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NEW EXTREMAL POLYNOMIALS AND THEIR
APPROXIMATION PROPERTIES

M. Küçükaslan1, F.G. Abdullayev2

Abstract. Let G ⊂ C be a simply connected region whose boundary
L := ∂G is a Jordan curve and z0 ∈ G be an arbitrary fixed point.
Let w = ϕ(z) be the conformal mapping of G onto the disk D(0, r0) :=
{w : |w| < r0} , satisfying ϕ(z0) = 0 , ϕ′(z0) = 1. Let us consider the
following extremal problem:

(1) ‖ϕ− Pn‖L′p(G) :=
∥∥ϕ′ − P ′n

∥∥
Lp(G)

→ min, p > 0,

in the class of all polynomials satisfying Pn(z0) = 0 and P ′n(z0) = 1.
There exists a polynomial Πn,p(z) furnishing to the (1) and Πn,p(z) is
determined uniquely when p > 1. This kind of polynomials will be called
p−Bieberbach polynomials.
In this work, we investigate the approximation properties of the polyno-
mials {Πn,p(z)} to the ϕ in the L1

p− and C−norms for some regions of
the complex plane.
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1. Statement of the Problem and Main Results

Let G ⊂ C be a simply connected region whose boundary L := ∂G is a
Jordan curve and z0 ∈ G be an arbitrary fixed point. Let w = ϕ(z) (w =
Φ(z)) be the conformal mapping of G (Ω := CG) onto the disk D(0, r0) :=
{w : |w| < r0} (∆ := CD(0, 1)) with normalization ϕ(z0) = 0, ϕ′(z0) = 1
(Φ(∞) = ∞, Φ′(∞) > 0) and let ψ := ϕ−1 (Ψ := Φ−1) be an inverse map-
ping.

Let 0 < p < ∞. We denote by L1
p(G) the set of functions f(z) analytic in G

and satisfying f(z0) = 0, such that

||f ||pL1
p(G) := ||f ′||pLp(G) :=

∫∫

G

|f ′(z)|pdσz < ∞,

where dσz denotes two-dimensional Lebesque measure.
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Let us consider the following extremal problem:

(2) ‖ϕ− Pn‖L1
p(G) → min

in the class ℘n of all polynomials Pn(z), deg Pn(z) ≤ n, satisfying Pn(z0) = 0
and P ′n(z0) = 1.

Using a method similar to the one given in [10, p.137], it is seen that there
exists a polynomial Πn,p(z) ∈ ℘n furnishing to the problem (2), and if p > 1,
these polynomials Πn,p(z) are determined uniquely [10, page 142]. We call such
polynomials Πn,p(z) the p−Bieberbach polynomials of degree n for the pair
(G, z0).

The main goal in this work is to investigate the approximation rate of Πn,p(z)
to the function ϕ in C−norm for some regions of the complex plane, i.e.

(3) ‖ϕ−Πn,p‖C(G) := max
{|ϕ(z)−Πn,p(z)| : z ∈ G

} → 0, n →∞.

In case of p = 2 the solution of the extremal problem (2) coincides with the well
known n−th Bieberbach polynomial πn(z) ≡ Πn,2(z) for the pair (G, z0) (see,
for example, [19], [26] and [14]). The approximation properties in the C−norm
of πn(z) on G was observed first by Keldysh in 1939 [19] for the regions with
sufficiently smooth boundary. A considerable progress in this area has been
achieved by Mergelyan [21], Suetin [26], Simonenko [24], Andrievskii [6], [7],
Gaier [13], [14], Abdullayev [1], [3], [4] Israfilov [17], [18] and the others.

We shall consider the case p > 1 in the problem that was explained in
(3). For this purpose, first, we will estimate the approximation rate of Πn,p(z)
to the function ϕ in L1

p−norm and then using the well known Simonenko and
Andrievski method (see, for example, [6],[13]), the approximation rate of Πn,p(z)
to the function ϕ in C−norm will be obtained.

Let us give some definitions.

Definition 1.1. [20, p.97], The Jordan arc (or curve) L is called K− qua-
siconformal (K ≥ 1), if there is a K− quasiconformal mapping f of the region
H ⊃ L such that f(L) is a line segment (or circle).

F (L) denotes the set of all sense preserving plane homeomorphisms f of the
region H ⊃ L such that f(L) is a line segment (or circle) and define

KL := inf {K(f) : f ∈ F (L)} ,

where K(f) is the maximal dilatation of a such mapping f. L is a quasiconformal
curve, if KL < ∞, and L is a K−quasiconformal curve, if KL ≤ K (see [23]).

We say that Ψ ∈ Lipβ, for some β with 0 < β ≤ 1, if

|Ψ(w1)−Ψ(w2)| ≤ c |w1 − w2|β , 1 ≤ |w1| , |w2| ≤ 2,

where c is an independent constant of w1, w2. Similarly, ϕ ∈ Lipα, form some
α with 0 < α ≤ 1, if

|ϕ(z1)− ϕ(z2)| ≤ c |z1 − z2|α , z1, z2 ∈ G.
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Definition 1.2. [14] We say that G ∈ Q(α, β), if L is a quasiconformal
curve and ϕ ∈ Lipα, Ψ ∈ Lipβ for some α, β with 0 < α, β ≤ 1.

Theorem 1.3. Let G ∈ Q(α, β) for some α, β with 0 < α ≤ 1 and 1
2 ≤ β ≤ 1.

Then, the p−Bieberbach polynomials Πn,p(z) satisfy

(4) ‖ϕ−Πn,p‖C(G) ≤
const.

nγ

for any number n = 2, 3, ..., and γ with

γ ∈




(
0, 2

pα − αβ
2 − (β − 1

2 )( 2
p − 1)

)
, 1 < p < 2,(

0, αβ
p − β(1− α)(1− 2

p )
)

, 2 ≤ p < 2 + α
1−α .

Remark 1.4. If G is a convex region then ϕ ∈ Lip1 [12, p.582] and Ψ ∈
Lip1[22, p.48]. So, (4) is satisfied with γ ∈ (0, 1

p ) for all p > 1.

Generally, any region with quasiconformal boundary belongs to the class
Q(α, β). But quasiconformality coefficient of the curve is not known for this
region. Now we can give a similar result that the approximation rate depends
on the quasiconformality coefficient of the curve.

Theorem 1.5. Let L be a K−quasiconformal curve. Then, the p−Bieberbach
polynomials Πn,p(z) satisfy

‖ϕ−Πn,p‖C(G) ≤
const.

nγ

for any number n = 2, 3, ..., and γ with

γ ∈




(
0, 1

pK2 − 2K2

K2+1 ( 2
p − 1)

)
, 1 < p < 2,(

0, 1
pK2 − K2−1

K2(K2+1) (1− 2
p )

)
, 2 ≤ p < 2 + K2+1

K2−1 .

2. Some Auxiliary Results

Throughout this paper, c, c1, c2, ..., are positive, and ε, ε1, ε2, ..., sufficiently
small positive constants, in general dependent on G. The notation ”a ≺ b” and
”a ³ b” will be used instead of ”a ≤ cb” and ”c1a ≤ b ≤ c2a” for some constants
c, c1, c2, respectively.

The level curve (exterior or interior) can be defined for t > 0 as,

Lt := {z : |ϕ(z)| = t, if t < r0; |φ(z)| = t, if t > r0}

and Lr0 := L, L1 := L respectively. Let us denote Gt := intLt, Ωt := extLt

and d(z, L) := inf {|ζ − z| : ζ ∈ L} .
Let L be a K−quasiconformal curve. Then there exists a K2− quasiconfor-

mal reflection y(.) across L [5, p.75] such that y(G) = Ω, y(Ω) = G and the
points on L are fixed.
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On the other hand, there exists a C(K)−quasiconformal reflection α(.) across
L (see, [5, p. 75] and [9]) such that

|z1 − α(z)| ³ |z1 − z| , z1 ∈ L, ε < |z| < 1
ε
,

|αz| ³ |αz| ³ 1, ε < |z| < 1
ε
,

(5) |αz| ³ |α(z)|2 , |z| < ε, |αz| ³ |z|−2
, |z| > 1

ε
,

and the Jacobian Jα = |αz|2 − |αz|2 of α(.) satisfies Jα ³ 1.
For R > 1 let us denote L∗R := α(LR), G∗R = intL∗R and Ω∗R = extL∗R. Let

Φ∗R : Ω∗R → ∆ be a conformal mapping with normalization Φ∗R(∞) = ∞ and
Φ∗′R(∞) > 0. According to [8] we have

d(z, L) ³ d(t, LR) ³ d(z, LR),(6)
|Φ∗R(z)| ≤ |Φ∗R(t)| ≤ 1 + c(R− 1)

for all z ∈ L∗R and t ∈ L such that d(z, L) = |z − t| .

Lemma 2.1. Let G be a quasiconformal curve; r∗ := min {|ϕ(α(z))| : z ∈ LR}
and r∗ := max {|ϕ(α(z))| : z ∈ LR} , R > 1. Then,

(7) r0 − r∗ ≺ r0 − r∗.

Proof. Let us define F (w) := r2
0

ϕ(α(Ψ(w)))
and extend it to the whole complex

plane as follows:

(8) z = F̃ (w) :=

{
r2
0

ϕ(α(Ψ(w)))
, |w| ≥ 1,

ϕ(α(Ψ( 1
w ))), |w| < 1.

Also, let us denote:

t := w(1− 1
|w| ) : ∆ → {t : |t| ≥ 0} ,

ξ := F̃ (w)− F̃ (
w

|w| ) : {w : |w| ≥ r0} → {ξ : |ξ| ≥ 0} ,

and

ξ = Φ(t) := F̃ (
|t|+ 1
|t| t)− F̃ (

t

|t| ).

It is clear that Φ : {t : |t| ≥ 0} → {ξ : |ξ| ≥ 0} quasiconformal and Φ(0) = 0,
Φ(∞) = ∞. Taking into account D−properties of quasiconformal mapping [9]
we have

max
|t|=R−1

|Φ(t)| ≤ c1 min
|t|=R−1

|Φ(t)|.
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Since L = ∂G is a quasiconformal curve, then the function F̃ is a quasicon-
formal mapping of the plane. So, we have

(9)
max
|t|=R

|F̃ (w)| − r0

min
|t|=R

|F̃ (w)| − r0

≤ 1
c2

max
|t|=R

|F̃ (w)− F̃ ( w
|w| )|

min
|t|=R

|F̃ (w)− F̃ ( w
|w| )|

≤ c1

c2
= c3

From (9) and (8) we have

c3 ≥
max
|t|=R

r2
0

|ϕ(α(Ψ(w)))| − r0

min
|t|=R

r2
0

|ϕ(α(Ψ(w)))| − r0

=
max
|t|=R

(r0 − |ϕ(α(Ψ(w)))|)
min
|t|=R

(r0 − |ϕ(α(Ψ(w)))|) =

=
r0 − min

|t|=R
|ϕ(α(Ψ(w)))|

r0 − max
|t|=R

|ϕ(α(Ψ(w)))| =
r0 − r∗

r0 − r∗
(10)

The inequality (10) gives the proof.

Lemma 2.2. [2] Let L = ∂G be a quasiconformal curve. Then, for every z ∈
L there exists an arc β(z0, z) in G joining z0 to z with the following properties.

i) d(ξ, L) ³ |ξ − z| for every ξ ∈ β(z0, z),
ii) If β̃(ξ1, ξ2) is the sub arc of β(z0, z) joining ξ1 to ξ2

mesβ̃(ξ1, ξ2) ≺ |ξ1 − ξ2|

for every pair ξ1 and ξ2 ∈ β(z0, z).

Lemma 2.3. Let G ∈ Q(α, β) for some α, β with 0 < α, β ≤ 1. Then for all
polynomials Pn(z), deg Pn ≤ n with Pn(z0) = 0, we have

(11) ‖Pn‖C(G) ≺ ‖Pn‖L1
p(G)





1, p > 2,√
log n, p = 2,

n
2

pα , p < 2.

Proof. The proof for the case p = 2 and p > 2 was already given in [7], [16]
respectively. We will only prove the case p < 2.

Let z ∈ L be an arbitrary point. Since G ∈ Q(α, β) then L = ∂G is
quasiconformal, therefore according to Lemma 2.2 there exists β(z0, z) ⊂ G
joining z0 to z and satisfying the conditions in Lemma 2.2. Using mean-value
property of the subharmonic function |P ′n(ξ)|p (see, for example [11, p.4]) we
have

(12) |P ′n(ξ)| ≤ 1

(πd2(ξ, L))
1
p

‖Pn‖L1
p(G) ,

for every arbitrary point ξ ∈ β(z0, z).
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At the same time,

(13) |Pn(z)| =

∣∣∣∣∣∣∣

∫

β(z0,z)

P ′n(ξ)dξ

∣∣∣∣∣∣∣
≤

∫

β(z0,z)

|P ′n(ξ)| |dξ|

and combine (12) and (13) we have

(14) |Pn(z)| ≺ ‖Pn‖L1
p(G)

∫

β(z0,z)

|dξ|
d

2
p (ξ, L)

.

According to Lemma 2.2 we obtain

(15) d(ξ, L) ³ |ξ − z| Â |ϕ(ξ)− ϕ(z)| 1α Â
(

1
n

) 1
α

From (14) and (15) we have

|Pn(z)| ≺ ‖Pn‖L1
p(G) ≺ n

2
pα ‖Pn‖L1

p(G) .

Since z ∈ L is an arbitrary point, taking maximum for z ∈ G, we obtained the
proof of (11) in the case p < 2.

3. Approximation in the L1
p−norm

Assume that the region G, bounded by a quasiconformal curve L and 1 <
R′ < 2, be fixed. Using quasiconformal reflection α(.), defined as in (5), we can
extend ϕ to the extL as follows:

ϕ̃(z) :=
{

ϕ(z), z ∈ G,
ϕ(α(z)), z ∈ GR′ −G.

Then,

ϕ̃z(z) :=
{

0, z ∈ G,
ϕ′(α(z))αz(z), z ∈ GR′ −G.

From the Cauchy-Pompeiu Formulas [20, p 148], we obtain:

(16) ϕ(z) =
1

2πi

∫

LR′

ϕ̃(ξ)
ξ − z

dξ − 1
π

∫∫

GR′−G

ϕ̃ξ(ξ)
ξ − z

dσξ, z ∈ G.

Let N be a sufficiently large natural number. For n > N and arbitrary
0 < ε < 1, let us choose R = 1 + cnε−1 such that 1 < R < R′. Then, GR′ −G =
(GR′ −GR) ∪ (

GR −G
)

and (16) can be shown as follows:

(17) ϕ(z) = I1(z) + I2(z), z ∈ G,
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where

I1(z) :=
1

2πi

∫

LR′

ϕ̃(ξ)
ξ − z

dξ − 1
π

∫∫

GR′−GR

ϕ̃ξ(ξ)

ξ − z
dσξ,

and

I2(z) := − 1
π

∫∫

GR−G

ϕ̃ξ(ξ)

ξ − z
dσξ.

Since I1(z) is analytic function in G, there exists a polynomial pn−1(z), where
deg pn−1 ≤ n− 1 [25, p142], such that

(18) |I ′1(z)− pn−1(z)| ≤ c

n
.

Let Qn(z) :=
z∫

z0

pn−1(t)dt. Then, from (17) and (18) we have

|ϕ′(z)−Q′n(z)| ≤ c

n
+ |I ′2(z)| .

Taking integral over G of p-th power of above inequality we obtain

(19)
∫∫

G

|ϕ′(z)−Q′
n(z)|p dσz ≺ 1

np
+

∫∫

G

|I ′2(z)|p dσz.

The Hilbert transformation

(Tf)(z) := − 1
π

∫∫

C

f(ξ)
(ξ − z)2

dσξ

is a bounded linear operator from Lp to Lp for p > 1 and Calderun-Zygmund
inequality (see [5, p. 98]) gives

(20)
∫∫

G

∣∣∣∣∣∣∣
− 1

π

∫∫

GR−G

ϕ̃ξ(ξ)

(ξ − z)2
dσξ

∣∣∣∣∣∣∣

p

dσz ≺
∫∫

GR−G

|ϕ′(α(ξ))|p dσξ.

So, from (19) and (20) we have

(21)
∫∫

G

|ϕ′(z)−Q′
n(z)|p dσz ≺ 1

np
+

∫∫

GR−G

|ϕ′(α(ξ))|p dσξ, p > 1.

Lemma 3.1. Let p > 1 and G ∈ Q(α, β) for some α and β with 0 < α ≤ 1,
1
2 ≤ β ≤ 1. Then, for any n = 1, 2, ...,

‖ϕ−Πn,p‖L1
p(G) ≺ n−µ,

where

µ ∈




(
0, αβ

2 + (β − 1
2 )( 2

p − 1)
)

, 1 < p < 2,(
0, αβ

p − β(1− α)(1− 2
p )

)
, 2 ≤ p < 2 + α

1−α .



28 M. Küçükaslan, F.G. Abdullayev

Proof. Since L = ∂G is a quasiconformal curve, the estimation (21) is true for
G ∈ Q(α, β). For the calculation the integral in the right-hand side in (21) we
consider two cases of p : 1 < p < 2 and p ≥ 2.

Case 1) 1 < p < 2. Using Hölder inequality [27, p.105] we obtain

∫∫

GR−G

|ϕ′(α(ξ))|p dσξ ≺




∫∫

GR−G

|ϕ′(α(ξ))|2 dσξ




p
2




∫∫

GR−G

dσξ




1− p
2

≺




∫∫

α(GR−G)

|ϕ′(ξ)|2 dσξ




p
2




∫∫

α(GR−G)

dσξ




1− p
2

=
[
mes

(
ϕ(α(GR −G))

)] p
2
[
mes

(
α(GR−G)

)]1− p
2(22)

Case1-i).

(23) mes
(
ϕ(α(GR −G))

) ≤ πr2
0 − πr2

∗ ≺ r0 − r∗.

Let us denote points w∗ ∈ ϕ(α(LR)), |w∗| = r∗ and w′, |w′| = r0 such that
|w∗ − w′| = |w∗| − |w′| and let z′ = ψ(w′) ∈ L, z∗ = ψ(w∗) ∈ L∗R , z̃ := α(z∗),
w̃ := Φ(z̃). Using boundary properties of the region and (5), we get

r0 − |w∗| ≤ |ϕ(z′)− ϕ(z∗)|
≤ |z′ − z∗|α ³ |z′ − z̃|α

= |Ψ(w′)−Ψ(w̃)|α ≺ |w′ − w̃|αβ

≺ (R− 1)αβ ≺
(

1
n

)αβ

.(24)

From (24) and (23) we obtain

(25) mesϕ(α(GR −G)) ≺
(

1
n

)αβ

.

Case1-ii). According to (5) we have

mes (α(GR −G)) =
∫∫

α(GR−G)

dσξ

³
∫∫

GR−G

dσα(ξ) =
∫∫

1<|w|<R

|Ψ′(w)|2 dσw.(26)

Let |w|−1 = |w − ŵ| , |ŵ| = 1 and ẑ = Ψ(ŵ). Then, according to [8] and known
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properties of quasiconformality we have

|Ψ′(w)| ³ d(Ψ(w), L)
|w| − 1

³ |Ψ(w)−Ψ(ŵ)|
|w| − 1

≺ |w − ŵ|β
|w| − 1

≺
(

1
|w| − 1

)1−β

(27)

Replacing (27) in (26) we obtain

(28) mes (α(GR −G)) ≺
∫∫

1<|w|<R

(
1

|w| − 1

)2(1−β)

dσw ≺
(

1
n

)2β−1

Using (25), (28) and (22) we obtain the proof when 1 < p < 2.
Case 2) p ≥ 2. According to [2] and analogously to (27) we have

∫∫

GR−G

|ϕ′(α(ξ))|p dσξ ³
∫∫

ϕ(α(GR−G))

∣∣ψ′(w)
∣∣2−p

dσw

³
∫∫

ϕ(α(GR−G))

(
d(ψ(w), L)
r0 − |w|

)2−p

dσw

≺
∫∫

ϕ(α(GR−G))

(
1

r0 − |w|
)( 1

α−1)(p−2)

dσw

≤
∫∫

r∗<|w|<r0

(
1

r0 − |w|
)( 1

α−1)(p−2)

dσw

≺ (r0 − r∗)1−( 1
α−1)(p−2),

where p < 2 + α
1−α . According to (7) in Lemma 2.1 we have r0 − r∗ ≺ r0 − r∗.

So, using (6) and the same procedure as in the Case1-i, we have
∫∫

GR−G

|ϕ′(α(ξ))|p dσξ ≺ (r0 − r∗)1−( 1
α−1)(p−2)

≺ (r0 − r∗)1−( 1
α−1)(p−2)

≺
(

1
n

)αβ−β(1−α)(p−2)

Let us set,
Pn(z) := Qn(z) + (ϕ′(z0)−Q′

n(z0))(z − z0).
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It is clear that Pn(z) is a polynomial satisfying normalization conditions Pn(z0) =
0, P ′n(z0) = 1, and

‖ϕ− Pn‖L1
p(G) ≺

1
n

+
(

1
n

)µ

+ |ϕ′(z0)−Q′
n(z0)| .

Using Mean Value Theorem we obtain

|ϕ′(z0)−Q′
n(z0)| ≺ 1

πd
2
p (z0, L)

‖ϕ′ −Q′n‖Lp(G) ≺
1
n

+
(

1
n

)µ

.

Considering extremal properties of p−Bieberbach polynomials the proof is
completed.

Lemma 3.2. Let L = ∂G be a K−quasiconformal curve. Then, for any
n = 1, 2, ...,

(29) ‖ϕ−Πn,p‖L1
p(G) ≺ n−µ,

where

µ ∈
{

(0, 1
pK2 ) 1 < p < 2,

(0, 1
pK2 − K2−1

K2(K2+1) (1− 2
p )) 2 ≤ p < 2 + K2+1

K2−1 .

Proof. We are going to follow the same procedures as in Lemma 3.1 with us-
ing the own properties of quasiconformal curve. Then, there is a polynomial
Qn(z), deg Qn ≤ n and Qn(z0) = 0 satisfying (21).

Case 1) Let 1 < p < 2. From (22) we have

(30)
∫∫

GR−G

|ϕ′(α(ξ))|p dσξ ≺ [mes (ϕ(α(GR −G)))]
p
2 . [mes (α(GR −G))]1−

p
2

Case 1-i) Let us define R∗ = 1 + 2(R − 1) for R > 1 and L∗R∗ = α(LR∗).
Let Φ∗R∗ be an appropriate conformal mapping Φ∗R∗ : Ω∗R∗ → ∆ normalized by

Φ∗R∗(∞) = ∞, Φ∗′R∗(∞) > 0 ; Ψ∗R∗ := Φ∗−1
R∗ and SR̃ :=

{
z : |Φ∗R∗(z)| = R̃

}
.

Then,

mes (ϕ(α(GR −G))) = mes {[ϕ ◦Ψ∗R∗ ◦ Φ∗R∗ ◦ α] (GR −G)}
= mes {[ϕ ◦Ψ∗R∗ ] ◦ [(Φ∗R∗ ◦ α)(GR −G)]} .

The function ϕ can be extended to the GR ⊃ G using the reflection y(z) as
a K2−quasiconformal mapping as follows:

ϕ̂(z) :=

{
ϕ(z) z ∈ G,

r2
0

ϕ(y(z))
z ∈ GR −G.

Therefore, ϕ is a K2−quasiconformal mapping in G and, since Ψ∗R∗ is a confor-
mal mapping in Ω∗R∗ , then ϕ ◦Ψ∗R∗ is a K2−quasiconformal in Ω∗R∗ ∩G. From
the Goldstein Theorem [15], we have

(31) mes {[ϕ ◦Ψ∗R∗ ] ◦ [(Φ∗R∗ ◦ α)(GR −G)]} ≺ {mes([Φ∗R∗ ◦ α] (GR −G)} 1−ε

K2
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for an arbitrary small ε > 0.
According to [8] we can choose R̃ > 1 such that intSR̃−intL∗R∗ ⊃ α(GR−G)

and R̃− 1 ≺ R− 1. Then,

mes [Φ∗R∗ ◦ α] (GR −G) ≤ mes [Φ∗R∗
(
intSR̃ − intL∗R∗

)
]

≺ R̃− 1 ≺ R− 1 ³ 1
n

(32)

From (31)-(32) we obtain

(33) mes (ϕ(α(GR −G))) ≺
(

1
n

) 1−ε

K2

Case 1-ii) Ψ∗R∗ can be extended to the whole plane as a K2−quasiconformal
mapping and from the Goldstein Theorem [15], we have

mes (α(GR −G)) = mes{[Ψ∗R∗ ◦ Φ∗R∗ ◦ α] (GR −G)}
≺ {mes[(Φ∗R∗ ◦ α)(GR −G)]} 1−ε

K2

≺
(

1
n

) 1−ε

K2

(34)

If we combine (33) and (34) in (30), Case 1 is obtained.
Case 2) Let p ≥ 2.
Taking into account Lemma 2.1 in [2] we have

(35)
∣∣ψ′(w)

∣∣2−p ³
(

1
r0 − |w|

)ϑ

where ϑ := (p− 2)K2−1
K2+1 . So, according to (5) and (35) we obtain

(36) ∫∫

α(GR−G)

|ϕ′(ξ)|p dσξ ³
∫∫

ϕ(α(GR−G))

(
1

r0 − |w|
)ϑ

dσw ≤
∫∫

r∗<|w|<r0

(
1

r0 − |w|
)ϑ

dσw.

Let w = teiθ, r∗ < t < r0 and 0 ≤ θ ≤ 2π. From (36) we have

∫∫

α(GR−G)

|ϕ′(ξ)|p dσξ ³
2π∫

0

r0∫

r∗

(
1

r0 − t

)ϑ

t dtdθ

= 2π

r0∫

r∗

(
1

r0 − t

)ϑ

(t− r0 + r0) dt

= 2πr0

r0∫

r∗

(
1

r0 − t

)ϑ

dt− 2π

r0∫

r∗

(
1

r0 − t

)ϑ−1

dt

³ (r0 − r∗)
1−ϑ

, θ < 1.
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Taking into account Lemma 2.1 and Case 1-ii we have
∫∫

α(GR−G)

|ϕ′(ξ)|p dσξ ≺ (r0 − r∗)1−ϑ

≺ [mes {w : r∗ < |w| < r0}]1−ϑ

≺ {mes[(ϕ ◦ α)(GR −G)]}1−ϑ

≺ {mes [ϕ ◦Ψ∗R∗ ◦ Φ∗R∗ ◦ α] (GR −G)}1−ϑ

≺
(

1
n

) 1−ϑ

K2

.

This gives Case 2 and if we define Pn(z) as in Lemma 3.1, then using extremal
properties of Πn,p(z) we obtain (29).

We use a method similar to the one of Andrievskii and Simonenko employed
in the proofs of the analogous theorems for p = 2 (see [7], [14] and [24]).

Lemma 3.3. Let G ⊂ C be a simply connected region so that

‖ϕ−Πn,p‖L1
p(G) ≺ n−µ

for each µ ∈ (0, 1), n = 2, 3, ..., and

(37) ‖Pn‖C(G) ≺ ‖Pn‖L1
p(G)





1, p > 2,√
log n, p = 2,
nη, η > 0, 0 < p < 2,

for all polynomials Pn(z) of degree ≤ n and normalized Pn(z0) = 0. Then,

‖ϕ−Πn,p‖C(G) ≺ nη−µ.

Proof. In fact, for each κ = µ−η and natural numbers n, k with 2k ≤ n ≤ 2k+1,
by Lemma 3.1 and Lemma 3.2 we obtain

∥∥Π2k+1,p −Πn,p

∥∥
L1

p(G)
≺ n−µ

and this, for each j > k
∥∥Π2j+1,p −Π2j ,p

∥∥
L1

p(G)
≺ 2−jµ

Since,

ϕ(z) = Π2k+1,p +
∞∑

j=k+1

[
Π2j+1,p −Π2j ,p

]
, z ∈ G,

consequently

‖ϕ−Πn,p‖C(G) ≤
∥∥Π2k+1,p −Πn,p

∥∥ +
∞∑

j=k+1

∥∥Π2j+1,p −Π2j ,p

∥∥

≺ n−κ +
∞∑

j=k+1

2(j+1)η−jµ ≺ n−κ.
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4. Proof of Theorem 1.3 and Theorem 1.5

Proof. To give the proof of Theorem 1.3 and Theorem 1.5, in the light of analogy
given above, it is enough to choose suitable µ and η in (37) for any region.

Therefore, by taking µ from Lemma 3.1 (µ from Lemma 3.2), and η from
Lemma 2.3 (η from [4, Lemma 2.4]) the proof of Theorem 1.3 (Theorem 1.5)
can be obtained.
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