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QUASI-IDEALS AND MINIMAL QUASI-IDEALS IN
Γ-SEMIRINGS
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Abstract. In this paper we introduce the concept of minimal quasi-ideal
in a Γ-semiring. Some properties of minimal quasi-ideals in Γ-semirings
are provided.
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1. Introduction

The notion of quasi-ideal was first introduced for semigroups [8] and then
for rings by Steinfeld [10]. The general properties of quasi-ideals for semigroups
and rings are proved in [9]. Iseki [5] introduced the concept of quasi-ideal for a
semiring without zero and gave some characterizations of it. Using quasi-ideals
Shabir, Ali, Batool [7] characterized semirings. Quasi-ideal is a generalization
of a left and a right ideal.

As a generalization of a Γ-ring and a semiring the notion of Γ-semiring was
introduced by Rao [6]. It is natural to extend the concept of quasi-ideals in
Γ-semirings and this is done by Chinram [2] as a generalization of quasi-ideals
in Γ-semigroups. The Γ-semirings introduced by Chinram [2] and Dutta [4] are
different (see Remark 2.2). In this paper we study quasi-ideals in Γ-semirings
introduced by Rao [6]. Minimal quasi-ideals for Γ-semigroups are studied by
Chinram [3] and for semirings by Iseki [5]. On this line we introduce the notion
of minimal quasi-ideals in Γ-semirings. Some properties of minimal quasi-ideals
are furnished. Also, we introduce the concept of quasi-simple Γ-semiring.

2. Preliminaries

First we recall some definitions of the basic concepts of Γ-semirings that we
need in the sequel. For this we follow Dutta [4].

Definition 2.1. Let S and Γ be two additive commutative semigroups. S is
called Γ-semiring if there exists a mapping S×Γ×S −→ S (images to be denoted
by aαb;for all a, b ∈ S and for all α ∈ Γ) satisfying the following conditions:
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(i) aα (b + c) = (a αb) + (a αc)
(ii) (b + c)αa = (b αa) + (c αa)
(iii) a(α + β)c = (a αc) + (a βc)
(iv) aα (bβc) = (a αb)βc ; for all a, b, c ∈ S and for all α, β ∈ Γ

Obviously, every semiring S is a Γ-semiring but not conversely. For this, let us
consider the following example.

Example 1. Let Q be the set of rational numbers. (S, +) be the commutative
semigroup of all 2× 3 matrices over Q and (Γ, +) be commutative semigroup of
all 3 × 2 matrices over Q. Define AαB= usual matrix product of A, α and B;
for all A,B ∈ S and for all α ∈ Γ . Then S is a Γ-semiring but not a semiring.

Remark 2.2. Let N be the set of natural numbers and Γ = {1, 2, 3}. Define the
mapping N×Γ×N −→ N by aαb=usual product of a, α, b; for all a, b ∈ N,α ∈ Γ.
Then N is a Γ-semiring by the definition of Chinram [2]. But Γ is not an
additive semigroup, hence it is not a Γ-semiring according to Dutta [4].

Example 2. Let N be the set of natural numbers and Γ = {1, 2, 3}. (N , max.)
and (Γ,max.) are commutative semigroups. Define the mapping N × Γ×N →
N by, aαb = min {a, α, b} ; for all a, b ∈ N, α ∈ Γ. Then N is a Γ-semiring.

Example 3. Let Q be the set of rational numbers and Γ = N be the set
of natural numbers (Q,+) and (N ,+) are commutative semigroups. Define the
mapping Q×N×Q −→ Q by aαb =usual product of a, α, b ; a, b ∈ Q, α ∈ Γ.Then
Q is a Γ-semiring.

Definition 2.3. An element 0 ∈ S is said to be an absorbing zero if

0αa = 0 = aα0, a + 0 = 0 + a = a ; for all a ∈ S and for all α ∈ Γ.

From onwards S denotes a Γ-semiring with absorbing zero unless otherwise
stated.

Definition 2.4. A nonempty subset T of S is said to be a sub-Γ-semiring of S if
(T,+) is a subsemigroup of (S,+) and aαb ∈ T ; for all a, b ∈ Tand for all α ∈
Γ.

Definition 2.5. A nonempty subset T of S is called a left (respectively right)
ideal of S if T is a subsemigroup of (S,+) and xαa ∈ T (respectively aαx ∈ T )
for all a ∈ T, x ∈ S and for all α ∈ Γ

Definition 2.6. If T is both left and right ideal of S, then T is known as an
ideal of S.

Definition 2.7. If M and N are two nonempty subsets of S, then we define
M + N = {m + n/m ∈ M,n ∈ N} and

MΓN =

{
n∑

i=1

xiαiyi| xi ∈ M, αi ∈ Γ, yi ∈ N

}
.
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If N is the set of natural numbers, then

NA =

{
n∑

i=1

niai | ni ∈ N, ai ∈ A

}
.

Definition 2.8. Let X be a nonempty subset of S. By (X)l we mean the left
ideal of S generated by X (that is intersection of all left ideal of S containing
X).

Similarly, (X)r, (X)t denote the right and two-sided ideal generated by X re-
spectively.

Definition 2.9. A left (right, two-sided) ideal I of a Γ-semiring S is said to be
left (right, two-sided) k-ideal of S if a , a + x ∈ I,then x ∈ I for any x ∈ S.

3. Quasi-ideals

We start with the proofs of two basic results which we will use quite often.

Result 3.1. For each nonempty subset X of S the following statements hold.
(i) SΓX is a left ideal.
(ii) XΓS is a right ideal.
(iii) SΓXΓS is an ideal of S.

Proof.
(i)

SΓX =

{
n∑

i=1

aiαixi| ai ∈ S, αi ∈ Γ, xi ∈ X

}

Let a, b ∈ SΓX. Then

a + b =
n∑

i=1

aiαixi +
m∑

j=1

bjβjyj

implies a + b is a finite sum. Hence a + b ∈ SΓX and this shows SΓX is a
subsemigroup of (S,+). For t ∈ S, a ∈ SΓX, and β ∈ Γ, then

tβa = tβ

(
n∑

i=1

aiαixi

)
=

n∑

i=1

tβ (aiαixi) =
n∑

i=1

(tβai) αixi ∈ SΓX.

Therefore SΓX is a left ideal of S.
(ii) As in (i) we can prove that XΓS is a right ideal of S.
(iii) By (i) SΓX is a left ideal of S. Hence SΓXΓS is right a ideal of S by(ii).
Similarly, by (ii)XΓS is a right ideal of S. Hence SΓXΓS is a left ideal of S by
(i). Therefore, SΓXΓS is an ideal of S. 2
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Result 3.2. For any nonempty subset X of S we have
(i) If S has right unit element 1, then (X)l = SΓX.
(ii) If S has right unit element 1, then (X)r = XΓS.
(iii) If S has right unit element 1, then (X)t = SΓXΓS.

Proof.
(i) Let S contain left unit element 1. Then 1αa = a,for every a ∈ S and α ∈ Γ.
For any x ∈ X, x = 1αx ∈ SΓX. Hence X is a subset of SΓX. As SΓX is a
left ideal of S, NX ⊆ SΓX. But then we have (X)l = NX + SΓX (see [2]).
This implies (X)l ⊆ SΓX + SΓX ⊆ SΓX. As (X)l is the smallest left ideal of
S containing X. This shows that (X)l = SΓX. Similarly, we can prove that
(X)r = XΓS and(X)t = SΓXΓS. 2

Chinram [2] has defined a quasi-ideal Q in a Γ-semiring S as follows.

Definition. A subsemigroup Q of (S, +) is a quasi-ideal of S if

(SΓQ) ∩ (QΓS) ⊆ Q.

Example 4. Let N be the set of natural numbers and Γ =2N. Then N is a
Γ-semiring and A = 3N is a quasi-ideal of a Γ-semiring N .

Example 5. Consider a Γ-semiring S = M2x2(N0), where N0 denotes the set
of natural numbers with zero and Γ= S. Define AαB= usual matrix product of
A,α and B; for all A,α , B ∈ S. Then

Q =
{(

a 0
0 0

)
| a ∈ N0

}
is a quasi-ideal of a Γ-semiring S.

Properties

(1) By a quasi-ideal Q in a semiring S we mean an additive subsemigroup of S
such that SQ

⋂
QS ⊆ Q (see Iseki [5]). As every semiring is a

Γ-semiring the two definitions given in [2] and [5] of quasi-ideals coincide in a
semiring.
(2) Every quasi-ideal of S is a sub Γ-semiring of S.
(3) Every one-sided ideal or two-sided ideal of S is a quasi-ideal of S but converse
need not be true. For this consider Γ-semiring given in Example (5). Here

Q =
{(

a 0
0 0

)
| a ∈ N0

}

is a quasi-ideal but neither a left ideal nor a right ideal of S.
(4) If Q1 and Q2 are quasi-ideals of S, then Q1Γ Q2 need not be a quasi-ideal
of S. For this consider the following example.

Example 6. If T =
{(

a 0
b 1

)
| a , b ∈ R+

}
, then T is a semigroup with

respect to usual matrix multiplication.
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If S =
{(

a 0
b 1

)
| a , b ∈ R+

}
∪

{(
0 0
0 0

)}
and Γ = S, then S is a Γ-

semiring with usual matrix multiplication. Define + in S by A + B = 0 if
A, B ∈ S and A + 0 = 0 + A = A, for all A ∈ S. If

Q1 =
{(

a 0
b 1

)
| a , b ∈ R+, 0 < a < b

}
∪

{(
0 0
0 0

)}
, and

Q2 =
{(

a 0
b 1

)
| a , b ∈ R+, a > 0, q > 5

}
∪

{(
0 0
0 0

)}
.

Then Q1 is a right ideal and Q2 is a left ideals of S and hence Q1 and Q2 are
quasi-ideals of S. But Q1ΓQ2 is a not a quasi-ideal of S.

(5) The sum of two quasi-ideals of S need not be a quasi-ideal of S. We illustrate
this by the following example.

Example 7. Let S = M2x2(N0) be a semiring. If Γ= S, then S forms a Γ-
semiring with AαB= usual matrix product of A,α B; for all

A,α,B ∈ S. Q1 =
{(

a 0
0 0

)
| a ∈ N0

}
and Q2 =

{(
0 0
0 b

)
| b ∈ N0

}

are quasi-ideals of S,

but Q1 + Q2 =
{(

a 0
0 b

)
| a, b ∈ N0

}
is not a quasi-ideal of S.

(6) Arbitrary intersection of quasi-ideals of S is either empty or a quasi-ideal
of S.
Proof. Let T =

⋂
i∈4 {Qi/Qi is a quasi-ideal of S} , where 4 denotes any

indexing set, be a nonempty set. T is a subsemigroup of (S, +). Further
(SΓT )∩(TΓS) = ( SΓ(

⋂
i∈4Qi) )∩( (

⋂
i∈4Qi)ΓS) ⊆ (QiΓS)∩(SΓQi) ⊆ Qi,

for all i ∈ 4. (SΓT )∩(TΓS) ⊆ ⋂
i∈4Qi = T .This shows that T is a quasi-ideal

of S.
(7) The set of all quasi-ideals of S forms a Moore family and hence a complete
lattice (see Birkhoff [1]).
(8) If Q is a quasi-ideal of S, then Q2 = QΓQ ⊆ Q.
Proof. As Q is a quasi-ideal of S, (SΓQ)∩ (QΓS) ⊆ Q. We have Q2 = QΓQ ⊆
QΓS and Q2 = QΓQ ⊆ SΓQ. Hence Q2 ⊆ (SΓQ) ∩ (QΓS) ⊆ Q. Thus Q2 =
QΓQ ⊆ Q.
(9) For each nonempty subset X of S, (SΓX) ∩ (XΓS) is a quasi-ideal of S.
Proof. S Γ (SΓX) ∩ (XΓS) ΓS = (SΓS)ΓX ∩ XΓ(SΓS) ⊆ ( SΓX) ∩ (XΓS).
Therefore (SΓX) ∩ (XΓS) is a quasi-ideal of S.
(10) If S has an identity element 1, then every quasi-ideal of S is expressed as
an intersection of a left ideal and a right ideal of S.
Proof. Let S be a Γ-semiring with an identity element 1. Let Q be a quasi-ideal
of S. Then SΓQ is a left ideal and QΓS is a right ideal of S (see Result 3.1).
As S contains an identity element 1, by Result (3.2) we have (Q)l = SΓQ and
(Q)r = QΓS. Therefore Q ⊆ (Q)l = SΓQ and Q ⊆ (Q)r = QΓS imply Q ⊆
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(SΓQ)∩(QΓS). But Q being a quasi-ideal of S, ( SΓQ)∩(QΓS) ⊆ Q. Therefore
Q = (SΓQ) ∩ (QΓS). Thus every quasi-ideal of S is an intersection of a left
ideal and a right ideal of S.
(11) Intersection of a right ideal and a left ideal of S is a quasi-ideal of S

Proof. Let R be a right ideal and L be a left ideal of S. Then R ∩ L is a
subsemigroup of (S, +). Further (SΓ (R ∩ L))∩((R ∩ L) ΓS) ⊆ (SΓL)∩(RΓS) ⊆
L ∩R. Hence R ∩ L is a quasi-ideal of S. 2

Recall that an element e of S is an idempotent element if e2 = eαe = e, for
all α ∈ Γ. With the help of idempotent elements in S we obtain quasi-ideals in
S. This we prove in the following theorem.

Theorem 3.3. Let L be a left of S.Then for any idempotent elements e of S,
eΓL is a quasi-ideal of S.

Proof. First we prove that eΓL = L ∩ (eΓS) . We know (eΓS) + (eΓS) =
eΓ(S + S) ⊆ eΓS. Hence eΓS is a subsemigroup of (S, +). As (eΓS)ΓS =
eΓ(SΓS) ⊆ eΓS, eΓS is a right ideal of S. As e ∈ S and L is left ideal
of S, eΓL ⊆ L. Further eΓL ⊆ eΓS. These will imply eΓL ⊆ L ∩ (eΓS). For
the reverse inclusion let a ∈ L ∩ (eΓS).

Then a =
n∑

i=1

eαixi , for xi ∈ S , αi ∈ Γ .

Thus a =
∑n

i=1 e2αixi =
∑n

i=1 (eαe)αixi = eα
∑n

i=1 eαixi = eαa ∈ eΓL. This
shows that L ∩ (eΓS) ⊆ eΓL . Hence L ∩ (eΓS) = eΓL.
As L is a left ideal and eΓS is a right ideal of S we get eΓL is a quasi-ideal of
S (see Property (11)). 2

As in Theorem 3.3 we can prove the following theorem.

Theorem 3.4. Let R be a right ideal of S. Then for any idempotent elements
e of S. RΓe is a quasi-ideal of S.

Theorem 3.5. Let R be a right ideal and L be a left of S. Then for any
idempotent elements e, f of S, eΓSΓf is a quasi-ideal of S.

Proof. First we prove that eΓSΓf = (eΓS) ∩ (SΓf). eΓSΓf = (eΓS) Γf ⊆
eΓS and eΓSΓf = eΓ (SΓf) ⊆ SΓf . Thus eΓSΓf ⊆ (eΓS) ∩ (SΓf). Let a ∈
(SΓf) ∩ (eΓS). Then

a =
n∑

i=1

xiαif =
n∑

i=1

xiαi (fαf) =

(
n∑

i=1

xiαif

)
αf =




m∑

j=1

eβjyj


 αf

Thus a = aαf , for all α ∈ Γ. As

a ∈ eΓS , α ∈ Γ =⇒ a = aαf ∈ eΓSΓf.
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We get (eΓS) ∩ (SΓf) ⊆ eΓSΓf . Thus (eΓS) ∩ (SΓf) = eΓSΓf . As SΓf is
a left ideal and eΓS is a right ideal of S we get (eΓS) ∩ (SΓf) = eΓSΓf is a
quasi-ideal of S (see Property (11)). 2

Intersection of a quasi-ideal and a sub Γ-semiring of S is a quasi-ideal of
that sub Γ-semiring of S. We prove this in the following theorem.

Theorem 3.6. If Q is a quasi-ideal and T is a sub Γ-semiring of S then Q∩T
is a quasi-ideal of T.

Proof. As Q ∩ T is a subsemigroup of (S,+) and Q ∩ T ⊆ T , we get Q ∩ T
is a subsemigroup of (T, +). Further,

TΓ(T ∩Q) ∩ (T ∩Q)ΓT ⊆ (TΓQ) ∩ (QΓT ) ⊆ (SΓQ) ∩ (Q ΓS) ⊆ Q.

And TΓ (T ∩Q) ∩ (T ∩Q) ΓT ⊆ (T ΓT ) ∩ (T ΓT ) ⊆ T ∩ T = T . Imply
TΓ(T ∩Q)∩ (T ∩Q)ΓT ⊆ Q∩T. This shows that Q∩T is a quasi-ideal of T .2

Now we define a quasi-simple Γ-semiring as follows.

Definition 3.7. A Γ-semiring S is said to be a quasi-simple Γ-semiring if S is
the unique quasi-ideal of S, i.e. S has no proper quasi-ideal.

A characterization of quasi-simple Γ-semiring is furnished in the following
theorem.

Theorem 3.8. If S is a Γ-semiring, then S is quasi-simple Γ-semiring if and
only if (SΓa) ∩ (aΓS) = S, for all a ∈ S.

Proof. Suppose S is a quasi-simple Γ-semiring. For any a ∈ S SΓa and aΓS
are left and right ideals of S respectively. Therefore (SΓa)∩(aΓS) is a quasi-ideal
of S(see Property (11)). Further SΓa ⊆ S and aΓS ⊆ S imply (SΓa)∩ (aΓS) ⊆
S. As S is a quasi-simple Γ-semiring, S = (SΓa) ∩ (aΓS). Conversely, suppose
that S = (SΓa) ∩ (aΓS). Let Q be quasi-ideal of S. For any q ∈ Q, by
assumption we have, S = (SΓq) ∩ (qΓS) ⊆ (SΓQ) ∩ (QΓS) ⊆ Q. Therefore
S ⊆ Q. Thus S = Q. Hence S is a quasi-simple Γ-semiring. 2

4. Minimal Quasi-ideal

In this section we introduce the concept of a minimal quasi-ideal of a
Γ-semiring. We define

Definition 4.1. Let Q be a quasi-ideal of S. Q is said to be minimal quasi-ideal
of S if Q does not contain any other proper quasi-ideal of S.

Properties of minimal quasi-ideals of a Γ-semiring S are proved in the fol-
lowing theorems.
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Theorem 4.2. The intersection of a minimal right ideal and a minimal left
ideal of a Γ-semiring S is a minimal quasi-ideal of S.

Proof. Let R and L denote minimal right ideal and minimal left ideal of S
respectively. Define Q = R ∩ L. Then Q is a quasi-ideal of S(see Property
(11)). Let Q1be a quasi-ideal of S such that Q1 ⊆ Q. By Result (3.1) S ΓQ1 is
a left ideal and Q1ΓS is a right ideal of S. Q1 ⊆ L implies SΓQ1 ⊆ SΓL ⊆ L.
Also Q1 ⊆ R implies Q1ΓS ⊆ RΓS ⊆ R. By the minimality of R and L we
have, S ΓQ1 = L and Q1ΓS = R. Therefore, Q = R∩L = (S ΓQ1)∩(Q1Γ S) ⊆
Q1. Hence Q = Q1. This shows that Q is a minimal quasi-ideal of S. 2

Theorem 4.3. If Q is a minimal quasi-ideal of S then any two nonzero elements
of Q generate the same left (right ) ideal of S.

Proof. Let Q be a minimal quasi-ideal of S and x be a nonzero element of Q.
Then (x)l, the left ideal generated by x,is a quasi-ideal of S. Hence (x)l ∩Q is
a quasi-ideal of S. As (x)l ∩Q ⊆ Q and Q is a minimal quasi-ideal of S we get
(x)l ∩ Q = Q. Thus Q ⊆ (x)l. For any nonzero element y of Q, y ∈ Q implies
y ∈ (x)l.Therefore (y)l ⊆ (x)l. Similarly, we can show that
(x)l ⊆ (y)l. Hence (x)l = (y)l.

In the same way we can prove that any two nonzero elements of Q generate
the same right ideal of S. 2

Theorem 4.4. Theorem 4.4:- Let Q be a quasi-ideal of S. If Q itself is a
quasi-simple Γ-semiring, then Q is a minimal quasi-ideal of S.

Proof. As Q is a quasi-ideal of S, Q is a sub Γ-semiring of S(see Property
(2)). Suppose Q is a quasi-simple Γ-semiring. Let Q1 be a quasi-ideal of S such
that Q1 ⊆ Q. Then (QΓQ1) (Q1ΓQ) ⊆ (SΓQ1) (Q1ΓS) ⊆ Q1. Therefore Q1 is
a quasi-ideal of Q. Q1 ⊆ Q , Q1 is a quasi-ideal of Q and Q is a quasi-simple
Γ-semiring imply Q1 = Q. Therefore Q is a minimal quasi-ideal of S. 2

Any minimal quasi-ideal Q of S can be represented as an intersection of a
minimal left ideal and a minimal right ideal of S. We prove this in the following
theorem.

Theorem 4.5. Every minimal quasi-ideal Q of S is represented as Q = (SΓa)∩
(aΓS), where a is any element of Q, SΓa and aΓS be a minimal left ideal and
a minimal right ideal of S respectively.

Proof. Let Q be a minimal quasi-ideal of S and a ∈ Q.Then SΓa and aΓS
be left ideal and right ideal of S respectively. Therefore (SΓa) ∩ (aΓS)is a
quasi-ideal of S (see Property (11)). (SΓa)∩ (aΓS) ⊆ (SΓQ)∩ (QΓS) ⊆ Q. By
the minimality of Q we get

Q = (SΓa) ∩ (aΓS) .
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Now to show that SΓa is a minimal left ideal.
Let L be a left ideal of S such that L ⊆ SΓa. Then SΓL ⊆ L ⊆ SΓa.

(SΓL)∩ (aΓS) ⊆ (SΓa)∩ (aΓS) = Q. As SΓL is a left ideal of S(see result 3.1)
and aΓS is a right ideal of S, we get (SΓL) ∩ (aΓS) is a quasi-ideal of S (see
Property (11)). Further as (SΓL) ∩ (aΓS) ⊆ Q and Q is minimal quasi-ideal
of S we have Q = (SΓL) ∩ (aΓS) ⊆ SΓL. Now SΓa ⊆ SΓQ ⊆ SΓ (SΓL) =
(SΓS) ΓL ⊆ SΓL ⊆ L shows that SΓa ⊆ L. Therefore, SΓa = L. Hence SΓa
is a minimal left ideal of S. Similarly, we can prove that aΓS is a minimal right
ideal of S. 2
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