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SOME REMARKS ON sn-METRIZABLE SPACES1

Xun Ge2, Jinjin Li3

Abstract. This paper shows that sn-metrizable spaces can not be
characterized as sequence-covering, compact, σ-images of metric spaces
or sn-open, π, σ-images of metric spaces. Also, a space with a locally
countable sn-network need not to be an sn-metrizable space. These results
correct some errors on sn-metrizable spaces.
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1. Introduction

sn-metrizable spaces are a class of important generalized metric spaces be-
tween g-metrizable spaces and ℵ-spaces [9]. To characterize sn-metrizable spaces
by certain images of metric spaces is an interesting question, and many “nice”
characterizations of sn-metrizable spaces have been obtained [3, 8, 9, 10, 11, 14,
15, 21, 24]. In the past years, the following results were given.

Proposition 1. Let X be a space.
(1) X is an sn-metrizable space iff X is a sequence-covering, compact, σ-

image of a metric space [21, Theorem 3.2].
(2) X is an sn-metrizable space iff X is an sn-open, π, σ-image of a metric

space [14, Theorem 2.7].
(3) If X has a locally countable sn-network, then X is an sn-metrizable space

[21, Theorem 4.3].

Unfortunately, Proposition 1.1 is not true. In this paper, we give some ex-
amples to show that sn-metrizable spaces can not be characterized as sequence-
covering, compact, σ-images of metric spaces or sn-open, π, σ-images of metric
spaces, and a space with a locally countable sn-network need not to be an
sn-metrizable space. These results correct Proposition 1.1.

Throughout this paper, all spaces are assumed to be regular T1 and all
mappings are continuous and onto. N denotes the set of all natural numbers
and ω1 denotes the first uncountable ordinal. {xn} denotes a sequence, where
the n-th term is xn. Let X be a space and P ⊂ X. A sequence {xn} converging
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to x in X is eventually in P if {xn : n > k}⋃{x} ⊂ P for some k ∈ N; it is
frequently in P if {xnk

} is eventually in P for some subsequence {xnk
} of {xn}.

Let P be a family of subsets of X and x ∈ X. Then (P)x denotes the subfamily
{P ∈ P : x ∈ P} of P. For terms which are not defined here, we refer to [4].

2. Definitions and Remarks

Definition 2.1. [5]. Let X be a space.
(1) P ⊂ X is called a sequential neighborhood of x in X, if each sequence

{xn} converging to x is eventually in P .
(2) A subset U of X is called sequentially open if U is a sequential neigh-

borhood of each of its points.
(3) X is called a sequential space if each sequential open subset of X is open

in X.
(4) X is called a k-space if for each A ⊂ X, A is closed in X iff A

⋂
K is

closed in K for each compact subset K of X.

Remark 2.1. (1) P is a sequential neighborhood of x iff each sequence {xn}
converging to x is frequently in P .

(2) The intersection of finite many sequential neighborhoods of x is a se-
quential neighborhood of x.

(3) Sequential spaces =⇒ k-spaces.

Definition 2.2. Let P be a cover of a space X.
(1) P is called a network for X [1], if whenever x ∈ U with U open in X,

there is P ∈ P such that x ∈ P ⊂ U .
(2) P is called a k-network of X [22], if whenever K ⊂ U with K compact in

X and U open in X, there is a finite F ⊂ P such that K ⊂ ⋃{F : F ∈ F} ⊂ U .
(3) P is called a cs-network of X [13], if each convergent sequence S con-

verging to a point x ∈ U with U open in X, then S is eventually in P ⊂ U for
some P ∈ P.

Definition 2.3. Let P =
⋃{Px : x ∈ X} be a cover of a space X, where

Px ⊂ (P)x. P is called an sn-network for X [9], if for each x ∈ X, the
following hold.

(1) Px is a network at x in X, i.e., whenever x ∈ U with U open in X, there
is P ∈ Px such that x ∈ P ⊂ U .

(2) U, V ∈ Px, then W ⊂ U
⋂

V for some W ∈ Px.
(3) Each element of Px is a sequential neighborhood of x.
Here, we call Px is an sn-network at x in X for each x ∈ X.

Definition 2.4. Let X be a space.
(1) X is called an sn-metrizable space [9] if X has a σ-locally finite sn-

network.
(2) X is called sn-first countable [9], if for each x ∈ X, there is a countable

sn-network at x in X.
(3) X is called sn-second countable [7], if X has a countable sn-network.
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(4) X is called an ℵ-space [22], if X has a σ-locally finite k-network.
(5) X is called an ℵ0-space [22], if X has a countable k-network.

Remark 2.2. The following implications hold.

sn-second countable space=⇒sn-metrizable space=⇒sn-first countable space
⇓ ⇓

ℵ0-space =⇒ ℵ-space
Definition 2.5. Let X be a set and d be a non-negative real valued function
defined on X ×X such that d(x, y) = 0 iff x = y, and d(x, y) = d(y, x) for all
x, y ∈ X. d is abbreviated to be called a d-function on X.

Definition 2.6. Let d be a d-function on a space X. For each x ∈ X, n ∈ N,
put Sn(x) = {y ∈ X : d(x, y) < 1/n}. A space (X,d) is called a symmetric space
[23], if F ⊂ X is closed in X iff for each x 6∈ F , Sn(x)

⋂
F = ∅ for some n ∈ N.

Definition 2.7. [23]. Let (X, d) be a symmetric space.
(1) A sequence {xn} in X is called Cauchy if for any ε > 0, there is k ∈ N

such that d(xn, xm) < ε for all n,m > k.
(2) X is called a Cauchy symmetric space if each convergent sequence in X

is Cauchy.

Definition 2.8. Let f : X −→ Y be a mapping.
(1) f is called a 1-sequence-covering mapping [19], if for each y ∈ Y there is

x ∈ f−1(y) such that whenever {yn} is a sequence converging to y in Y , there
is a sequence {xn} converging to x in X with each xn ∈ f−1(yn).

(2) f is called a sequence-covering mapping [19], if whenever {yn} is a con-
vergent sequence in Y , there is a convergent sequence {xn} in X with each
xn ∈ f−1(yn).

(3) f is called a sequentially-quotient mapping [2], if whenever S is a con-
vergent sequence in Y , there exists a convergent sequence L in X such that f(L)
is a subsequence of S.

(4) f is called an sn-open mapping [14] if there is an sn-network P = {Py :
y ∈ Y } of Y satisfying the condition: for each y ∈ Y , there is x ∈ f−1(y) such
that whenever U is a neighborhood of x, P ⊂ f(U) for some P ∈ Py.

(5) f is called a σ-mapping [20], if there is a base B of X such that f(B) is
σ-locally-finite in Y .

(6) f is called a quotient mapping [4] if U is open in Y iff f−1(U) is open
in X.

(7) f is called a compact mapping [19] if f−1(y) is a compact subset of X
for each y ∈ Y .

(8) f is called a π-mapping if X is a metric space with a metric d and for
each y ∈ U with U open in Y , d(f−1(y), X − f−1(U)) > 0.

Remark 2.3. (1) “sn-open mapping” in Definition 2.8(4) is called “almost sn-
open mapping” in [12]. By [12, Proposition 2.13], a mapping f from a metric
space is an sn-open mapping iff f is a 1-sequence-covering mappings.

(2) Quotient maps preserve sequential spaces [5].
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(3) Quotient mappings from sequential spaces are sequentially-quotient [2].
(4) Sequentially-quotient mappings onto sequential spaces are quotient [2].
(5) Each compact mapping from a metric space is a π-mapping [12, Remark

1.4(1)].

3. The Main Results

Lemma 3.1. [11, Theorem 2.7]. A space X is sn-second countable iff X is a
sequentially-quotient, compact image of a separable metric space.

Lemma 3.2. Let X be a sequential space. Then the following are equivalent.
(1) X is a Cauchy symmetric space.
(2) X is a quotient, sequence-covering, π-image of a metric space.
(3) X is a sequence-covering, π-image of a metric space.

Proof. (1) ⇐⇒ (2): It holds by [23, Theorem 2.3].
(2) ⇐⇒ (3): It is clear.
(3) ⇐⇒ (2): It holds by Remark 2.3(4).

Example 3.1. There is an sn-metrizable space which is not any sequence-
covering, π-image of a metric space.

Proof. For each n ∈ N, put Cn be a convergent sequence containing its limit
point pn, where Cn

⋂
Cm = ∅ if n 6= m. Let Q = {qn : n ∈ N} be the set of

all rational numbers of real line R. Put M = (⊕{Cn : n ∈ N}) ⊕ R, and let X
be the quotient space obtained from M by identifying each pn in Cn with qn

in R. Then we have the following two facts by [23, Example 2.14(3)] and [17,
Example 3.1.13(2)].

Fact 1. X is a quotient, compact image of a separable metric space.
Fact 2. X is not a Cauchy symmetric space.
(1) X is an sn-metrizable space: By Fact 1, X is a quotient, compact image

of a separable metric space. So X is a Sequentially-quotient, compact image of
a separable metric space by Remark 2.3(3), hence X is sn-second countable by
Lemma 3.1. It follows that X is an sn-metrizable space by Remark 2.2.

(2) X is not any sequence-covering, π-image of a metric space: By Fact 2, X
is not a Cauchy symmetric space. So X is not any sequence-covering, π-image
of a metric space by Lemma 3.2

Remark 3.1. (1) By Remark 2.3(5), the space X in Example 3.1 is an sn-
metrizable space which is not any sequence-covering, compact, σ-image of a
metric space.

(2) It is clear that 1-sequence-covering mappings are sequence-covering map-
pings. So sn-open mappings defined on metric spaces are sequence-covering
mappings by Remark 2.3(1). Thus, the space X in Example 3.1 is an sn-
metrizable space which is not any sn-open, π, σ-image of a metric space.

Lemma 3.3. [18, Theorem 2.8.6]. A space X has a locally countable k-network
iff X has a locally countable cs-network.
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Lemma 3.4. Let X be an sn-first countable space. Then X has a locally count-
able sn-network iff X has a locally countable cs-network.

Proof. Necessity: It is clear because each sn-network of X is a cs-network of
X.

Sufficiency: Let P be a locally countable cs-network of X. Without loss of
generality, we can assume that P is closed under finite intersections. For each
x ∈ X, let {Bn(x) : n ∈ N} be a countable sn-network at x in X, and let
Px = {P ∈ P : Bn(x) ⊂ P for some n ∈ N}. Then each element of Px is a
sequential neighborhood of X. Put P ′ =

⋃{Px : x ∈ X}, then P ′ ⊂ P is locally
countable. It suffices to prove that Px is a network at x in X for each x ∈ X.
If not, there is an open neighborhood U of x such that P 6⊂ U for each P ∈ Px.
Let {P ∈ P : x ∈ P ⊂ U} = {Pm(x) : m ∈ N}. Then Bn(x) 6⊂ Pm(x) for each
n,m ∈ N. Choose xn,m ∈ Bn(x) − Pm(x). For n ≥ m, let xn,m = yk, where
k = m + n(n − 1)/2. Then the sequence {yk : k ∈ N} converges to x. Thus,
there is m, i ∈ N such that {yk : k ≥ i}⋃{x} ⊂ Pm(x) ⊂ U . Take j ≥ i with
yj = xn,m for some n ≥ m. Then xn,m ∈ Pm(x). This is a contradiction.

Example 3.2. There is a space X with a locally countable sn-network such that
X is not an sn-metrizable space.

Proof. Let X = ω1

⋃
(ω1 × {1/n : n ∈ N}). Define a neighborhood base Bx for

each x ∈ X for the desired topology on X as follows.
(1) If x ∈ X − ω1, then Bx = {{x}}.
(2) If x ∈ ω1, then Bx = {{x}⋃

(
⋃{V (n, x) × {1/n} : n ≥ m}) : m ∈

N and V (n, x) is a neighborhood of x in ω1 with the order topology}.
By [16, Example 1], X has a locally countable k-network and X is not an

ℵ-space. By Lemma 3.3 and Remark 2.2, X has a locally countable cs-network
and X is not an sn-metrizable space. It suffices to prove that X is sn-first
countable by Lemma 3.4.

Let x ∈ X. If x ∈ X − ω1, then {{x}} is a countable sn-network at x in X.
If x ∈ ω1, put Px = {Px,m : m ∈ N}, where Px,m = {x}⋃{(x, 1/n) : n ≥ m}.
Then Px is a countable network at x in X. We only need to prove that each
Px,m is a sequential neighborhood of x.

Let {xn} be a sequence converging to x. Put K = {x}⋃{xn : n ∈ N}, then
K is a compact subset of X. By [16, Example 1], we have the following facts.

Fact 1. K
⋂

ω1 is finite.
Fact 2. K −⋃{{y}⋃{(y, 1/n) : n ∈ N} : y ∈ K

⋂
ω1} is finite.

Case 1. If there is y ∈ K
⋂

ω1 such that y = xn for infinite many n ∈ N, i.e.,
there is a subsequence {xnk

} of {xn} such that y = xnk
for each k ∈ N, then

y = x, So {xn} is frequently in Px,m.
Case 2. If Case 1 does not hold, without loss of the generality, we may

assume K
⋂

ω1 = {x} by Fact 1. By Fact 2, K − {x}⋃{(x, 1/n) : n ∈ N}
is finite. If there is y ∈ K − {x}⋃{(x, 1/n) : n ∈ N} such that y = xn for
infinite many n ∈ N, then {xn} is frequently in Px,m by a similar way in the
proof of Case 1. Conversely, there is k0 ∈ N such that {x}⋃{xn : n ≥ k0} ⊂
{x}⋃{(x, 1/n) : n ∈ N}. So {xn} is eventually in Px,m.
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By the above Case 1 and Case 2, Px,m is a sequential neighborhood of x by
Remark 2.1(1).

As a further investigation, we give for Example 3.2 the following result.

Lemma 3.5. [16, Theorem 1]. A k-space with a locally countable k-network is
a topological sum of ℵ0-spaces.

Lemma 3.6. [11, Theorem 2.1]. A space X is sn-second countable iff X is an
sn-first countable, ℵ0-space.

Proposition 2. If X is a k-space X with a locally countable sn-network, then
X is an sn-metrizable space.

Proof. Let X be a k-space with a locally countable sn-network. Then X is
sn-first countable. So X has a locally countable cs-network by Lemma 3.4,
hence X has a locally countable k-network by Lemma 3.3. By Lemma 3.5, X
is a topological sum of ℵ0-spaces. Put X = ⊕{Xα : α ∈ Γ}, where each Xα is
an ℵ0-space. Since sn-first countability is hereditary to subspace, each Xα is
sn-second countable by Lemma 3.6. For each α ∈ Γ, let {Pα,n : n ∈ N} be a
countable sn-network of Xα. Put Pn = {Pα,n : α ∈ Γ} for each n ∈ N, and put
P =

⋃{Pn : n ∈ N}, then P is a σ-locally finite sn-network of X. So X is an
sn-metrizable space.
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