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UNIQUENESS OF MEROMORPHIC FUNCTIONS
WHOSE n-TH DERIVATIVE SHARE ONE OR TWO

VALUES

Abhijit Banerjee1, Sonali Mukherjee2

Abstract. We deal with the problem of uniqueness of meromorphic
functions when their n-th derivatives share one or two values and improve
all the results recently obtained by Jun and Mori [15]. We also provide
an answer to the question of Yang [9].
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1. Introduction and Definitions.

In the paper by meromorphic function we always mean a function which is
meromorphic in the open complex plane C. We use the standard notations and
definitions of the value distribution theory available in [2]. We denote by T (r)
the maximum of T (r, f) and T (r, g). The notation S(r) stands for any quantity
satisfying S(r) = o(T (r)) as r −→ ∞, outside of a possible exceptional set of
finite linear measure. If for some a ∈ C ∪ {∞}, f and g have the same set of
a-points with the same multiplicities, we say that f and g share the value a CM
(counting multiplicities), and if we do not consider the multiplicities then f, g
are said to share the value a IM (ignoring multiplicities).

In [9], C. C. Yang asked the following:
What can be said about two entire functions f , g share the value 0 CM and their
first derivatives share the value 1 CM ?
A substantial amount of work has already been done on the question of Yang or
its related topics and continuous efforts are being put on to relax the hypothesis
{c.f. [3], [9]-[15]}.
As an attempt to answer the question of Yang, improving the result of K. Shiba-
zaki, Yi [12] obtained the following theorem.

Theorem A. Let f and g be two entire functions such that f (n) and g(n) share
the value 1 CM. If δ(0; f) + δ(0; g) > 1 then either f ≡ g or f (n)g(n) ≡ 1.

Considering meromorphic functions Yi and Yang [13] proved the following
result.
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Theorem B. Let f and g be two meromorphic functions satisfying δ(∞; f) =
δ(∞; g) = 1. If f

′
and g

′
share the value 1 CM with δ(0; f) + δ(0; g) > 1 then

either f ≡ g or f
′
g
′ ≡ 1.

In [13], the following question was asked:
Whether it is possible to replace the first derivatives f

′
and g

′
in Theorem B by

n-th derivatives f (n) and g(n)?
In this direction the following result was proved in [14].

Theorem C. Let f and g be two meromorphic functions such that Θ(∞; f) =
Θ(∞; g) = 1. If f (n) and g(n) share the value 1 CM with δ(0; f) + δ(0; g) > 1
then either f ≡ g or f (n)g(n) ≡ 1.

Recently, to deal with the question of Yang [9], Jun and Mori [15] obtained
the following results which are different from Theorem B.

Theorem D. Let f and g be two meromorphic functions such that f (n) and
g(n) share 1 CM. If ∆ := Θ(∞; f) + Θ(∞; g) + Θ(0; f) + Θ(0; g) > 4 − 2

5n+4

then either f ≡ g or f (n)g(n) ≡ 1.

Jun and Mori [15] also investigated the situation where two derivatives of
the meromorphic functions share two values namely 1 and ∞ as follows.

Theorem E. Let f and g be two meromorphic functions such that f (n) and
g(n) share 1 and ∞ CM. If ∆1 := Θ(∞; f) + Θ(0; f) + Θ(0; g) > 3− 1

4n+3 then
either f ≡ g or f (n)g(n) ≡ 1.

Theorem F. Let f and g be two meromorphic functions such that f (n) and
g(n) share 1 CM and ∞ IM. If ∆1 > 3− 1

4n+4 then either f ≡ g or f (n)g(n) ≡ 1.

We now introduce the notion of gradation of sharing known as weighted
sharing which measures how close a shared value is to being shared CM or to
being shared IM.

Definition 1.1. [5, 6] Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f where an a-point
of multiplicity m is counted m times if m ≤ k and 1 + k times if m > k. If
Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and
only if it is an a-point of g with multiplicity n(> k), where m is not necessarily
equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight
k. Clearly, if f , g share (a, k) then f , g share (a, p) for all integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively.

In the paper we employ the above notions to improve all the results of Jun
and Mori [15]. We also investigate the situation when the sharing of zeros of f (n)



Uniqueness Of Meromorphic Functions Whose n-th Derivatives . . . 9

and g(n) is taken into account as these types of problems are seldom studied.
Lastly, we obtain a result which will provide a specific answer corresponding to
the question of Yang [9] as mentioned above. The following theorems are the
main results of the paper.

Theorem 1.1. Let f and g be two meromorphic functions such that f (n) and
g(n) share (1, 2). If ∆ > 4− 1

n+2 then either f ≡ g or f (n)g(n) ≡ 1.

Theorem 1.2. Let f and g be two meromorphic functions such that f (n) and
g(n) share (1, 2) and (∞;∞). If ∆1 > 3− 1

n+2 then either f ≡ g or f (n)g(n) ≡ 1.

Theorem 1.3. Let f and g be two meromorphic functions such that f (n) and
g(n) share (1, 2) and (∞; 0). If ∆1 > 3− 1

n+3 then either f ≡ g or f (n)g(n) ≡ 1.

Theorem 1.4. Let f and g be two meromorphic functions such that f (n) and
g(n) share (1, 2) and (0;∞). If ∆ > 4− 1

n+2 then either f ≡ g or f (n)g(n) ≡ 1.

Theorem 1.5. Let f and g be two meromorphic functions such that f (n) and
g(n) share (1, 2) and (0; 0). If ∆ > 4− 2

3n+4 then either f ≡ g or f (n)g(n) ≡ 1.

Theorem 1.6. Let f and g be two meromorphic functions such that f (n) and
g(n) share (1, 2) and f , g share (0; 0). If ∆2 := 2Θ(0; f)+Θ(∞; f)+Θ(∞; g) >
4− 1

2n+2 then either f ≡ g or f (n)g(n) ≡ 1.

Definition 1.2. [5] Let p be a positive integer and a ∈ C ∪ {∞}.
(i) N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced

counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
greater than p.

Definition 1.3. [7] Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g = b) the
counting function of those a-points of f , counted according to multiplicity, which
are b-points of g.

Definition 1.4. [7] Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f | g 6= b)
the counting function of those a-points of f , counted according to multiplicity,
which are not the b-points of g.

Definition 1.5. Let a ∈ C ∪{∞} and m, n and p be three positive integers. We
denote by Np(r, a; g | m ≤ f ≤ n) (Np(r, a; g | f ≥ m)) the counting function
of those a-points of g which are also the a-points of f , with multiplicities lying
between m and n (not less than m), where an a-point of g with multiplicity t is
counted t times if t ≤ p and p times if t > p. In a similar way we can define
N(r, a; g | m ≤ f ≤ n).
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2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F , G be two non-constant meromorphic functions. Henceforth we shall
denote by H the following function.

(2.1) H = (
F
′′

F ′ − 2F
′

F − 1
)− (

G
′′

G′ − 2G
′

G− 1
).

Lemma 2.1. If for two positive integers p, and k, Np

(
r, 0; f (k) | f 6= 0

)
denotes

the counting function of those zeros of of f (k) which are not the zeros of f , where
a zero of f (k) with multiplicity m is counted m times if m ≤ p and p times if
m > p then

Np

(
r, 0; f (k) | f 6= 0

)
≤Nk(r, 0; f) + kN(r,∞; f)

−
∞∑

m=p+1

N

(
r, 0;

f (k)

f
|≥ m

)
+ S(r, f).

Proof. By the first fundamental theorem and Milloux theorem {p. 55 [2]} we
get

N(r, 0; f (k) | f 6= 0)

≤ N(r, 0;
f (k)

f
)

≤ N(r,∞;
f (k)

f
) + m(r,

f (k)

f
) + O(1)

= N(r, 0; f |< k) + kN(r, 0; f |≥ k) + kN(r,∞; f) + S(r, f)
= Nk(r, 0; f) + kN(r,∞; f) + S(r, f).

Now

Np

(
r, 0;

f (k)

f

)
+

∞∑
m=p+1

N

(
r, 0;

f (k)

f
|≥ m

)
= N

(
r, 0;

f (k)

f

)

≤ Nk(r, 0; f) + kN(r,∞; f) + S(r, f).

Since Np

(
r, 0; f (k) | f 6= 0

) ≤ Np

(
r, 0; f(k)

f

)
, the lemma follows from the above.

Lemma 2.2. For two positive integers p and k

Np(r, 0; f (k)) ≤ Np+k(r, 0; f)+kN(r,∞; f)−
∞∑

m=p+1

N

(
r, 0;

f (k)

f
|≥ m

)
+S(r, f).
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Proof. We note that

Np

(
r, 0; f (k) | f ≥ k + 1

)

= N(r, 0; f | k ≤ f ≤ k + p− 1)− kN(r, 0; f | k ≤ f ≤ k + p− 1)
+pN(r, 0; f |≥ k + p).

Using Lemma 2.1 we get

Np

(
r, 0; f (k)

)

= Np

(
r, 0; f (k) | f 6= 0

)
+ Np

(
r, 0; f (k) | f ≥ k + 1

)

+Np

(
r, 0; f (k) | 1 ≤ f ≤ k

)

≤ Nk(r, 0; f) + kN(r,∞; f)−
∞∑

m=p+1

N

(
r, 0;

f (k)

f
|≥ m

)

+Np

(
r, 0; f (k) | f ≥ k + 1

)
+ Np

(
r, 0; f (k) | 1 ≤ f ≤ k

)
+ S(r, f)

≤ Np+k(r, 0; f) + kN(r,∞; f)−
∞∑

m=p+1

N

(
r, 0;

f (k)

f
|≥ m

)
+ S(r, f).

Lemma 2.3. For two positive integers p and k

Np

(
r, 0; f (k)

)

≤ T
(
r, f (k)

)
− T (r, f) + Np+k(r, 0; f)−

∞∑
m=p+1

N
(
r, 0; f (k) | f 6= 0 |≥ m

)
,

where by N
(
r, 0; f (k) | f 6= 0 |≥ m

)
we mean the reduced counting function of

those zeros of f (k) with multiplicities not less than m which are not the zeros of
f .

Proof. Since

N
(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) + N(r, 0; f) + S(r, f),

it follows that

Np

(
r, 0; f (k)

)
≤T

(
r, f (k)

)
− T (r, f) + N(r, 0; f)

−
∞∑

m=p+1

N
(
r, 0; f (k) |≥ m

)
+ S(r, f).
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But
∞∑

m=p+1

N
(
r, 0; f (k) |≥ m

)
=

∞∑
m=p+1

N
(
r, 0; f (k) | f ≥ m

)

+
∞∑

m=p+1

N
(
r, 0; f (k) | f 6= 0 |≥ m

)
.

Also, since

N(r, 0; f)−
∞∑

m=p+1

N
(
r, 0; f (k) | f ≥ m

)
= Np+k(r, 0; f),

the lemma follows from the above.

Lemma 2.4. [6] If F , G share (1, 2) then one of the following cases holds.
(i)

max{ T (r, F ), T (r,G)} ≤ N2(r, 0; F ) + N2(r, 0; G) + N2(r,∞; F )
+N2(r,∞; G) + S(r, F ) + S(r,G)

(ii) F ≡ G
(iii) FG ≡ 1.

Lemma 2.5. If F , G share (1, 2) and (∞, k), where 0 ≤ k ≤ ∞ then one of
the following cases holds.
(i)

max{ T (r, F ), T (r,G)} ≤ N2(r, 0;F ) + N2(r, 0;G) + N(r,∞;F ) + N(r,∞; G)
+N∗(r,∞; F, G) + S(r, F ) + S(r,G)

(ii) F ≡ G
(iii) FG ≡ 1.

Proof. We omit the proof since the proof since it can be carried out in the line
of the proof of Lemma 2.13 [1].

Lemma 2.6. If F , G share (1, 2) and (0, k), where 0 ≤ k ≤ ∞ then one of the
following cases holds.
(i)

max{ T (r, F ), T (r,G)} ≤ N2(r,∞;F ) + N2(r,∞;G) + N(r, 0;F ) + N(r, 0; G)
+N∗(r, 0; F, G) + S(r, F ) + S(r,G)

(ii) F ≡ G
(iii) FG ≡ 1.

Proof. Noting that F , G share (1, 2) and (0, k) implies 1
F and 1

G share (1, 2)
and (∞, k) and also from the first fundamental theorem we have T (r, F ) =
T (r, 1

F ) + O(1), the lemma can be proved in the line of the proof of Lemma
2.5.
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3. Proofs of the theorems

Proof of Theorem 1.1. Let F = f (n) and G = g(n). Since

T (r, f (n)) = N(r,∞; f (n)) + m(r, f (n))
≤ N(r,∞; f) + nN(r,∞; f) + m(r, f) + S(r, f)
≤ T (r, f) + nN(r,∞; f) + S(r, f)
≤ (n + 1)T (r, f) + S(r, f)

and
T (r, g(n)) ≤ (n + 1)T (r, g) + S(r, g),

it follows that S(r, F ) and S(r,G) can be replaced by S(r, f) and S(r, g) respec-
tively. If possible, we suppose that Case (i) of Lemma 2.4 holds. Then we have
from Lemmas 2.2-2.3

T (r, f (n)) = T (r, F )
≤ N2(r, 0; F ) + N2(r,∞;F ) + N2(r, 0;G) + N2(r,∞;G)

+S(r, F ) + S(r,G)
≤ N2(r, 0; f (n)) + N2(r, 0; g(n)) + 2

(
N(r,∞; f) + N(r,∞; g)

)

+S(r, f) + S(r, g)
≤ T (r, f (n))− T (r, f) + Nn+2(r, 0; f) + Nn+2(r, 0; g)

+(n + 2)
(
N(r,∞; f) + N(r,∞; g)

)
+ S(r),

that is,

(3.1) T (r, f) ≤ (n+2){N(r, 0; f)+N(r, 0; g)+N(r,∞; f)+N(r,∞; g)}+S(r)

In a similar way we can obtain

(3.2) T (r, g) ≤ (n+2){N(r, 0; f)+N(r, 0; g)+N(r,∞; f)+N(r,∞; g)}+S(r)

Combining (3.1) and (3.2) we get for ε > 0 that
(

∆− 4 +
1

n + 2
− ε

)
T (r) ≤ S(r).

Since ∆ > 4 − 1
n+2 we can choose a δ such that ∆ > 4 − 1

n+2 + δ and so for
0 < ε < δ we obtain a contradiction. Hence by Lemma 2.4 we have either
f (n) ≡ g(n) or f (n)g(n) ≡ 1. If f (n) ≡ g(n), then f(z) = g(z) + p(z) where p(z)
is a polynomial of degree at most n− 1. We claim that p(z) ≡ 0. Otherwise we
have

T (r, f) ≤ N(r, 0; f) + N(r,∞; f) + N(r, p; f) + S(r, f)
≤ N(r, 0; f) + N(r,∞; f) + N(r, 0; g) + S(r)
≤ (4−∆ + ε)T (r) + S(r).
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Similarly we get

T (r, g) ≤ (4−∆ + ε)T (r) + S(r).

So we have

(∆− 3− ε) T (r) ≤ S(r).

Noting that ∆ > 4 − 1
n+2 and choosing 0 < ε < ∆ − 3 we get a contradiction.

So f(z) ≡ g(z) and the proof is complete.

Proof of Theorem 1.2. Let F and G be defined as in the proof of Theorem 1.1.
According to the statement of the theorem N∗(r,∞, F,G) ≡ 0. If possible, we
suppose that Case (i) of Lemma 2.5 holds. Then we have from Lemmas 2.2-2.3

T (r, f (n)) = T (r, F ) ≤ N2(r, 0;F ) + N2(r, 0;G) + 2N(r,∞;F )
+S(r, F ) + S(r,G)

≤ T (r, f (n))− T (r, f) + Nn+2(r, 0; f) + Nn+2(r, 0; g)
+(n + 2)N(r,∞; f) + S(r),

Now, proceeding in the same way as in Theorem 1.1 we get
(

∆1 − 3 +
1

n + 2
− ε

)
T (r) ≤ S(r),

from which we can deduce a contradiction. Hence by Lemma 2.5 we have either
f (n) ≡ g(n) or f (n)g(n) ≡ 1. Now again, following the same method as in the
proof of Theorem 1.2 we can prove the theorem.

Proof of Theorem 1.3. Let F and G be defined as in the proof of Theorem 1.1.
We note that here N∗(r,∞, F, G) ≤ N(r,∞; f). Now we can prove the theorem
in the line of proof of Theorem 1.2.

Proof of Theorem 1.5. Let F and G be defined as in the proof of Theorem
1.1. According to the statement of the theorem N∗(r, 0, F, G) ≤ N(r, 0; F ) =
1
2N(r, 0; F ) + 1

2N(r, 0; G). If possible, let us suppose that Case (i) of Lemma
2.6 holds. Then we have from Lemmas 2.2-2.3

T (r, f (n)) = T (r, F ) ≤ N2(r,∞;F ) + N2(r,∞; G) +
3
2
N(r, 0; F ) +

3
2
N(r, 0; G)

+S(r, F ) + S(r,G)

≤ T (r, f (n))− T (r, f) +
3
2
Nn+1(r, 0; f) +

3
2
Nn+1(r, 0; g)

+
(n

2
+ 2

)
N(r,∞; f) +

(
3n

2
+ 2

)
N(r,∞; g) + S(r),

that is
(3.3)

T (r, f) ≤
(

3n

2
+ 2

) (
N(r, 0; f) + N(r, 0; g) + N(r,∞; f) + N(r,∞; g)

)
+ S(r)
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In a similar manner we can obtain
(3.4)

T (r, g) ≤
(

3n

2
+ 2

) (
N(r, 0; f) + N(r, 0; g) + N(r,∞; f) + N(r,∞; g)

)
+ S(r)

Combining (3.3) and (3.4) we get for ε > 0 that
(

∆− 4 +
2

3n + 4
− ε

)
T (r) ≤ S(r),

Since ε > 0 be arbitrary we obtain a contradiction. Hence by Lemma 2.6 we
have either f (n) ≡ g(n) or f (n)g(n) ≡ 1. If f (n) ≡ g(n), then f(z) = g(z) + p(z)
where p(z) is a polynomial of degree at most n − 1. We claim that p(z) ≡ 0.
Otherwise we have

T (r, f) ≤ N(r, 0; f) + N(r,∞; f) + N(r, p; f) + S(r, f)
≤ N(r, 0; f) + N(r, 0; g) + N(r,∞; f) + S(r)
≤ (4−∆ + ε)T (r) + S(r)

Similarly we get

T (r, g) ≤ (4−∆ + ε) T (r) + S(r).

So we obtain

(∆− 3− ε)T (r) ≤ S(r).

Since ∆ > 4− 2
3n+4 and ε > 0 be arbitrary we get a contradiction. So f(z) ≡ g(z)

and the proof is complete.

Proof of Theorem 1.4. Let F and G be defined as in the proof of Theorem 1.1.
We note that here N∗(r, 0, F,G) ≡ 0. Now, proceeding in the same way as in
the proof of Theorem 1.5 we can prove the theorem.

Proof of Theorem 1.6. Let F and G be defined as in the proof of Theorem 1.1.
Case 1 Let H 6≡ 0.
From (2.1) it can be easily calculated that the possible poles of H occur at (i)
common zeros of F and G with different multiplicities, (ii) zeros of F (G) which
are not zeros of G (F ), (iii) those 1 points of F and G whose multiplicities are
different (iv) those poles of F and G whose multiplicities are different, (v) zeros
of F

′
(G

′
) which are not the zeros of F (F − 1) (G(G− 1)).

Since H has only simple poles we get

N(r,∞;H) ≤ N(r,∞;F |≥ 2) + N(r,∞; G |≥ 2) + N∗(r, 1; F, G)(3.5)
+N(r, 0; f (n) | f 6= 0) + N(r, 0; g(n) | g 6= 0)

+N∗(r, 0; f, g) + N0(r, 0;F
′
) + N0(r, 0; G

′
),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which

are not the zeros of F (F − 1) and N0(r, 0; G
′
) is similarly defined. Let z0 be a



16 A. Banerjee, S. Mukherjee

simple zero of F − 1. Then by a simple calculation we see that z0 is a zero of
H and hence

(3.6) N(r, 1;F |= 1) ≤ N(r, 0;H) ≤ N(r,∞; H) + S(r, F )

By the second fundamental theorem we get

(3.7) T (r, F ) ≤ N(r,∞; F ) + N(r, 0; F ) + N(r, 1;F )−N0(r, 0; F
′
) + S(r, F )

So, from (3.5), (3.6) and (3.7) we get

T (r, F )(3.8)
≤ N(r,∞;F ) + N(r, 0; F ) + N(r, 1; F |= 1) + N(r, 1; F |≥ 2)

−N0(r, 0;F
′
) + S(r, F )

≤ N(r, 0;F ) + N2(r,∞;F ) + N(r,∞; G |≥ 2)
+N(r, 0; f (n) | f 6= 0) + N(r, 0; g(n) | g 6= 0)
+N(r, 0; f) + N(r, 1; F |≥ 3)

+N(r, 1; F |≥ 2) + N0(r, 0; G
′
) + S(r, f)

Since F , G share (1, 2), using Lemma 2.1 we obtain

N(r, 1; F | ≥ 2) + N(r, 1; F |≥ 3) + N0(r, 0; G
′
) ≤

N(r, 0; G
′ | G 6= 0) ≤ N(r, 0; G) + N(r;∞; G)

So, using Lemma 2.3 and Lemma 2.1 from (3.8) we get

T (r, f) ≤ Nn+1(r, 0; f) + Nn+1(r, 0; g) + Nn(r, 0; f) + Nn(r, 0; g) + N(r, 0; f)
+(n + 2)N(r,∞; f) + (2n + 2)N(r,∞; g) + S(r, f)

≤ (2n + 2)
(
2N(r, 0; f) + N(r,∞; f) + N(r,∞; g)

)
+ S(r).

So we get
(

∆2 − 4 +
1

2n + 2
− ε

)
T (r) ≤ S(r),

which is a contradiction for arbitrary ε > 0.
Case 2 Next we suppose that H ≡ 0. Then by integration we get from (2.1)

(3.9)
1

F − 1
≡ bG + a− b

G− 1
,

where a, b are constants and a 6= 0. From (3.9) it is clear that F = f (n) and
G = g(n) share (1,∞). Also

(3.10) T (r, F ) = T (r,G) + O(1).
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We now consider the following cases.
Subcase 2.1 Let b = 0. From (3.9) we obtain

f =
1
a
g + p(z),

where p(z) is a polynomial of degree at most n − 1. We claim that p(z) ≡ 0.
Otherwise we have

T (r, f) ≤ N(r, 0; f) + N(r,∞; f) + N(r, p; f) + S(r, f)
≤ 2N(r, 0; f) + N(r,∞; f) + S(r)
≤ (4−∆2 + ε)T (r) + S(r),

that is

(∆2 − 3− ε) T (r) ≤ S(r),

which is a contradiction for arbitrary ε > 0. So

(3.11) f =
1
a
g.

Differentiating (3.11) n times we get

f (n) =
1
a
g(n).

The above equation together with the fact that f (n) and g(n) share (1,∞) yields
a = 1.
Subcase 2.2 Let b 6= 0 and a 6= b.
If b = −1, then from (3.9) we have

F =
−a

G− a− 1
.

Therefore
N(r, a + 1; G) = N(r,∞; F ) = N(r,∞; f).

Since from Lemma 2.3 we have

T (r, g) ≤ T (r, g(n)) + Np+n(r, 0; g)−Np(r, 0; g(n)) + S(r)

≤ T (r, g(n)) + Np+n(r, 0; g)−Np(r, 0; g(n) | g = 0) + S(r)

≤ T (r, g(n)) + Nn(r, 0; g) + S(r),

by the second fundamental theorem we get

T (r, g) ≤ T (r,G) + Nn(r, 0; g)
≤ N(r, 0; G) + N(r,∞; G) + N(r, a + 1;G) + Nn(r, 0; g) + S(r, g)
≤ Nn(r, 0; g) + Nn+1(r, 0; g) + (n + 1)N(r,∞; g) + N(r,∞; f) + S(r, g)
≤ (n + 1)

(
2N(r, 0; f) + N(r,∞; g) + N(r,∞; f)

)
+ S(r, g).
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Without loss of generality, we suppose that there exists a set I with infinite
measure such that T (r, f) ≤ T (r, g) for r ∈ I.
So, for r ∈ I we have

(
∆2 − 4 +

1
n + 1

− ε

)
T (r, g) ≤ S(r, g).

Since ∆2 > 4− 1
2n+2 and ε > 0 we get a contradiction from the above.

If b 6= −1, from (3.9) we obtain that

F −
(

1 +
1
b

)
=

−a

b2[G + (a− b)/b]
.

Therefore

N(r, (b− a)/b;G) = N (r,∞; F − (1 + 1/b)) = N(r,∞; f)

Using the second fundamental theorem and the same argument as used in the
case when b = −1 we can get a contradiction.
Subcase 2.3 Let b 6= 0 and a = b.
If b = −1, then from (3.9) we have

FG = 1.

that is
f (n)g(n) = 1.

If b 6= −1, from (3.9) we have

1
F

=
bG

(1 + b)G− 1
.

Hence from Lemma 2.2 we have

N (r, 1/(1 + b); G) = N(r, 0; f (n))
≤ Nn+1(r, 0; f) + nN(r,∞; f).

So, by the second fundamental theorem and Lemma 2.2 we get

T (r, g) ≤ T (r,G) + Nn(r, 0; g)
≤ N(r, 0;G) + N(r,∞; G) + N (r, 1/(1 + b); G) + Nn(r, 0; g) + S(r, g)
≤ Nn(r, 0; g) + Nn+1(r, 0; g) + Nn+1(r, 0; f) + nN(r,∞; f)

+(n + 1)N(r,∞; g) + S(r, g)
≤ (2n + 1)

(
2N(r, 0; f) + N(r,∞; g) + N(r,∞; f)

)
+ S(r, g).

So for r ∈ I we have(
∆2 − 4 +

1
2n + 1

− ε

)
T (r, g) ≤ S(r, g),

which is a contradiction for arbitrary ε > 0.
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