ${ }^{2}$ AJ 89, Sector-2 Salt Lake City P.O. Sech Bhavan, Kolkata-91 West Bengal, India, e-mail: snl.banerjee@gmail.com

