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FRECHET FRAMES FOR SHIFT INVARIANT
WEIGHTED SPACESY

Suzana Simid

Abstract. In the present paper we analyze Fréchet frame of the form
{p(-—34) | j € Z*}. With a known condition on ¢, we show that the given
sequence constitutes a frame for a test space isomorphic to the space of
periodic smooth functions so that its dual is the multiple of the space of
periodic distributions by ¢.
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1. Introduction

Frame theory was introduced in [9] and up to now it has been developed
very well in connection to wavelet theory, time frequency analysis and sampling
theory (see [, [2], [B], [7], [IO], [13], [14], [I5],...). Shift invariant spaces are
generated by the frames of the form {p(z — na)},cz« and in Banach spaces,
especially LP spaces, has been developed by Aldroubi, Sun and Tang [4], who
studied frames of the form {¢;(- —j) | j € Z%,1 <i < r} in LP spaces. On the
other hand, in [I6] and [I7] the authors introduced Fréchet frames and in this
way enabled the analysis of various test function spaces and their duals spaces
of distributions.

In Section 2 we recall from [I6] and [I7] the definitions concerning Fréchet
frames. Section 3 contains preliminary results on shift invariant weighted spaces,
extensions of the corresponding results in [4]. Our main result is given in Section
4. We prove that {¢(-—j) | j € R} is a frame for weighted shift invariant spaces
through several equivalent conditions. In the end we conclude that {¢(-—75) | j €
R4} forms a Fréchet frame for a space of test functions Xp = F~1(p-P(—m, 7)),
where P is the space of periodic test functions.

2. Notation and notions

We will recall basic notions following [6], [I1], [16].
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We denote by (X, ||-]|) a Banach space, by (X*, ||-||*) its dual space, (O, |||-]||)
is a Banach sequence space. If the coordinate functionals on © are continuous,
or, equivalently, if the convergence in © implies the convergence of the corre-
sponding coordinates, then © is called a BK-space.

We refer to [I1] for the basic definitions of frames. p-frames in shift-invariant
spaces of L? were considered in [4], while p-frames in general Banach spaces were
studied in []].

Let {(Ys,| - |s)}seny, No = INU {0}, be a family of separable Banach spaces
such that

1) {0} # [ Ve C- CY, TV C Yy,
s€lNg

(2) lo<|-h<] e,

(3) Yr = ﬂ Y, is dense in Y,, s & INg.
selNg

Then YF is a Fréchet space with the sequence of norms |- |5, s € INy.

We will always assume that {(Xs, | - ||s)}sen, and {(Os, ||| - |||s)}sen, are
sequences of Banach spaces which satisfy ([I)-(B]). For fixed s € INg, an operator
V : ©r — X will be called s-bounded if there exists a constant K > 0 such
that ||V ({citiew)lls < Ksl||{ci}tien]||s for all {¢;}iew € Op. If V is s-bounded
for every s € INg, then V will be called F-bounded.

Let {(Os, ||| - llls) }sem, be a sequence of BK-spaces, as well. Then a sequence
{gi}tien € (X})]N is called a pre-F-frame for Xy with respect to O if for every
s € INp, there exist constants 0 < A; < By < +00 such that

(4) {9i(f)}iew € OF, f€ XF,

() Al flls < IHgi(F)bienllls < Bsll flls,  f € Xp.

The constants By and Ag, s € INg, are called resp. upper and lower bounds
for {g;}iew. If A5 = Bs, s € Ny, then the pre-F-frame is called tight. If there
exists an F-bounded operator V : O — X such that V({g;(f)}ien) = f for
all f € Xp, then a pre-F-frame {g; }ien is called an F-frame (Fréchet frame) for
Xr with respect to ©p and V is called an F-frame operator for {g;};en. When
(@) holds and at least the upper inequality in (@) holds, then {g;}ien is called
an F-Bessel sequence for Xz with respect to ©p with bounds Bs, s € INy.

When X = Xp = X, and © = Op = O, then one obtains the definitions of
O-frame, Banach frame and ©-Bessel sequence, respectively.

If {g;}ien is a pre-F-frame for Xp with respect to @ with lower bounds A,
and upper bounds B; , s € INg, then for every s € INg we have

Asl[flls < {7 (N)}iewllls < AsBsl flls,  f € X,
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where g7 is the continuous extension of g; on X, . We will consider the following
operators

(6> Us: Xy — 0, Usf= {gf<f)}ie]Ny s € Ny,
(7) U:Xp—0Op, Uf={9(f)}ien,

and

(8) UL RU,) = X,, U':RU) — Xp.

The shift invariant spaces of the form

Vie)={ 3 eel- =i},

jezd

where ¢ = {¢;} ez is taken from some sequence space, are considered in []. ¢

is called generator of V'(¢). The space V, () is the shift invariant space of the

form V,(¢) ={ > cwp(- — k) | ¢ = {cr}reza € 7. Let Vo(p) be the space of
kezd

finite linear combination of integer translates of ¢ and Vj ,(¢) be the LP closure
of Vo(¢). Obviously, we have Vy(p) C V() C Vop(p). A function in V()
is not necessarily generated by ¢7 coefficients. If V() is itself closed, i.e. a
Banach space, then V,(¢) = Vo ,(¢).

3. Preliminary result

Considering p-frames for shift invariant subspaces of L? space, Aldroubi, Sun
and Tung in [4] proved that when a sequence of translations of a finite set of
appropriate functions @1, ..., @, forms an ¢P-frame for the shift-invariant space
Vp(o1,...,¢r) C LP, for some p > 1, then this sequence is also an ¢"-frame for
Vi(p1,...,¢.) for all values of r > 1.

In this paper we will consider weighted L?, s > 0, spaces. A function f
belongs to LP with weight function w,(x) = (1 + |z)%, z € R4, s > 0, if wsf
belongs to LP. Equipped with the norm |[|f||;» = ||wsf]||z», the space L? is a

Banach space. Let s > 0, 1 < p < 400 and

cr= {r e = ([ (S 1 pla+ o i) )" < oo},

: d
[0,¢ JE€Z

£ = {f | 1fllez = sup > 1f@+ DI+ o+ 1) < +oo s

d
z€[0,1] jezd

W= {71 W hwe = (3 sup 17+l + i) < +oc )

jeZd z€[0,1]¢
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/
2= {o={ehien | lellr = (Ll +1i)7) " < +oo}.
i€N

Obviously we have WP C Wi C L C LI C L C LP, where 1 < p < g < +o0.
For p =1 and s = 0 we also have £' = L1.

Next we recall the inequalities from [3].

Lemma 1. a) Let f € L?, g€ L and 1 < p < +oo. Then

9) 1S gl

gl

vz < fllzzllglic:-
b) If f€ L2, 1 < p < +oo, and g € W1, then f*ge WP and
(10) 1S * gllwe < 1fllzzllgliw:
c) Ifce P and d € 0L, then cxd € (P and
(11) lex dllez < llellezlldlex-

For any sequence ¢ = {¢;}iew € /£ and f € L2, 1 < p < 400, define, as in
[4], their semi-convolution f *’ ¢ by

(f ¥ o)(x) = Z cjf(x—j), zeR.

JEZA

Lemma 2. a) If f € WP, 1 < p < 400, and ¢ € £, then the function f ¥ c
belongs to WP and

(12) 1f " cllwe < lle

and also if f € W} and c € (2, 1 < p < +o0, then the function f ' ¢ belongs to
WP and

L1 fHWf?

(13) 1" cllwe < llellezll fllws-
b) If f € LP and ¢ € £%, than f %' ¢ belongs to f € LP and
(14) ILf + ¢l

c) f#* - is a continuous map from (P to LP, and also from (1 to LP if f € LP,
1< p<+oo.

£

cr < HCHZ;HJW|£E-

We will give the proof of the next lemma since it is differently possed in [4].

Lemma 3. Let f € LP and g € W}, 1 < p < +o0, s > 0. Then the sequence
{ J f(@)g(x —j)da:} - belongs to 2 and we have
R4

Jje

<]

148

L

Qng~

(15) I{ [ rena=sas} _,
Rd
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ProoF. Using inequality (1)) for fixed x € R?, we obtain
s /P
Z | [ r@ige=qde| 1+ 151))

/f glx —j dx} )
JEZ czd e

S ( Z </|f(x)||g($—j)|dx) (1+|j|)5p)1/p

jEZ4 R4

N Z (/ > |f(x+k)”9($+k—j)|dw)p(1+‘j|)sp)l/p

Z / Z If(z+k)||g( 1‘+k‘—])|dﬂf) (1 +‘j|)5pdx)1/p

]EZdO 14 keza

(
<(
(X [ (S t+Rllge+ k- pla+ 1) a)
<(
<(

]EZd 0 1]d kez?

| E (X 1+ Rllgte+ k- pla+ ) ar)

1 d
[0,1)4 JEZL Kk€EZ

[ S s rara+inr (X ot - wia+ i) a)

[0,1]¢ jEZA keZa
<l (s (X late - ml+ k))) 0
z€[0,1]¢ kezd

4. Main result

Our main result is related to Theorem 1 in [4].

Let ¢ € £, 1 < p < oo. We consider shift-invariant spaces of the form

(16) V) ={ X el —3) [ec ).

Note, if s = 0, then we have space V?(¢) considered in [4].

Theorem 1. Let o € (| W1L. Then the following statements are equivalent

s=0
to each other.
i) VP(p) is closed in LY for all s = 0 and for all 1 < p < +o0.
i) Foralls >0 and 1 < p < +oo, the family {p(-—7) | j € Z} is a p-frame

for VP(p), i.e. there exzst positive constants Ay, Bs (depending on ¢ and
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s) such that
(17)

Al < | /f ola—ghr} Bullfliz, ¥F € V().

czd

iit) There exist positive constants C1 and Csy such that

(18) 0<Cr < Z |P(z 4+ )| < Cay < 400, a.e. xR
JjEZA

iv) There exist positive constants K} and K? (depending on ¢ and s) such
that for all 1 < p < 400 we have

19 K, @ <KZ|fllz, VfeVP(p),s >0,
where
(200 M={c={ehiem €0 F()= D el —h)}.
kezd
v) There exists 1 € (| W1} such that
s=0
(21)
F= 0= =) =D (frol-—iNe-—4), YfeVP(p).
jezd JEZ?
Proof.
v) = W)
Let f = > (f,vo(- —7))e(- — j) and let M be given by (20). Using (I35l we
=

have

mf lleller < H /f Y(x—j dw} -

For K2 = ||¢||w: we have the right-hand side of the inequality.
Using ([I3]), we have

2 < I fllwe = o+ ellwe <

and for K} we prove the left-hand side of the inequality (I9)).

HWH
Assertions v) = zz), ii) < ), and ) = i) are simple and their proofs are
omitted.
iii) = iv)
We have already seen that for ¢ € Wl and ¢ € 2, 1 < p < +o0, the inequality

o+ cllwr <
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holds. With || # ¢||p» < [J¢ # ¢||y» for all 1 < p < +o0, and K} = HcpH;VI}, we
have that the left side of the inequality (IT).

The family {¢(- — k) | k € Z4} with the condition (8] is a Riesz basis of
V2() (see [3]), so there exists a unique function 1) € V?() such that {y(- —
k) | k € Z%} is also a Riesz basis for V?(p) and such that it satisfies the
biorthogonality relations

(@), p(2) =1, (Y(2), p(x —k)) =0, k#0.

Theorem 2.3 in [3] says that if p € W} and the family {o(- — k) | k € Z%} is a
Riesz basis for V2(¢), then the dual generator ¢ is in W!. Since we have that

© € W for all s >0, then we have that ¢ € (| WZ. Since
s=20

(o o)(@) = cxplz —k) € VP (),
kezd
then ¢, k € Z%, can be expressed in the form
o /(go ' c)(z)(z — k)dz.
Rd
For 1 < p < 400 (with usual changes for p = 00), we have
- P
(1 7T = | [+ ) @iB = Bi(1+ )]
R

/ - - K p

<( ] X le# el i+ — k) + k) dr)

; d
[0,1]¢ 7€~

s / (3 e+ clllte + = B+ 1k)*) do.

o)e  IEZ!
We sum over k € Z% and obtain

Sl k)< [ 3 (3 e ellw+ oo+ Bl + k) de

kezd (0.1]¢ JEZL  keZd

< [ Slevearni+ k(3 1w+l k) do
[(0.1]4 kezd kezd

< Il o el

It follows

e

e < |[Yllwalle +
For the lower bound in the inequality (Id) one may choose K2 = [9]lw:. Finally,

e

leller < KZN e
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i) = dii)
Since VP(¢) is closed in L? for all 1 < p < 400, s > 0, then for p = 2 and

s = 1 we have the standard assumption on the generator ¢, i.e. there exist two
constants C7 and Cs such that

0<C < Z |§(x + ) < Cy < +00, ae. xR
jezd

Corollary 1. Let p € (| WL. Then VP(p) C VA(p), for all1 < p < q <
s=20
+o00 and s > 0.

Proof. Let f(z) = > cpo(x — k), for some ¢ = {cx}reze € £, 1 < p <

kezd
+0o. Since £ C 1,1 < p < g < 00, Theorem [Ml implies the inequalities
I fllze < Bslleller < Billellr < | fllzs Vs >0, 1<p<q< +oo.

Remark 1. From the inequalities (I9) and ([[) we can conclude that €2
and VP are isomorphic Banach spaces for all s > 0 and 1 < p < +o0, and for
f € VP(p) we have the equivalence between inj\f4{||c||g§} and the LP-norm of f.

ce

As a consequence of Theorem [Mland from [3, Theorem 1], and since /£ C %,
for 0 < sg < s1, we have the following corollary.

Corollary 2. Let p € Do W{. Then VP () C VE(p) for 0 < sz < s1 and
every 1 < p < +o0. -

We construct Fréchet spaces Xp,, p > 1, as the intersection of translator
invariant spaces VP(y), s € IN. Note that, for 1 < p < 400,

{0} # () VP(p) C-- CVE(9) S VP (9) S V() = VP(p).

s€lNg

Also, we have that Xp, = [\ VP(y) is dense in VP(p) for all s € IN;. The
s€lNg
corresponding sequence space Qrp, p = 1, is the intersection of the weighted

sequence space (£, s € WNy. Note that (] (&, for every p > 1, is actually
s€lNg

the space of rapidly decreasing sequences s. We proved that if ¢ € W], then a
sequence {p(-—k) | k € Z%} is a p-frame for VP () as well as {¢(-—k) | k € Z4}
is an r-frame for V7 (), for all 1 < r < 400. So we have that the definition
of Xp, does not depend on p > 1, so {¢(- — k) | k € Z%} is a pre-F-frame
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for Xr, as well as that {¢(- — k) | k € Z} is a pre-F-frame for Xp,., for all
1<r<+4o0.

Since the corresponding function space for s is the space of rapidly increasing
functions

S={S1Iflm = sup (L + [2*)™/2f) ()] < +oo},

nm

and its dual is S'- the space of slowly decreasing distributions, we obtain that
dual space of Fréchet space Xp = Xp,, for any p, is isomorphic to (a comple-
mented subspace of) the space S’.

Denote by P(—m,m) the space of smooth 2m-periodic functions with the
family of norms |0|x = sup{|0®*) (t)|;t € (—m,7)}, k € Ny. It is a Fréchet space
and its dual is the space of 2m-periodic tempered distributions. Denote by F
and F~! the Fourier transformation and its inverse transformation, respectively.
We have

Theorem 2. Let p € () W) and Xp = () VP(p) for some 1 < p < +oo.
520 s€lNg
Then

Xp = -7:_1(95 ’ P(_ﬂ-’ﬂ-))v

in the topological sense.

ProOF. For f € Xp we have f = > c¢jp(- — j), for some sequence ¢ =
jeZ4
{¢j}jeze € 5. Then

F= Y eet-i= (3 ee)e.
JEZA

JjEZ?

This implies the assertion. O
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