FIXED POINT THEOREMS FOR EXPANSION MAPPINGS IN 2 NON-ARCHIMEDEAN MENGER PM-SPACE

M. Alamgir $Khan¹$, Sumitra²

Abstract. The aim of this paper is to generalize the results of Ahmad, Ashraf and Rhoades [1] in the setting of 2 Non Archimedean Menger PM-space introduced by Renu Chugh [an](#page-0-0)d Sumitra [\[2](#page-0-1)]. In fact, 2 non-Archimedean Menger PM-space (briefly 2 N. A. Menger PM-space) is the generalization of 2-metric space in probabilistic setting, i.e., the case where instead of the distances between two or more points one knows only the probability of a p[oss](#page-8-0)ible value of this distance a[nd](#page-8-1) distance is represented by a distribution function.

AMS Mathematics Subject Classification (2000): 47H10, 54H25

Key words and phrases: 2 non-Archimedean Menger PM-space, compatible maps, fixed points and expansion maps

1. Introduction

Wang, Li. Gao and Iseki [11] presented some interesting work on expansion mappings in metric spaces which correspond to some contractive mappings in [6]. Rhoades [7, 8] and Taniguchi [10] generalized the results of [11] for pairs of mapping. Pant, Dimri and Singh [5] introduced the notion of expansion mappings on PM-spaces. L[ater](#page-9-0), Vasuki [9] also established some results for expansion mappings in Menger spaces.

In this pa[pe](#page-8-2)r[, w](#page-8-3)e prove comm[on fi](#page-9-1)xed point theorems for co[mpa](#page-9-0)tible the mappings satisfying expansion type co[ndi](#page-8-4)tion in 2 N. A. Menger PM-space.

2. Preliminaries

Definition 2.1. Let X be any non-empty set and D be the set of all left continuous distribution functions. An ordered pair (X, F) is said to be 2 non-Archimedean probabilistic metric space (briefly 2 N. A. PM-space) if F is a mapping from $X \times X \times X$ into D satisfying the following conditions, where the value of F at $(x, y, z) \in X \times X \times X$ is represented by $F_{x, y, z}$ or $F(x, y, z)$ for each $x, y, z \in X$ and $s, t > 0$ such that

¹Department of Mathematics, Eritrea Institute of Technology, Asmara, Eritrea (N.E. Africa), e-mail: alam alam3333@yahoo.com

²Department of Mathematics, Eritrea Institute of Technology, Asmara, Eritrea (N.E. Africa), email: mathsqueen d@yahoo.com

- (i) $F(x, y, z; t) = 1$ for all $t > 0$ if and only if at least two of the three points are equal.
- (ii) $F(x, y, z) = F(x, z, y) = F(z, x, y)$
- (*iii*) $F(x, y, z; 0) = 0$
- (iv) If $F(x, y, s; t_1) = F(x, s, z; t_2) = F(s, y, z; t_3) = 1$, then $F(x, y, z; \max\{t_1, t_2, t_3\}) = 1$.

Definition 2.2. A t-norm is a function Δ : [0, 1] × [0, 1] × [0, 1] → [0, 1], which is associative, commutative, non-decreasing in each coordinate and $\Delta(a, 1, 1) = a$ for each $a \in [0, 1]$.

Definition 2.3. A 2 N. A. Menger PM-space is an ordered triplet (X, F, Δ) , where Δ is a t-norm and (X, F) is a 2 N. A. PM-space satisfying the following condition,

 $F(x, y, z; \max\{t_1, t_2, t_3\}) \ge \Delta (F(x, y, s; t_1), F(x, s, z; t_2), F(s, y, z; t_3))$

for each $x, y, z \in X$, $t_1, t_2, t_3 \geq 0$.

Definition 2.4. Let (X, F, Δ) be 2 N. A. Menger PM-space and Δ a continuous t-norm, then (X, F, Δ) is Hausdorff in the topology induced by the family of neighborhoods,

$$
U_x(\epsilon, \lambda, a_1, a_2, \ldots, a_n); x, a_i \in X, \epsilon > 0, i = 1, 2, \ldots, n \in Z^+,
$$

where Z^+ is the set of all positive integers and

$$
U_x(\epsilon, \lambda, a_1, a_2, \dots, a_n) = \{ y \in X; F(x, y, a_i; \epsilon) > 1 - \lambda, 1 \le i \le n \}
$$

$$
= \bigcap_{i=1}^n \{ y \in X; F(x, y, a_i; \epsilon) > 1 - \lambda, 1 \le i \le n \}
$$

Definition 2.5. A 2 N. A. Menger PM-space (X, F, Δ) is said to be of type (C_q) , if there exists a $g \in \Omega$ such that

$$
g(F(x, y, z; t)) \le g(F(x, y, a; t)) + g(F(x, a, z; t)) + g(F(a, y, z; t))
$$

for each $x, y, z \in X, t \geq 0$, where

$$
\Omega = \{g/g : [0, 1] \to [0, \infty) \text{ is continuous, strictly decreasing and}
$$

$$
g(1) = 0 \text{ and } g(0) < \infty\}.
$$

Definition 2.6. A 2 N. A. Menger PM-space (X, F, Δ) is said to be of type (D_q) , if there exists a $g \in \Omega$ such that

$$
g(\Delta(t_1, t_2, t_3)) \le g(t_1) + g(t_2) + g(t_3)
$$

for each $t_1, t_2, t_3 \in [0, 1]$.

Fixed point theorems for expansion mappings... 53

Remark 1. If 2 N. A. Menger PM-space is of type (D_q) , then (X, F, Δ) is of type (C_q) .

Definition 2.7. A sequence $\{x_n\}$ in 2 N. A. Menger PM-space (X, F, Δ) converges to x if and only if for each $\epsilon > 0, \lambda > 0$, there exists $M(\epsilon, \lambda)$ such that

$$
g(F(x_n, x, a; \epsilon)) < g(1 - \lambda)
$$

for every $n > M$.

Definition 2.8. A sequence $\{x_n\}$ in 2 N. A. Menger PM-space is Cauchy sequence if and only if for each $\epsilon > 0, \lambda > 0$, there exists an integer $M(\epsilon, \lambda)$ such that

$$
g(F(x_n, x_{n+p}, a; \epsilon)) < g(1 - \lambda)
$$

for every $n, p \geq M$ and $p \geq 1$.

Definition 2.9. Two self mappings A, S of a 2 N. A. Menger PM-space are said to be compatible if

$$
\lim_{n} g\left(F\left(ASx_{n}, SAx_{n}, a; t\right)\right) = 0
$$

for every $t > 0, a \in X$, where $\{x_n\}$ is a sequence in X such that $\lim_n Ax_n =$ $\lim_{n} Sx_{n} = z$ for some $z \in X$.

Example 1. Let $X = R$ be the set of real numbers equipped with 2-metric defined as

> $d(x, y, z) = \begin{cases} 0 & \text{if at least two of the three points are equal} \\ 0 & \text{otherwise.} \end{cases}$ 2, otherwise

Set $F(x, y, z; t) = \frac{t}{t + d(x, y, z)}$.

Then, (X, F, Δ) is 2 N. A. Menger PM-space with Δ as continuous t-norm satisfying $\Delta(r, s, t) = \min(r, s, t)$ or $pro(r, s, r)$.

Proof. (i)
$$
F(x, y, z; 0) = \frac{0}{0 + d(x, y, z)} = 0.
$$

(ii) and (iii) are trivial. For (iv) condition, let $F(x, y, s; t_1) = F(x, s, z; t_2) = F(s, y, z; t_3) = 1$, then we have to show that $F(x, y, z; \max\{t_1, t_2, t_3\}) = 1$. Now, $F(x, y, s; t_1) = 1$ if and only if $\frac{t_1}{t_1 + d(x, y, s)} = d(x, y, s) = 0.$ Similarly, $F(x, s, z; t_2) = 1$ if and only if $d(x, s, z) = 0$ and $F(s, y, z; t_3) = 1$ if and only if $d(s, y, z) = 0$. Now, $d(x, y, z) \leq d(x, y, s) + d(x, s, z) + d(s, y, z) \leq 0 + 0 + 0 = 0.$ Hence, $F(x, y, z; \max\{t_1, t_2, t_3\}) = \frac{\max\{t_1, t_2, t_3\}}{\max\{t_1, t_2, t_3\} + 0} = 1$

Now, let us check the last condition, i.e.,

$$
F(x, y, z; \max\{t_1, t_2, t_3\}) \ge \Delta \left[F(x, y, s; t_1), F(x, s, z; t_2), F(s, y, z; t_3) \right]
$$

Let max $\{t_1, t_2, t_3\} = T$, then to prove

$$
F(x, y, z; T) \ge \Delta [F(x, y, s; t_1), F(x, s, z; t_2), F(s, y, z; t_3)]
$$

i.e.,

$$
\frac{T}{T + d(x, y, z)} \ge \Delta \left[\frac{t_1}{t_1 + d(x, y, s)}, \frac{t_2}{t_2 + d(x, s, z)}, \frac{t_3}{t_3 + d(s, y, z)} \right]
$$

But d can have two values. i.e., either zero or 2. So, the following cases arise;

CASE 1. When every d on the right is zero while d on left may occur with zero or 2. That is, again two subcases as;

Subcase 1. When d on left is 0. Then,

$$
\frac{T}{T+0} \ge \Delta\left[\frac{t_1}{t_1}, \frac{t_2}{t_2}, \frac{t_3}{t_3}\right]
$$

That is, $1 \geq \Delta [1, 1, 1] = 1$, which is true.

- Subcase 2. When d on the left is 2, which is not possible if every d on the right is zero.
- CASE 2. When two d's on the right are with zero and one d as 2, i.e., let $d(x, y, s) = 0, d(x, s, z) = 0$ and $d(s, y, z) = 2$, then

$$
\frac{T}{T+0} \ge \Delta \left[1, 1, \frac{t_3}{t_3+2}\right] \text{ or } \frac{T}{T+2} \ge \Delta \left[1, 1, \frac{t_3}{t_3+2}\right]
$$

which is again true.

CASE 3. When one d on the right is zero and others are 2, then it is again true.

Hence (X, F, Δ) is a 2 N. A. Menger PM-space.

 \Box

Example 2. Let $X = R$ with 2-metric defined as

$$
d(x, y, z) = \min[|x - y|, |y - z|, |z - x|]
$$

for all $x, y, z \in X$ and $t > 0$. Define $F(x, y, z; t) = \frac{t}{t + d(x, y, z)}$, with $\Delta(r, s, t) = \min(r, s, t)$ or $r \cdot s \cdot t$. Then, (i) $F(x, y, z; 0) = \frac{0}{0 + d(x, y, z)} = 0.$

Fixed point theorems for expansion mappings... 55

(ii) and (iii) are trivial. (iv) Let $F(x, y, s; t_1) = F(x, s, z; t_2) = F(s, y, z; t_3) = 1.$ Then to prove that $F(x, y, z; \max\{t_1, t_2, t_3\}) = 1$. Now, $F(x, y, s; t_1) = 1$ if and only if $\frac{t_1}{t_1 + d(x, y, s)} = 1$ if and only if $d(x, y, s) =$ 0. Also, $F(x, s, z; t_2) = 1$ if and only if $\frac{t_2}{t_2 + d(x, s, z)} = 1$ if and only if $d(x, s, z) =$ 0. Similarly, $F(s, y, z; t_3) = 1$ if and only if $\frac{t_3}{t_3 + d(s, y, z)} = 1$ if and only if $d(s, y, z) = 0.$ Now, $d(x, y, z) \leq d(x, y, s) + d(x, s, z) + d(s, y)$

$$
\begin{aligned} \n\langle (x, y, z) \le d(x, y, s) + d(x, s, z) + d(s, y, z) \\ \n&= 0 + 0 + 0 = 0 \\ \n&= 0. \n\end{aligned}
$$

Let max $\{t_1, t_2, t_3\} = T$. So,

$$
F(x, y, z; \max\{t_1, t_2, t_3\}) = F(x, y, z; T) = \frac{T}{T + d(x, y, z)} = 1
$$

Also, we can check

$$
F(x, y, z; \max\{t_1, t_2, t_3\}) \ge \Delta \left[F(x, y, s; t_1), F(x, s, z; t_2), F(s, y, z; t_3) \right]
$$

Thus, (X, F, Δ) is a 2 N. A. Menger PM-space.

Lemma 1. If A and S are compatible maps of a 2 N. A. Menger PM-space (X, F, Δ) , where Δ is continuous and $\Delta(x, x, x) \geq x$ for all $x \in [0, 1]$ and $Ax_n, Sx_n \to z$ for some $z \in X$, where $\{x_n\}$ is a sequence in X, then $S Ax_n = Az$ provided A is continuous.

Proof. Suppose A is continuous and $\{x_n\}$ is a sequence in X, such that $\lim_{n} Ax_n = \lim_{n} Sx_n = z$ for some $z \in X$.

So, $ASx_n \to Az$ as $n \to \infty$.

Since A and S are compatible maps so,

$$
g(F(ASx_n, Az, a; t)) = \lim_{n} g(F(SAx_n, ASx_n, a; t)) \to 0 \text{ as } n \to \infty,
$$

which implies $S Ax_n \to Az$.

Lemma 2. ([9]). Let $\{y_n\}$ be a sequence in Menger PM-space (X, F, Δ) , where Δ is a continuous t-norm satisfying $\Delta(x, x) \geq x$ for all $x \in [0, 1]$. If there exists a positive number $q \in (0,1)$, such that

$$
F(y_n, y_{n+1}; qx) \ge F(y_{n-1}, y_n; x), n = 1, 2, 3, ...
$$

then $\{y_n\}$ is a Cauchy sequence.

 \Box

Lemma 3. Let $\{y_n\}$ be a sequence in 2 N. A. Menger PM-space (X, F, Δ) , where Δ is a continuous t-norm satisfying $\Delta(x, x, x) \geq x$ for all $x \in [0, 1]$. If there exists a positive number $h \in (0, 1)$, such that

(1)
$$
g(F(y_n, y_{n+1}, a; ht)) \leq g(F(y_{n-1}, y_n, a; t)), n = 1, 2, 3, ...
$$

then ${y_n}$ is a Cauchy sequence.

Proof. It follows from (1)

$$
g\left(F\left(y_n, y_{n+1}, a; \frac{(1-h)\epsilon}{2h}\right)\right) \le g\left(F\left(y_{n-1}, y_{n-2}, a; \frac{(1-h)\epsilon}{2h^2}\right)\right)
$$

$$
\vdots \qquad \vdots
$$

$$
\le g\left(F\left(y_2, y_1, a; \frac{(1-h)\epsilon}{2h^{n-1}}\right)\right).
$$

Since, $0 < h < 1$, for $\epsilon > 0, \lambda > 0$, there exists a positive integer N such that

(2)
$$
g\left(F\left(y_n, y_{n-1}, a; \frac{(1-h)\epsilon}{2h}\right)\right) \le g(1-\lambda), \text{ for every } n \ge N
$$

That is,

$$
F\left(y_n, y_{n-1}, a; \frac{(1-h)\epsilon}{2h}\right) \ge (1-\lambda), \text{ for every } n \ge N
$$

(as g strictly decreasing).

It is sufficient to prove that for any positive integer p ,

(3)
$$
g(F(y_n, y_{n+p}, a; \epsilon)) \le g(1-\lambda), \text{ for every } n \ge N
$$

For $p = 1$, (3) holds.

Suppose that (3) holds for $1 < p \leq k$, then we prove (3) for $p = k + 1$. For this it suffices to show that

(4)
$$
F(y_n, y_{n+p}, a; \epsilon) \le (1 - \lambda), \text{ for every } n \ge N
$$

As g is strictly decreasing, so using (1) ,

$$
F(y_n, y_{n+k+1}, a; \epsilon) \ge F\left(y_{n-1}, y_{n+k}, a; \frac{\epsilon}{h}\right)
$$

\n
$$
\ge \Delta \left[F\left(y_{n-1}, y_{n+k}, y_n; \frac{(1-h)\epsilon}{2h}\right), \right]
$$

\n
$$
F\left(y_{n-1}, y_n, a; \frac{(1-h)\epsilon}{2h}\right), F\left(y_n, y_{n+k}, a; \epsilon\right) \right]
$$

\n
$$
> \Delta \left(1 - \lambda, 1 - \lambda, 1 - \lambda\right) \ge 1 - \lambda, n \ge N
$$

Hence (4) holds for $p = k + 1$. Thus (3) is proved (as g is strictly decreasing). Therefore, $\{y_n\}$ is a Cauchy sequence. \Box In 2001, Ahmad, Ashraf and Rhoades [1] proved the following result;

Theorem 1. Let (X, D) be a complete D-metric space. Let S be a surjective self-map on X and T an injective self-map of X satisfying the following condition;

there exists $q > 1$ such that,

$$
D(Sx, Sy, Sz) \ge qD(Tx, Ty, Tz), \text{ for all } x, y, z \in X.
$$

If S and T commute each other, then there exists a unique common fixed point of S and T.

3. Main Result

Now, we give the analogue of this theorem for compatible maps in the setting of 2 N. A. Menger PM-space as follows.

Theorem 2. Let S and T be compatible self-maps of a complete 2 N. A. Menger PM-space (X, F, Δ) , where Δ is a continuous t-norm satisfying $\Delta(x, x, x) \geq x$ with the following conditions;

- (i) $g(F(Sx, Sy, a; qt)) \ge g(F(Tx, Ty, a; t))$ for all $x, y, a \in X, t > 0$ and $q > 1$.
- (ii) S is surjective
- (iii) One of S and T is continuous

Then S and T have a unique common fixed point.

Proof. Let $x \circ \in X$, since S is surjective, we can choose a point $x_1 \in X$ such that $Sx_1 = Tx_\circ$. Inductively, we can define a sequence such that

$$
(5) \t\t y_n = Sx_{n+1} = Tx_n
$$

Now,

$$
g(F(y_n, y_{n+1}, a; qt)) = g(F(Sx_{n+1}, Sx_{n+2}, a; qt))
$$

\n
$$
\geq g(F(Tx_{n+1}, Tx_{n+2}, a; t))
$$

\n
$$
= g(F(y_n, y_{n+1}, a; t))
$$

By Lemma (3), $\{y_n\}$ is a Cauchy sequence. But X is complete and hence $\{y_n\}$ is convergent. Let it converge to z. i.e., $\lim_{n} y_n = \lim_{n} S x_n = \lim_{n} T x_n = z$. Now, we suppose that S is continuous. Since S and T are compatible, so, by Lemma (1) S^2x_n and $TSx_n \to Sz$ as $n \to \infty$. Using (i), we get

$$
g(F(SSx_n, Sx_n, a; qt)) \ge g(F(TSx_n, Tx_n, a; t)).
$$

Taking $n \to \infty$, we get

$$
g(F(Sz, z, a; qt)) \ge g(F(Sz, z, a; t))
$$

which implies $Sz = z$. Again by (i), we have

$$
g(F(Sz, Sx_n, a; qt)) \ge g(F(Tz, Tx_n, a; t))
$$

which implies $Tz = z$.

Thus, $z = Sz = Tz$. i.e., z is a common fixed point of S and T. Let w be another fixed point of S and T , then (i) gives

$$
g(F(Sz, Sw, a; qt)) \ge g(F(Tz, Tw, a; t))
$$

which implies $z = w$.

Remark 2. We can remove the continuity of maps from Theorem 1 in the form of following result:

Theorem 3. Let S and T be compatible self-maps of a complete 2 N. A. Menger PM-space (X, F, Δ) , where Δ is a continuous t-norm satisfying $\Delta(x, x, x) \geq x$ with the following conditions;

- (i) $g(F(Sx, Sy, a; qt)) \ge g(F(Tx, Ty, a; t))$ for all $x, y, a \in X, t > 0$ and $q > 1$.
- (ii) S is surjective
- (iii) If one of the spaces $S(X)$ or $T(X)$ is complete,

Then S and T have a unique common fixed point.

Proof. Let $x_o \in X$, since S is surjective we can choose a point $x₁ \in X$ such that $Sx_1 = Tx_\circ$. Inductively, we can define a sequence $y_n = Sx_{n+1} = Tx_n$ Now,

$$
g(F(y_n, y_{n+1}, a; qt)) = g(F(Sx_{n+1}, Sx_{n+2}, a; qt))
$$

\n
$$
\geq g(F(Tx_{n+1}, Tx_{n+2}, a; t))
$$

\n
$$
= g(F(y_n, y_{n+1}, a; t))
$$

By Lemma (3), $\{y_n\}$ is a Cauchy sequence. But X is complete and hence $\{y_n\}$ is convergent. Let it converges to z. i.e., $\lim_n y_n = \lim_n S x_n = \lim_n T x_n = z$. If $S(X)$ is complete, then there exists a point $u \in X$ such that $Su = z$. From (i), we get

$$
g(F(Su, Sx_n, a; qt)) \ge g(F(Tu, Tx_n, a; t)).
$$

Taking $n \to \infty$, we get

$$
g(F(Su, z, a; qt)) \ge g(F(Tu, z, a; t))
$$

 \Box

Fixed point theorems for expansion mappings... 59

which implies $Tu = z$. Therefore, $Su = Tu = z$. Now, S and T are compatible and $Su = Tu$. Hence $Sz = STu = TSu = Tz$. i.e., $Sz = Tz$. Now, we claim that z is a fixed point of S and T .

Again, by (i), we have

$$
g(F(Sz, Sx_n, a; qt)) \ge g(F(Tz, Tx_n, a; t))
$$

Taking $n \to \infty$, we get

$$
g(F(Sz, z, a; qt)) \ge g(F(Tz, z, a; t))
$$

or

$$
g(F(Sz, z, a; qt)) \ge g(F(Sz, z, a; t))
$$

Thus, $z = Sz = Tz$. i.e., z is a common fixed point of S and T. Let w be another fixed point of S and T , then (i) gives

$$
g(F(Sz, Sw, a; qt)) \ge g(F(Tz, Tw, a; t))
$$

which implies $z = w$. Hence the theorem is proved.

Remark 3. Our results extend, generalize and unify the results of various authors mentioned in the introduction of this note in the framework of 2 N. A. Menger PM-space.

References

- [1] Ahmad, B., Ashraf, M., Rhoades, B. E., Fixed point theorems for expansion mapping in D-metric space. Indian J. Pure and Appl. Math., 32 (10) (2001), 1519-1526.
- [2] Chugh, R., Sumitra, Common fixed point theorems in 2 N. A. Menger PM-space. Int. J. Math., Sci., (26) (8) (2001), 475-483.
- [3] Chugh, R., Kumar, S., Weak compatible maps in 2.N. A. Menger PM-space. Int. J. Math. Math . Sci., (31)(6) (2002), 367-373.
- [4] Kumar, S., Pant, B. D., A common fixed point theorem for expansion maps in probabilistic metric spaces. Ganita, (51) (1) (2006), 89-95.
- [5] Pant, B. D., Dimri, R. C., Singh, S. L., Fixed point theorems for expansion mappings on probablistc metric spaces. Honam Math. J., 9 (1987), 77-81.
- [6] Rhoades, B. E., A comparison of various definitions of contractive mappings. Trans. A. Math. Soc., 226 (1977), 257-290.
- [7] Rhoades, B. E., Some fixed point theorems for pairs of mappings. Janabha, 15 (1985), 151-156.
- [8] Rhoades, B. E., A fixed point theorem for a pair of expansive maps. Jnanabha (21) (1991), 117-118.
- [9] Vasuki, R., Fixed point and common fixed point theorems for expansion maps in Menger spaces. Bull. Cal. Math. Soc., (83) (1991), 565-570.

 \Box

- [10] Taniguchi, T., Common fixed point theorems in probabilistic metric spaces and extension to uniform spaces. Honam, Math. J., 6 (1984), 1-12.
- [11] Wang, S. Z., Gao, Li. Z. M., Iseki, K., Some fixed point theorems on expansion mappings. Math. Japon, 29 (1984), 631-636.

Received by the editors November 19, 2008