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FIXED POINT THEOREMS FOR EXPANSION
MAPPINGS IN 2 NON-ARCHIMEDEAN MENGER

PM-SPACE

M. Alamgir Khan1, Sumitra2

Abstract. The aim of this paper is to generalize the results of Ahmad,
Ashraf and Rhoades [1] in the setting of 2 Non Archimedean Menger
PM-space introduced by Renu Chugh and Sumitra [2]. In fact, 2 non-
Archimedean Menger PM-space (briefly 2 N. A. Menger PM-space ) is
the generalization of 2-metric space in probabilistic setting, i.e., the case
where instead of the distances between two or more points one knows only
the probability of a possible value of this distance and distance is repre-
sented by a distribution function.
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1. Introduction

Wang, Li. Gao and Iseki [11] presented some interesting work on expansion
mappings in metric spaces which correspond to some contractive mappings in
[6]. Rhoades [7, 8] and Taniguchi [10] generalized the results of [11] for pairs
of mapping. Pant, Dimri and Singh [5] introduced the notion of expansion
mappings on PM-spaces. Later, Vasuki [9] also established some results for
expansion mappings in Menger spaces.

In this paper, we prove common fixed point theorems for compatible the
mappings satisfying expansion type condition in 2 N. A. Menger PM-space.

2. Preliminaries

Definition 2.1. Let X be any non-empty set and D be the set of all left con-
tinuous distribution functions. An ordered pair (X, F ) is said to be 2 non-
Archimedean probabilistic metric space (briefly 2 N. A. PM-space) if F is a
mapping from X ×X ×X into D satisfying the following conditions, where the
value of F at (x, y, z) ∈ X × X × X is represented by Fx,y,z or F (x, y, z) for
each x, y, z ∈ X and s, t > 0 such that
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(i) F (x, y, z; t) = 1 for all t > 0 if and only if at least two of the three points
are equal.

(ii) F (x, y, z) = F (x, z, y) = F (z, x, y)

(iii) F (x, y, z; 0) = 0

(iv) If F (x, y, s; t1) = F (x, s, z; t2) = F (s, y, z; t3) = 1,
then F (x, y, z; max {t1, t2, t3}) = 1.

Definition 2.2. A t-norm is a function ∆ : [0, 1]×[0, 1]×[0, 1] → [0, 1], which is
associative, commutative, non-decreasing in each coordinate and ∆(a, 1, 1) = a
for each a ∈ [0, 1].

Definition 2.3. A 2 N. A. Menger PM-space is an ordered triplet (X, F,∆),
where ∆ is a t-norm and (X,F ) is a 2 N. A. PM-space satisfying the following
condition,

F (x, y, z; max {t1, t2, t3}) ≥ ∆(F (x, y, s; t1) , F (x, s, z; t2) , F (s, y, z; t3))

for each x, y, z ∈ X, t1, t2, t3 ≥ 0.

Definition 2.4. Let (X, F,∆) be 2 N. A. Menger PM-space and ∆ a continuous
t-norm, then (X, F,∆) is Hausdorff in the topology induced by the family of
neighborhoods,

Ux (ε, λ, a1, a2, . . . , an) ;x, ai ∈ X, ε > 0, i = 1, 2, . . . , n ∈ Z+,

where Z+ is the set of all positive integers and

Ux (ε, λ, a1, a2, . . . , an) = {y ∈ X; F (x, y, ai; ε) > 1− λ, 1 ≤ i ≤ n}

=
n⋂

i=1

{y ∈ X;F (x, y, ai; ε) > 1− λ, 1 ≤ i ≤ n}

Definition 2.5. A 2 N. A. Menger PM-space (X, F,∆) is said to be of type
(Cg), if there exists a g ∈ Ω such that

g (F (x, y, z; t)) ≤ g (F (x, y, a; t)) + g (F (x, a, z; t)) + g (F (a, y, z; t))

for each x, y, z ∈ X, t ≥ 0, where

Ω ={g/g : [0, 1] → [0,∞) is continuous, strictly decreasing and
g(1) = 0 and g(0) < ∞}.

Definition 2.6. A 2 N. A. Menger PM-space (X, F,∆) is said to be of type
(Dg), if there exists a g ∈ Ω such that

g (∆ (t1, t2, t3)) ≤ g (t1) + g (t2) + g (t3)

for each t1, t2, t3 ∈ [0, 1].
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Remark 1. If 2 N. A. Menger PM-space is of type (Dg), then (X, F, ∆) is of
type (Cg).

Definition 2.7. A sequence {xn} in 2 N. A. Menger PM-space (X, F,∆) con-
verges to x if and only if for each ε > 0, λ > 0, there exists M(ε, λ) such that

g (F (xn, x, a; ε)) < g(1− λ)

for every n > M .

Definition 2.8. A sequence {xn} in 2 N. A. Menger PM-space is Cauchy se-
quence if and only if for each ε > 0, λ > 0, there exists an integer M(ε, λ) such
that

g (F (xn, xn+p, a; ε)) < g(1− λ)

for every n, p ≥ M and p ≥ 1.

Definition 2.9. Two self mappings A, S of a 2 N. A. Menger PM-space are
said to be compatible if

lim
n

g (F (ASxn, SAxn, a; t)) = 0

for every t > 0, a ∈ X, where {xn} is a sequence in X such that limn Axn =
limn Sxn = z for some z ∈ X.

Example 1. Let X = R be the set of real numbers equipped with 2-metric
defined as

d(x, y, z) =

{
0 if at least two of the three points are equal
2, otherwise

Set F (x, y, z; t) =
t

t + d(x, y, z)
.

Then, (X, F,∆) is 2 N. A. Menger PM-space with ∆ as continuous t-norm
satisfying ∆(r, s, t) = min (r, s, t) or pro(r, s, r).

Proof. (i) F (x, y, z; 0) =
0

0 + d(x, y, z)
= 0.

(ii) and (iii) are trivial.
For (iv) condition, let F (x, y, s; t1) = F (x, s, z; t2) = F (s, y, z; t3) = 1, then we
have to show that F (x, y, z;max {t1, t2, t3}) = 1.

Now, F (x, y, s; t1) = 1 if and only if
t1

t1 + d(x, y, s)
= d(x, y, s) = 0.

Similarly, F (x, s, z; t2) = 1 if and only if d(x, s, z) = 0 and F (s, y, z; t3) = 1 if
and only if d(s, y, z) = 0.
Now, d(x, y, z) ≤ d(x, y, s) + d(x, s, z) + d(s, y, z) ≤ 0 + 0 + 0 = 0.

Hence, F (x, y, z;max {t1, t2, t3}) =
max {t1, t2, t3}

max {t1, t2, t3}+ 0
= 1
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Now, let us check the last condition, i.e.,

F (x, y, z;max {t1, t2, t3}) ≥ ∆ [F (x, y, s; t1) , F (x, s, z; t2) , F (s, y, z; t3)]

Let max {t1, t2, t3} = T , then to prove

F (x, y, z; T ) ≥ ∆ [F (x, y, s; t1) , F (x, s, z; t2) , F (s, y, z; t3)]

i.e.,

T

T + d(x, y, z)
≥ ∆

[
t1

t1 + d(x, y, s)
,

t2
t2 + d(x, s, z)

,
t3

t3 + d(s, y, z)

]

But d can have two values. i.e., either zero or 2. So, the following cases arise;

CASE 1. When every d on the right is zero while d on left may occur with zero
or 2. That is, again two subcases as;

Subcase 1. When d on left is 0. Then,

T

T + 0
≥ ∆

[
t1
t1

,
t2
t2

,
t3
t3

]

That is, 1 ≥ ∆[1, 1, 1] = 1, which is true.

Subcase 2. When d on the left is 2, which is not possible if every d on the right
is zero.

CASE 2. When two d’s on the right are with zero and one d as 2, i.e., let
d(x, y, s) = 0, d(x, s, z) = 0 and d(s, y, z) = 2, then

T

T + 0
≥ ∆

[
1, 1,

t3
t3 + 2

]
or

T

T + 2
≥ ∆

[
1, 1,

t3
t3 + 2

]

which is again true.

CASE 3. When one d on the right is zero and others are 2, then it is again
true.

Hence (X, F,∆) is a 2 N. A. Menger PM-space.

Example 2. Let X = R with 2-metric defined as

d(x, y, z) = min [|x− y|, |y − z|, |z − x|]

for all x, y, z ∈ X and t > 0.

Define F (x, y, z; t) =
t

t + d(x, y, z)
, with ∆(r, s, t) = min (r, s, t) or r · s · t.

Then,

(i) F (x, y, z; 0) =
0

0 + d(x, y, z)
= 0.
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(ii) and (iii) are trivial.
(iv) Let F (x, y, s; t1) = F (x, s, z; t2) = F (s, y, z; t3) = 1.
Then to prove that F (x, y, z;max {t1, t2, t3}) = 1.

Now, F (x, y, s; t1) = 1 if and only if
t1

t1 + d(x, y, s)
= 1 if and only if d(x, y, s) =

0.
Also, F (x, s, z; t2) = 1 if and only if

t2
t2 + d(x, s, z)

= 1 if and only if d(x, s, z) =

0.
Similarly, F (s, y, z; t3) = 1 if and only if

t3
t3 + d(s, y, z)

= 1 if and only if

d(s, y, z) = 0.
Now,

d(x, y, z) ≤ d(x, y, s) + d(x, s, z) + d(s, y, z)
= 0 + 0 + 0 = 0
= 0.

Let max {t1, t2, t3} = T .
So,

F (x, y, z;max {t1, t2, t3}) = F (x, y, z;T ) =
T

T + d(x, y, z)
= 1

Also, we can check

F (x, y, z;max {t1, t2, t3}) ≥ ∆[F (x, y, s; t1) , F (x, s, z; t2) , F (s, y, z; t3)]

Thus, (X,F, ∆) is a 2 N. A. Menger PM-space.

Lemma 1. If A and S are compatible maps of a 2 N. A. Menger PM-space
(X,F, ∆), where ∆ is continuous and ∆(x, x, x) ≥ x for all x ∈ [0, 1] and
Axn, Sxn → z for some z ∈ X, where {xn} is a sequence in X, then SAxn = Az
provided A is continuous.

Proof. Suppose A is continuous and {xn} is a sequence in X, such that
limn Axn = limn Sxn = z for some z ∈ X.
So, ASxn → Az as n →∞.
Since A and S are compatible maps so,

g (F (ASxn, Az, a; t)) = lim
n

g (F (SAxn, ASxn, a; t)) → 0 as n →∞,

which implies SAxn → Az.

Lemma 2. ([9]). Let {yn} be a sequence in Menger PM-space (X, F,∆), where
∆ is a continuous t-norm satisfying ∆(x, x) ≥ x for all x ∈ [0, 1]. If there exists
a positive number q ∈ (0, 1), such that

F (yn, yn+1; qx) ≥ F (yn−1, yn; x) , n = 1, 2, 3, . . .

then {yn} is a Cauchy sequence.
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Lemma 3. Let {yn} be a sequence in 2 N. A. Menger PM-space (X, F, ∆),
where ∆ is a continuous t-norm satisfying ∆(x, x, x) ≥ x for all x ∈ [0, 1]. If
there exists a positive number h ∈ (0, 1), such that

(1) g (F (yn, yn+1, a; ht)) ≤ g (F (yn−1, yn, a; t)) , n = 1, 2, 3, . . .

then {yn} is a Cauchy sequence.

Proof. It follows from (1)

g

(
F

(
yn, yn+1, a;

(1− h)ε
2h

))
≤ g

(
F

(
yn−1, yn−2, a;

(1− h)ε
2h2

))

...
...

...

≤ g

(
F

(
y2, y1, a;

(1− h)ε
2hn−1

))
.

Since, 0 < h < 1, for ε > 0, λ > 0, there exists a positive integer N such that

(2) g

(
F

(
yn, yn−1, a;

(1− h)ε
2h

))
≤ g (1− λ) , for every n ≥ N

That is,

F

(
yn, yn−1, a;

(1− h)ε
2h

)
≥ (1− λ) , for every n ≥ N

(as g strictly decreasing).
It is sufficient to prove that for any positive integer p,

(3) g (F (yn, yn+p, a; ε)) ≤ g (1− λ) , for every n ≥ N

For p = 1, (3) holds.
Suppose that (3) holds for 1 < p ≤ k, then we prove (3) for p = k + 1.
For this it suffices to show that

(4) F (yn, yn+p, a; ε) ≤ (1− λ) , for every n ≥ N

As g is strictly decreasing, so using (1),

F (yn, yn+k+1, a; ε) ≥ F
(
yn−1, yn+k, a;

ε

h

)

≥ ∆
[
F

(
yn−1, yn+k, yn;

(1− h)ε
2h

)
,

F

(
yn−1, yn, a;

(1− h)ε
2h

)
, F (yn, yn+k, a; ε)

]

> ∆(1− λ, 1− λ, 1− λ) ≥ 1− λ, n ≥ N

Hence (4) holds for p = k + 1. Thus (3) is proved (as g is strictly decreasing).
Therefore, {yn} is a Cauchy sequence.
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In 2001, Ahmad, Ashraf and Rhoades [1] proved the following result;

Theorem 1. Let (X, D) be a complete D-metric space. Let S be a surjec-
tive self-map on X and T an injective self-map of X satisfying the following
condition;
there exists q > 1 such that,

D (Sx, Sy, Sz) ≥ qD (Tx, Ty, Tz) , for all x, y, z ∈ X.

If S and T commute each other, then there exists a unique common fixed point
of S and T .

3. Main Result

Now, we give the analogue of this theorem for compatible maps in the setting
of 2 N. A. Menger PM-space as follows.

Theorem 2. Let S and T be compatible self-maps of a complete 2 N. A. Menger
PM-space (X, F,∆), where ∆ is a continuous t-norm satisfying ∆(x, x, x) ≥ x
with the following conditions;

(i) g (F (Sx, Sy, a; qt)) ≥ g (F (Tx, Ty, a; t)) for all x, y, a ∈ X, t > 0 and
q > 1.

(ii) S is surjective

(iii) One of S and T is continuous

Then S and T have a unique common fixed point.

Proof. Let x◦ ∈ X, since S is surjective, we can choose a point x1 ∈ X such
that Sx1 = Tx◦. Inductively, we can define a sequence such that

(5) yn = Sxn+1 = Txn

Now,

g (F (yn, yn+1, a; qt)) = g (F (Sxn+1, Sxn+2, a; qt))
≥ g (F (Txn+1, Txn+2, a; t))
= g (F (yn, yn+1, a; t))

By Lemma (3), {yn} is a Cauchy sequence. But X is complete and hence {yn}
is convergent. Let it converge to z. i.e., limn yn = limn Sxn = limn Txn = z.
Now, we suppose that S is continuous. Since S and T are compatible, so, by
Lemma (1) S2xn and TSxn → Sz as n →∞.
Using (i), we get

g (F (SSxn, Sxn, a; qt)) ≥ g (F (TSxn, Txn, a; t)) .
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Taking n →∞, we get

g (F (Sz, z, a; qt)) ≥ g (F (Sz, z, a; t))

which implies Sz = z.
Again by (i), we have

g (F (Sz, Sxn, a; qt)) ≥ g (F (Tz, Txn, a; t))

which implies Tz = z.
Thus, z = Sz = Tz. i.e., z is a common fixed point of S and T .
Let w be another fixed point of S and T , then (i) gives

g (F (Sz, Sw, a; qt)) ≥ g (F (Tz, Tw, a; t))

which implies z = w.

Remark 2. We can remove the continuity of maps from Theorem 1 in the form
of following result:

Theorem 3. Let S and T be compatible self-maps of a complete 2 N. A. Menger
PM-space (X,F, ∆), where ∆ is a continuous t-norm satisfying ∆(x, x, x) ≥ x
with the following conditions;

(i) g (F (Sx, Sy, a; qt)) ≥ g (F (Tx, Ty, a; t)) for all x, y, a ∈ X, t > 0 and
q > 1.

(ii) S is surjective

(iii) If one of the spaces S(X) or T (X) is complete,

Then S and T have a unique common fixed point.

Proof. Let x◦ ∈ X, since S is surjective we can choose a point x1 ∈ X such that
Sx1 = Tx◦. Inductively, we can define a sequence yn = Sxn+1 = Txn

Now,

g (F (yn, yn+1, a; qt)) = g (F (Sxn+1, Sxn+2, a; qt))
≥ g (F (Txn+1, Txn+2, a; t))
= g (F (yn, yn+1, a; t))

By Lemma (3), {yn} is a Cauchy sequence. But X is complete and hence {yn}
is convergent. Let it converges to z. i.e., limn yn = limn Sxn = limn Txn = z.
If S(X) is complete, then there exists a point u ∈ X such that Su = z.
From (i), we get

g (F (Su, Sxn, a; qt)) ≥ g (F (Tu, Txn, a; t)) .

Taking n →∞, we get

g (F (Su, z, a; qt)) ≥ g (F (Tu, z, a; t))
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which implies Tu = z. Therefore, Su = Tu = z.
Now, S and T are compatible and Su = Tu. Hence Sz = STu = TSu = Tz.
i.e., Sz = Tz.
Now, we claim that z is a fixed point of S and T .
Again, by (i), we have

g (F (Sz, Sxn, a; qt)) ≥ g (F (Tz, Txn, a; t))

Taking n →∞, we get

g (F (Sz, z, a; qt)) ≥ g (F (Tz, z, a; t))

or
g (F (Sz, z, a; qt)) ≥ g (F (Sz, z, a; t))

Thus, z = Sz = Tz. i.e., z is a common fixed point of S and T .
Let w be another fixed point of S and T , then (i) gives

g (F (Sz, Sw, a; qt)) ≥ g (F (Tz, Tw, a; t))

which implies z = w. Hence the theorem is proved.

Remark 3. Our results extend, generalize and unify the results of various
authors mentioned in the introduction of this note in the framework of 2 N. A.
Menger PM-space.
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