Novi Sad J. Math. Vol. 39, No. 2, 2009, 79-87

QUASI-IDEALS AND MINIMAL QUASI-IDEALS IN Γ -SEMIRINGS

R.D. Jagatap¹, Y.S. Pawar²

Abstract. In this paper we introduce the concept of minimal quasi-ideal in a Γ -semiring. Some properties of minimal quasi-ideals in Γ -semirings are provided.

AMS Mathematics Subject Classification (2000): 16Y60, 16Y99

Key words and phrases: Γ -semiring, quasi-ideal, k-ideal, minimal quasi-ideal, quasi-simple Γ -semiring

1. Introduction

The notion of quasi-ideal was first introduced for semigroups [8] and then for rings by Steinfeld [10]. The general properties of quasi-ideals for semigroups and rings are proved in [9]. Iseki [5] introduced the concept of quasi-ideal for a semiring without zero and gave some characterizations of it. Using quasi-ideals Shabir, Ali, Batool [7] characterized semirings. Quasi-ideal is a generalization of a left and a right ideal.

As a generalization of a Γ -ring and a semiring the notion of Γ -semiring was introduced by Rao [6]. It is natural to extend the concept of quasi-ideals in Γ -semirings and this is done by Chinram [2] as a generalization of quasi-ideals in Γ -semigroups. The Γ -semirings introduced by Chinram [2] and Dutta [4] are different (see Remark 2.2). In this paper we study quasi-ideals in Γ -semirings introduced by Rao [6]. Minimal quasi-ideals for Γ -semigroups are studied by Chinram [3] and for semirings by Iseki [5]. On this line we introduce the notion of minimal quasi-ideals in Γ -semirings. Some properties of minimal quasi-ideals are furnished. Also, we introduce the concept of quasi-simple Γ -semiring.

2. Preliminaries

First we recall some definitions of the basic concepts of Γ -semirings that we need in the sequel. For this we follow Dutta [4].

Definition 2.1. Let S and Γ be two additive commutative semigroups. S is called Γ -semiring if there exists a mapping $S \times \Gamma \times S \longrightarrow S$ (images to be denoted by $a\alpha b$; for all $a, b \in S$ and for all $\alpha \in \Gamma$) satisfying the following conditions:

 $^{^1 \}rm Department$ of Mathematics, Shivaji University, Kolhapur, e-mail: ravindrajagatap@yahoo.co.in

²Department of Mathematics, Shivaji University, Kolhapur, pawar_y_s@yahoo.com

 $\begin{array}{l} (i) \ a\alpha \left(b+c\right) = \left(a \ \alpha b\right) + \left(a \ \alpha c\right) \\ (ii) \ \left(b+c\right)\alpha a = \left(b \ \alpha a\right) + \left(c \ \alpha a\right) \\ (iii) \ a(\alpha + \beta)c = \left(a \ \alpha c\right) + \left(a \ \beta c\right) \\ (iv) \ a\alpha \left(b\beta c\right) = \left(a \ \alpha b\right)\beta c \ ; \ for \ all \ a, b, c \in S \ and \ for \ all \ \alpha, \beta \in \ \Gamma \end{array}$

Obviously, every semiring S is a Γ -semiring but not conversely. For this, let us consider the following example.

Example 1. Let Q be the set of rational numbers. (S, +) be the commutative semigroup of all 2×3 matrices over Q and $(\Gamma, +)$ be commutative semigroup of all 3×2 matrices over Q. Define $A\alpha B$ = usual matrix product of A, α and B; for all $A, B \in S$ and for all $\alpha \in \Gamma$. Then S is a Γ -semiring but not a semiring.

Remark 2.2. Let N be the set of natural numbers and $\Gamma = \{1, 2, 3\}$. Define the mapping $N \times \Gamma \times N \longrightarrow N$ by $a \alpha b = usual$ product of a, α, b ; for all $a, b \in N, \alpha \in \Gamma$. Then N is a Γ -semiring by the definition of Chinram [2]. But Γ is not an additive semigroup, hence it is not a Γ -semiring according to Dutta [4].

Example 2. Let N be the set of natural numbers and $\Gamma = \{1, 2, 3\}$. (N, max.) and (Γ ,max.) are commutative semigroups. Define the mapping $N \times \Gamma \times N \rightarrow N$ by, $a\alpha b = \min \{a, \alpha, b\}$; for all $a, b \in N, \alpha \in \Gamma$. Then N is a Γ -semiring.

Example 3. Let Q be the set of rational numbers and $\Gamma = N$ be the set of natural numbers (Q,+) and (N,+) are commutative semigroups. Define the mapping $Q \times \mathbb{N} \times Q \longrightarrow Q$ by $a\alpha b$ =usual product of a, α, b ; $a, b \in Q, \alpha \in \Gamma$. Then Q is a Γ -semiring.

Definition 2.3. An element $0 \in S$ is said to be an absorbing zero if

 $0\alpha a = 0 = a\alpha 0, a + 0 = 0 + a = a$; for all $a \in S$ and for all $\alpha \in \Gamma$.

From onwards S denotes a $\Gamma\text{-semiring}$ with absorbing zero unless otherwise stated.

Definition 2.4. A nonempty subset T of S is said to be a sub- Γ -semiring of S if (T,+) is a subsemigroup of (S,+) and $a\alpha b \in T$; for all $a, b \in T$ and for all $\alpha \in \Gamma$.

Definition 2.5. A nonempty subset T of S is called a left (respectively right) ideal of S if T is a subsemigroup of (S, +) and $x\alpha a \in T$ (respectively $a\alpha x \in T$) for all $a \in T$, $x \in S$ and for all $\alpha \in \Gamma$

Definition 2.6. If T is both left and right ideal of S, then T is known as an ideal of S.

Definition 2.7. If M and N are two nonempty subsets of S, then we define $M + N = \{m + n/m \in M, n \in N\}$ and

$$M\Gamma N = \left\{ \sum_{i=1}^{n} x_i \alpha_i y_i | x_i \in M, \alpha_i \in \Gamma, y_i \in \mathbb{N} \right\}.$$

80

If N is the set of natural numbers, then

$$NA = \left\{ \sum_{i=1}^{n} n_i a_i \mid n_i \in N, a_i \in A \right\}.$$

Definition 2.8. Let X be a nonempty subset of S. By $(X)_l$ we mean the left ideal of S generated by X (that is intersection of all left ideal of S containing X).

Similarly, $(X)_r$, $(X)_t$ denote the right and two-sided ideal generated by X respectively.

Definition 2.9. A left (right, two-sided) ideal I of a Γ -semiring S is said to be left (right, two-sided) k-ideal of S if a, $a + x \in I$, then $x \in I$ for any $x \in S$.

3. Quasi-ideals

We start with the proofs of two basic results which we will use quite often.

Result 3.1. For each nonempty subset X of S the following statements hold. (i) $S\Gamma X$ is a left ideal.

(ii) $X\Gamma S$ is a right ideal.

(iii) $S\Gamma X\Gamma S$ is an ideal of S.

Proof. (i)

$$S\Gamma X = \left\{ \sum_{i=1}^{n} a_i \alpha_i x_i | a_i \in S, \alpha_i \in \Gamma, x_i \in X \right\}$$

Let $a, b \in S\Gamma X$. Then

$$a+b = \sum_{i=1}^{n} a_i \alpha_i x_i + \sum_{j=1}^{m} b_j \beta_j y_j$$

implies a + b is a finite sum. Hence $a + b \in S\Gamma X$ and this shows $S\Gamma X$ is a subsemigroup of (S, +). For $t \in S, a \in S\Gamma X$, and $\beta \in \Gamma$, then

$$t\beta a = t\beta\left(\sum_{i=1}^{n} a_i\alpha_i x_i\right) = \sum_{i=1}^{n} t\beta\left(a_i\alpha_i x_i\right) = \sum_{i=1}^{n} \left(t\beta a_i\right)\alpha_i x_i \in S\Gamma X.$$

Therefore $S\Gamma X$ is a left ideal of S.

(ii) As in (i) we can prove that $X\Gamma S$ is a right ideal of S.

(iii) By (i) $S\Gamma X$ is a left ideal of S. Hence $S\Gamma X\Gamma S$ is right a ideal of S by(ii). Similarly, by (ii) $X\Gamma S$ is a right ideal of S. Hence $S\Gamma X\Gamma S$ is a left ideal of S by (i). Therefore, $S\Gamma X\Gamma S$ is an ideal of S.

Result 3.2. For any nonempty subset X of S we have (i) If S has right unit element 1, then $(X)_l = S\Gamma X$. (ii) If S has right unit element 1, then $(X)_r = X\Gamma S$. (iii) If S has right unit element 1, then $(X)_t = S\Gamma X\Gamma S$.

Proof.

(i) Let S contain left unit element 1. Then $1\alpha a = a$, for every $a \in S$ and $\alpha \in \Gamma$. For any $x \in X$, $x = 1\alpha x \in S\Gamma X$. Hence X is a subset of $S\Gamma X$. As $S\Gamma X$ is a left ideal of S, $NX \subseteq S\Gamma X$. But then we have $(X)_l = NX + S\Gamma X$ (see [2]). This implies $(X)_l \subseteq S\Gamma X + S\Gamma X \subseteq S\Gamma X$. As $(X)_l$ is the smallest left ideal of S containing X. This shows that $(X)_l = S\Gamma X$. Similarly, we can prove that $(X)_r = X\Gamma S$ and $(X)_t = S\Gamma X\Gamma S$.

Chinram [2] has defined a quasi-ideal Q in a Γ -semiring S as follows.

Definition. A subsemigroup Q of (S, +) is a quasi-ideal of S if

 $(S\Gamma Q) \cap (Q\Gamma S) \subseteq Q.$

Example 4. Let N be the set of natural numbers and $\Gamma = 2N$. Then N is a Γ -semiring and A = 3N is a quasi-ideal of a Γ -semiring N.

Example 5. Consider a Γ -semiring $S = M_{2x2}(N_0)$, where N_0 denotes the set of natural numbers with zero and $\Gamma = S$. Define $A\alpha B =$ usual matrix product of A, α and B; for all $A, \alpha, B \in S$. Then

 $Q = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array} \right) \ | \ a \in N_0 \right\} \text{ is a quasi-ideal of a } \Gamma \text{-semiring } S.$

Properties

(1) By a quasi-ideal Q in a semiring S we mean an additive subsemigroup of S such that $SQ \cap QS \subseteq Q$ (see Iseki [5]). As every semiring is a

 Γ -semiring the two definitions given in [2] and [5] of quasi-ideals coincide in a semiring.

(2) Every quasi-ideal of S is a sub Γ -semiring of S.

(3) Every one-sided ideal or two-sided ideal of S is a quasi-ideal of S but converse need not be true. For this consider Γ -semiring given in Example (5). Here

$$Q = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array} \right) \ | \ a \in N_0 \right\}$$

is a quasi-ideal but neither a left ideal nor a right ideal of S.

(4) If Q_1 and Q_2 are quasi-ideals of S, then $Q_1\Gamma Q_2$ need not be a quasi-ideal of S. For this consider the following example.

Example 6. If $T = \left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \mid a, b \in R^+ \right\}$, then T is a semigroup with respect to usual matrix multiplication.

Quasi-ideals and minimal quasi-ideals in Γ -semirings

If $S = \left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \mid a, b \in R^+ \right\} \cup \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ and $\Gamma = S$, then S is a Γ -semiring with usual matrix multiplication. Define + in S by A + B = 0 if $A, B \in S$ and A + 0 = 0 + A = A, for all $A \in S$. If

$$Q_{1} = \left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \mid a, \ b \in R^{+}, 0 < a < b \right\} \cup \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}, \text{ and}$$
$$Q_{2} = \left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \mid a, \ b \in R^{+}, a > 0, q > 5 \right\} \cup \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$$

Then Q_1 is a right ideal and Q_2 is a left ideals of S and hence Q_1 and Q_2 are quasi-ideals of S. But $Q_1 \Gamma Q_2$ is a not a quasi-ideal of S.

(5) The sum of two quasi-ideals of S need not be a quasi-ideal of S. We illustrate this by the following example.

Example 7. Let $S = M_{2x2}(N_0)$ be a semiring. If $\Gamma = S$, then S forms a Γ -semiring with $A\alpha B$ = usual matrix product of $A, \alpha B$; for all

 $A, \alpha, B \in S. \ Q_1 = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \mid a \in N_0 \right\} \text{ and } Q_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \mid b \in N_0 \right\}$ are quasi-ideals of S, but $Q_1 + Q_2 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in N_0 \right\}$ is not a quasi-ideal of S.

(6) Arbitrary intersection of quasi-ideals of S is either empty or a quasi-ideal of S.

Proof. Let $T = \bigcap_{i \in \Delta} \{Q_i/Q_i \text{ is a quasi-ideal of } S\}$, where Δ denotes any indexing set, be a nonempty set. T is a subsemigroup of (S, +). Further $(S\Gamma T) \cap (T\Gamma S) = (S\Gamma(\bigcap_{i \in \Delta} Q_i)) \cap ((\bigcap_{i \in \Delta} Q_i)\Gamma S) \subseteq (Q_i\Gamma S) \cap (S\Gamma Q_i) \subseteq Q_i,$ for all $i \in \Delta$. $(S\Gamma T) \cap (T\Gamma S) \subseteq \bigcap_{i \in \Delta} Q_i = T$. This shows that T is a quasi-ideal of S.

(7) The set of all quasi-ideals of S forms a Moore family and hence a complete lattice (see Birkhoff [1]).

(8) If Q is a quasi-ideal of S, then $Q^2 = Q\Gamma Q \subseteq Q$.

Proof. As Q is a quasi-ideal of S, $(S\Gamma Q) \cap (Q\Gamma S) \subseteq Q$. We have $Q^2 = Q\Gamma Q \subseteq Q\Gamma S$ and $Q^2 = Q\Gamma Q \subseteq S\Gamma Q$. Hence $Q^2 \subseteq (S\Gamma Q) \cap (Q\Gamma S) \subseteq Q$. Thus $Q^2 = Q\Gamma Q \subseteq Q\Gamma Q \subseteq Q\Gamma Q \subseteq Q$.

(9) For each nonempty subset X of S, $(S\Gamma X) \cap (X\Gamma S)$ is a quasi-ideal of S.

Proof. $S \Gamma(S\Gamma X) \cap (X\Gamma S) \Gamma S = (S\Gamma S)\Gamma X \cap X\Gamma(S\Gamma S) \subseteq (S\Gamma X) \cap (X\Gamma S).$ Therefore $(S\Gamma X) \cap (X\Gamma S)$ is a quasi-ideal of S.

(10) If S has an identity element 1, then every quasi-ideal of S is expressed as an intersection of a left ideal and a right ideal of S.

Proof. Let S be a Γ -semiring with an identity element 1. Let Q be a quasi-ideal of S. Then $S\Gamma Q$ is a left ideal and $Q\Gamma S$ is a right ideal of S (see Result 3.1). As S contains an identity element 1, by Result (3.2) we have $(Q)_l = S\Gamma Q$ and $(Q)_r = Q\Gamma S$. Therefore $Q \subseteq (Q)_l = S\Gamma Q$ and $Q \subseteq (Q)_r = Q\Gamma S$ imply $Q \subseteq$

 $(S\Gamma Q) \cap (Q\Gamma S)$. But Q being a quasi-ideal of S, $(S\Gamma Q) \cap (Q\Gamma S) \subseteq Q$. Therefore $Q = (S\Gamma Q) \cap (Q\Gamma S)$. Thus every quasi-ideal of S is an intersection of a left ideal and a right ideal of S.

(11) Intersection of a right ideal and a left ideal of S is a quasi-ideal of S

Proof. Let R be a right ideal and L be a left ideal of S. Then $R \cap L$ is a subsemigroup of (S, +). Further $(S\Gamma(R \cap L)) \cap ((R \cap L)\Gamma S) \subseteq (S\Gamma L) \cap (R\Gamma S) \subseteq L \cap R$. Hence $R \cap L$ is a quasi-ideal of S.

Recall that an element e of S is an idempotent element if $e^2 = e\alpha e = e$, for all $\alpha \in \Gamma$. With the help of idempotent elements in S we obtain quasi-ideals in S. This we prove in the following theorem.

Theorem 3.3. Let L be a left of S. Then for any idempotent elements e of S, $e\Gamma L$ is a quasi-ideal of S.

Proof. First we prove that $e\Gamma L = L \cap (e\Gamma S)$. We know $(e\Gamma S) + (e\Gamma S) = e\Gamma(S+S) \subseteq e\Gamma S$. Hence $e\Gamma S$ is a subsemigroup of (S, +). As $(e\Gamma S)\Gamma S = e\Gamma(S\Gamma S) \subseteq e\Gamma S$, $e\Gamma S$ is a right ideal of S. As $e \in S$ and L is left ideal of S, $e\Gamma L \subseteq L$. Further $e\Gamma L \subseteq e\Gamma S$. These will imply $e\Gamma L \subseteq L \cap (e\Gamma S)$. For the reverse inclusion let $a \in L \cap (e\Gamma S)$.

Then
$$a = \sum_{i=1}^{n} e \alpha_i x_i$$
, for $x_i \in S$, $\alpha_i \in \Gamma$.

Thus $a = \sum_{i=1}^{n} e^2 \alpha_i x_i = \sum_{i=1}^{n} (e\alpha e) \alpha_i x_i = e\alpha \sum_{i=1}^{n} e\alpha_i x_i = e\alpha a \in e\Gamma L$. This shows that $L \cap (e\Gamma S) \subseteq e\Gamma L$. Hence $L \cap (e\Gamma S) = e\Gamma L$.

As L is a left ideal and $e\Gamma S$ is a right ideal of S we get $e\Gamma L$ is a quasi-ideal of S (see Property (11)).

As in Theorem 3.3 we can prove the following theorem.

Theorem 3.4. Let R be a right ideal of S. Then for any idempotent elements e of S. $R\Gamma e$ is a quasi-ideal of S.

Theorem 3.5. Let R be a right ideal and L be a left of S. Then for any idempotent elements e, f of $S, e\Gamma S\Gamma f$ is a quasi-ideal of S.

Proof. First we prove that $e\Gamma S\Gamma f = (e\Gamma S) \cap (S\Gamma f)$. $e\Gamma S\Gamma f = (e\Gamma S)\Gamma f \subseteq e\Gamma S$ and $e\Gamma S\Gamma f = e\Gamma (S\Gamma f) \subseteq S\Gamma f$. Thus $e\Gamma S\Gamma f \subseteq (e\Gamma S) \cap (S\Gamma f)$. Let $a \in (S\Gamma f) \cap (e\Gamma S)$. Then

$$a = \sum_{i=1}^{n} x_i \alpha_i f = \sum_{i=1}^{n} x_i \alpha_i \left(f \alpha f \right) = \left(\sum_{i=1}^{n} x_i \alpha_i f \right) \alpha f = \left(\sum_{j=1}^{m} e \beta_j y_j \right) \alpha f$$

Thus $a = a\alpha f$, for all $\alpha \in \Gamma$. As

$$a \in e\Gamma S$$
, $\alpha \in \Gamma \implies a = a\alpha f \in e\Gamma S\Gamma f$.

We get $(e\Gamma S) \cap (S\Gamma f) \subseteq e\Gamma S\Gamma f$. Thus $(e\Gamma S) \cap (S\Gamma f) = e\Gamma S\Gamma f$. As $S\Gamma f$ is a left ideal and $e\Gamma S$ is a right ideal of S we get $(e\Gamma S) \cap (S\Gamma f) = e\Gamma S\Gamma f$ is a quasi-ideal of S (see Property (11)). \Box

Intersection of a quasi-ideal and a sub Γ -semiring of S is a quasi-ideal of that sub Γ -semiring of S. We prove this in the following theorem.

Theorem 3.6. If Q is a quasi-ideal and T is a sub Γ -semiring of S then $Q \cap T$ is a quasi-ideal of T.

Proof. As $Q \cap T$ is a subsemigroup of (S, +) and $Q \cap T \subseteq T$, we get $Q \cap T$ is a subsemigroup of (T, +). Further,

 $T\Gamma(T \cap Q) \cap (T \cap Q)\Gamma T \subseteq (T\Gamma Q) \cap (Q\Gamma T) \subseteq (S\Gamma Q) \cap (Q \Gamma S) \subseteq Q.$

And $T\Gamma(T \cap Q) \cap (T \cap Q)\Gamma T \subseteq (T \Gamma T) \cap (T \Gamma T) \subseteq T \cap T = T$. Imply $T\Gamma(T \cap Q) \cap (T \cap Q)\Gamma T \subseteq Q \cap T$. This shows that $Q \cap T$ is a quasi-ideal of $T \square$

Now we define a quasi-simple Γ -semiring as follows.

Definition 3.7. A Γ -semiring S is said to be a quasi-simple Γ -semiring if S is the unique quasi-ideal of S, i.e. S has no proper quasi-ideal.

A characterization of quasi-simple $\Gamma\text{-semiring}$ is furnished in the following theorem.

Theorem 3.8. If S is a Γ -semiring, then S is quasi-simple Γ -semiring if and only if $(S\Gamma a) \cap (a\Gamma S) = S$, for all $a \in S$.

Proof. Suppose S is a quasi-simple Γ -semiring. For any $a \in S S\Gamma a$ and $a\Gamma S$ are left and right ideals of S respectively. Therefore $(S\Gamma a) \cap (a\Gamma S)$ is a quasi-ideal of S (see Property (11)). Further $S\Gamma a \subseteq S$ and $a\Gamma S \subseteq S$ imply $(S\Gamma a) \cap (a\Gamma S) \subseteq S$. As S is a quasi-simple Γ -semiring, $S = (S\Gamma a) \cap (a\Gamma S)$. Conversely, suppose that $S = (S\Gamma a) \cap (a\Gamma S)$. Let Q be quasi-ideal of S. For any $q \in Q$, by assumption we have, $S = (S\Gamma q) \cap (q\Gamma S) \subseteq (S\Gamma Q) \cap (Q\Gamma S) \subseteq Q$. Therefore $S \subseteq Q$. Thus S = Q. Hence S is a quasi-simple Γ -semiring. \Box

4. Minimal Quasi-ideal

In this section we introduce the concept of a minimal quasi-ideal of a Γ -semiring. We define

Definition 4.1. Let Q be a quasi-ideal of S. Q is said to be minimal quasi-ideal of S if Q does not contain any other proper quasi-ideal of S.

Properties of minimal quasi-ideals of a Γ -semiring S are proved in the following theorems.

Theorem 4.2. The intersection of a minimal right ideal and a minimal left ideal of a Γ -semiring S is a minimal quasi-ideal of S.

Proof. Let R and L denote minimal right ideal and minimal left ideal of S respectively. Define $Q = R \cap L$. Then Q is a quasi-ideal of S(see Property (11)). Let Q_1 be a quasi-ideal of S such that $Q_1 \subseteq Q$. By Result (3.1) $S \Gamma Q_1$ is a left ideal and $Q_1 \Gamma S$ is a right ideal of S. $Q_1 \subseteq L$ implies $S \Gamma Q_1 \subseteq S \Gamma L \subseteq L$. Also $Q_1 \subseteq R$ implies $Q_1 \Gamma S \subseteq R \Gamma S \subseteq R$. By the minimality of R and L we have, $S \Gamma Q_1 = L$ and $Q_1 \Gamma S = R$. Therefore, $Q = R \cap L = (S \Gamma Q_1) \cap (Q_1 \Gamma S) \subseteq Q_1$. Hence $Q = Q_1$. This shows that Q is a minimal quasi-ideal of S.

Theorem 4.3. If Q is a minimal quasi-ideal of S then any two nonzero elements of Q generate the same left (right) ideal of S.

Proof. Let Q be a minimal quasi-ideal of S and x be a nonzero element of Q. Then $(x)_l$, the left ideal generated by x, is a quasi-ideal of S. Hence $(x)_l \cap Q$ is a quasi-ideal of S. As $(x)_l \cap Q \subseteq Q$ and Q is a minimal quasi-ideal of S we get $(x)_l \cap Q = Q$. Thus $Q \subseteq (x)_l$. For any nonzero element y of $Q, y \in Q$ implies $y \in (x)_l$. Therefore $(y)_l \subseteq (x)_l$. Similarly, we can show that $(x)_l \subseteq (y)_l$.

In the same way we can prove that any two nonzero elements of Q generate the same right ideal of S.

Theorem 4.4. Theorem 4.4:- Let Q be a quasi-ideal of S. If Q itself is a quasi-simple Γ -semiring, then Q is a minimal quasi-ideal of S.

Proof. As Q is a quasi-ideal of S, Q is a sub Γ -semiring of S(see Property (2)). Suppose Q is a quasi-simple Γ -semiring. Let Q_1 be a quasi-ideal of S such that $Q_1 \subseteq Q$. Then $(Q\Gamma Q_1) (Q_1\Gamma Q) \subseteq (S\Gamma Q_1) (Q_1\Gamma S) \subseteq Q_1$. Therefore Q_1 is a quasi-ideal of Q. $Q_1 \subseteq Q$, Q_1 is a quasi-ideal of Q and Q is a quasi-simple Γ -semiring imply $Q_1 = Q$. Therefore Q is a minimal quasi-ideal of S. \Box

Any minimal quasi-ideal Q of S can be represented as an intersection of a minimal left ideal and a minimal right ideal of S. We prove this in the following theorem.

Theorem 4.5. Every minimal quasi-ideal Q of S is represented as $Q = (S\Gamma a) \cap (a\Gamma S)$, where a is any element of Q, $S\Gamma a$ and $a\Gamma S$ be a minimal left ideal and a minimal right ideal of S respectively.

Proof. Let Q be a minimal quasi-ideal of S and $a \in Q$. Then $S\Gamma a$ and $a\Gamma S$ be left ideal and right ideal of S respectively. Therefore $(S\Gamma a) \cap (a\Gamma S)$ is a quasi-ideal of S (see Property (11)). $(S\Gamma a) \cap (a\Gamma S) \subseteq (S\Gamma Q) \cap (Q\Gamma S) \subseteq Q$. By the minimality of Q we get

$$Q = (S\Gamma a) \cap (a\Gamma S).$$

Now to show that $S\Gamma a$ is a minimal left ideal.

Let L be a left ideal of S such that $L \subseteq S\Gamma a$. Then $S\Gamma L \subseteq L \subseteq S\Gamma a$. $(S\Gamma L) \cap (a\Gamma S) \subseteq (S\Gamma a) \cap (a\Gamma S) = Q$. As $S\Gamma L$ is a left ideal of S(see result 3.1) and $a\Gamma S$ is a right ideal of S, we get $(S\Gamma L) \cap (a\Gamma S)$ is a quasi-ideal of S (see Property (11)). Further as $(S\Gamma L) \cap (a\Gamma S) \subseteq Q$ and Q is minimal quasi-ideal of S we have $Q = (S\Gamma L) \cap (a\Gamma S) \subseteq S\Gamma L$. Now $S\Gamma a \subseteq S\Gamma Q \subseteq S\Gamma (S\Gamma L) =$ $(S\Gamma S) \Gamma L \subseteq S\Gamma L \subseteq L$ shows that $S\Gamma a \subseteq L$. Therefore, $S\Gamma a = L$. Hence $S\Gamma a$ is a minimal left ideal of S. Similarly, we can prove that $a\Gamma S$ is a minimal right ideal of S.

Acknowledgement:

Authors are thankful to the referee for his valuable suggestions.

References

- [1] Birkoff, G., Lattice Theory. Providence RI: American Mathematical Society, 1948.
- [2] Chinram, R., A note on quasi-ideals in Γ-semirings. Int. Math. Forum 26(3) (2008), 1253-1259.
- [3] Chinram, R., On quasi gamma-ideals in Γ-semigroups. Science Asia 32 (2006), 351-353.
- [4] Dutta, T.K., Sardar, S.K., Semi-prime ideals and irreducible ideals of Γ-semiring. Novi Sad Jour. Math. 30(1) (2000), 97-108.
- [5] Iseki, K., Quasi-ideals in semirings without zero. Proc.Japan Acad. 34 (1958), 79-84.
- [6] Rao, M. M. K., Γ-semirings 1. Southeast Asian Bull. of Math. 19(1995), 49-54.
- [7] Shabir, M., Ali, A., Batool, S., A note on quasi-ideals in semirings. Southeast Asian Bull. of Math. 27 (2004), 923-928.
- [8] Steinfeld, O., On ideals quotients and prime ideals. Acta. Math. Acad. Sci. Hungar 4 (1953), 289-298.
- [9] Steinfeld, O., Quasi-ideals in rings and semigroups. Budapest: Akademiaikiado, 1978.
- [10] Steinfeld, O., Uher die quasi-ideals von halbgruppen. Publ. Math. Debrecen 4 (1956), 262-275.

Received by the editors January 5, 2009