FRÉCHET FRAMES FOR SHIFT INVARIANT WEIGHTED SPACES ${ }^{\square}$

Suzana Simid ${ }^{[2]}$

Abstract

In the present paper we analyze Fréchet frame of the form $\left\{\varphi(\cdot-j) \mid j \in \mathbb{Z}^{d}\right\}$. With a known condition on φ, we show that the given sequence constitutes a frame for a test space isomorphic to the space of periodic smooth functions so that its dual is the multiple of the space of periodic distributions by $\widehat{\varphi}$.

AMS Mathematics Subject Classification (2000): 42C15,42C40,42C99,46A35,46B20
Key words and phrases: Banach frame, Fréchet frame, pre- F-frame, F Bessel sequence, weighted L_{s}^{p}-spaces, weighted sequence spaces

1. Introduction

Frame theory was introduced in [9] and up to now it has been developed very well in connection to wavelet theory, time frequency analysis and sampling theory (see [1], [2], [5], [7], [10, [13], [14, [15],..). Shift invariant spaces are generated by the frames of the form $\{\varphi(x-n a)\}_{n \in \mathbb{Z}^{d}}$ and in Banach spaces, especially L^{p} spaces, has been developed by Aldroubi, Sun and Tang [4], who studied frames of the form $\left\{\varphi_{i}(\cdot-j) \mid j \in \mathbb{Z}^{d}, 1 \leqslant i \leqslant r\right\}$ in L^{p} spaces. On the other hand, in [16] and [17] the authors introduced Fréchet frames and in this way enabled the analysis of various test function spaces and their duals spaces of distributions.

In Section 2 we recall from [16] and [17] the definitions concerning Fréchet frames. Section 3 contains preliminary results on shift invariant weighted spaces, extensions of the corresponding results in [4]. Our main result is given in Section 4. We prove that $\left\{\varphi(\cdot-j) \mid j \in \mathbb{R}^{d}\right\}$ is a frame for weighted shift invariant spaces through several equivalent conditions. In the end we conclude that $\{\varphi(\cdot-j) \mid j \in$ $\left.\mathbb{R}^{d}\right\}$ forms a Fréchet frame for a space of test functions $X_{F}=\mathcal{F}^{-1}(\widehat{\varphi} \cdot \mathcal{P}(-\pi, \pi))$, where \mathcal{P} is the space of periodic test functions.

2. Notation and notions

We will recall basic notions following [6], 11], 16].

[^0]We denote by $(X,\|\cdot\|)$ a Banach space, by $\left(X^{*},\|\cdot\|^{*}\right)$ its dual space, $(\Theta,\| \| \cdot\| \|)$ is a Banach sequence space. If the coordinate functionals on Θ are continuous, or, equivalently, if the convergence in Θ implies the convergence of the corresponding coordinates, then Θ is called a $B K$-space.

We refer to [11] for the basic definitions of frames. p-frames in shift-invariant spaces of L^{p} were considered in [4], while p-frames in general Banach spaces were studied in [8].

Let $\left\{\left(Y_{s},|\cdot|_{s}\right)\right\}_{s \in \mathbb{N}_{0}}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, be a family of separable Banach spaces such that

$$
\begin{gather*}
\{\mathbf{0}\} \neq \bigcap_{s \in \mathbb{N}_{0}} Y_{s} \subseteq \cdots \subseteq Y_{2} \subseteq Y_{1} \subseteq Y_{0} \tag{1}\\
|\cdot|_{0} \leqslant|\cdot|_{1} \leqslant|\cdot|_{2} \leqslant \cdots, \tag{2}\\
Y_{F}:=\bigcap_{s \in \mathbb{N}_{0}} Y_{s} \text { is dense in } Y_{s}, \quad s \in \mathbb{N}_{0} . \tag{3}
\end{gather*}
$$

Then Y_{F} is a Fréchet space with the sequence of norms $|\cdot|_{s}, s \in \mathbb{N}_{0}$.
We will always assume that $\left\{\left(X_{s},\|\cdot\| \|_{s}\right)\right\}_{s \in \mathbb{N}_{0}}$ and $\left\{\left(\Theta_{s},\| \| \cdot\| \|_{s}\right)\right\}_{s \in \mathbb{N}_{0}}$ are sequences of Banach spaces which satisfy (11)-(3). For fixed $s \in \mathbb{N}_{0}$, an operator $V: \Theta_{F} \rightarrow X_{F}$ will be called s-bounded if there exists a constant $K_{s}>0$ such that $\left\|V\left(\left\{c_{i}\right\}_{i \in \mathbb{N}}\right)\right\|_{s} \leqslant K_{s}\left|\left\|\left\{c_{i}\right\}_{i \in \mathbb{N}} \mid\right\|_{s}\right.$ for all $\left\{c_{i}\right\}_{i \in \mathbb{N}} \in \Theta_{F}$. If V is s-bounded for every $s \in \mathbb{N}_{0}$, then V will be called F-bounded.
Let $\left\{\left(\Theta_{s}, \mid\|\cdot\| \|_{s}\right)\right\}_{s \in \mathbb{N}_{0}}$ be a sequence of $B K$-spaces, as well. Then a sequence $\left\{g_{i}\right\}_{i \in \mathbb{N}} \in\left(X_{F}^{*}\right)^{\mathbb{N}}$ is called a pre- F-frame for X_{F} with respect to Θ_{F} if for every $s \in \mathbb{N}_{0}$, there exist constants $0<A_{s} \leqslant B_{s}<+\infty$ such that

$$
\begin{equation*}
\left\{g_{i}(f)\right\}_{i \in \mathbb{N}} \in \Theta_{F}, \quad f \in X_{F} \tag{4}
\end{equation*}
$$

$$
A_{s}\|f\|_{s} \leqslant\| \|\left\{g_{i}(f)\right\}_{i \in \mathbb{N}}\| \|_{s} \leqslant B_{s}\|f\|_{s}, \quad f \in X_{F}
$$

The constants B_{s} and $A_{s}, s \in \mathbb{N}_{0}$, are called resp. upper and lower bounds for $\left\{g_{i}\right\}_{i \in \mathbb{N}}$. If $A_{s}=B_{s}, s \in \mathbb{N}_{0}$, then the pre- F-frame is called tight. If there exists an F-bounded operator $V: \Theta_{F} \rightarrow X_{F}$ such that $V\left(\left\{g_{i}(f)\right\}_{i \in \mathbb{N}}\right)=f$ for all $f \in X_{F}$, then a pre- F-frame $\left\{g_{i}\right\}_{i \in \mathbb{N}}$ is called an F-frame (Fréchet frame) for X_{F} with respect to Θ_{F} and V is called an F-frame operator for $\left\{g_{i}\right\}_{i \in \mathbb{N}}$. When (4) holds and at least the upper inequality in (5) holds, then $\left\{g_{i}\right\}_{i \in \mathbb{N}}$ is called an F-Bessel sequence for X_{F} with respect to Θ_{F} with bounds $B_{s}, s \in \mathbb{N}_{0}$.

When $X=X_{F}=X_{s}$ and $\Theta=\Theta_{F}=\Theta_{s}$, then one obtains the definitions of Θ-frame, Banach frame and Θ-Bessel sequence, respectively.
If $\left\{g_{i}\right\}_{i \in \mathbb{N}}$ is a pre- F-frame for X_{F} with respect to Θ_{F} with lower bounds A_{s} and upper bounds $B_{s}, s \in \mathbb{N}_{0}$, then for every $s \in \mathbb{N}_{0}$ we have

$$
A_{s}\|f\|_{s} \leqslant\| \|\left\{g_{i}^{s}(f)\right\}_{i \in \mathbb{N}} \mid\left\|_{s} \leqslant \lambda_{s} B_{s}\right\| f \|_{s}, \quad f \in X_{s},
$$

where g_{i}^{s} is the continuous extension of g_{i} on X_{s}. We will consider the following operators

$$
\begin{gather*}
U_{s}: X_{s} \rightarrow \Theta_{s}, \quad U_{s} f=\left\{g_{i}^{s}(f)\right\}_{i \in \mathbb{N}}, \quad s \in \mathbb{N}_{0} \tag{6}\\
U: X_{F} \rightarrow \Theta_{F}, \quad U f=\left\{g_{i}(f)\right\}_{i \in \mathbb{N}} \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
U_{s}^{-1}: \mathcal{R}\left(U_{s}\right) \rightarrow X_{s}, \quad U^{-1}: \mathcal{R}(U) \rightarrow X_{F} \tag{8}
\end{equation*}
$$

The shift invariant spaces of the form

$$
V(\varphi)=\left\{\sum_{j \in \mathbb{Z}^{d}} c_{j} \varphi(\cdot-j)\right\},
$$

where $c=\left\{c_{j}\right\}_{j \in \mathbb{Z}^{d}}$ is taken from some sequence space, are considered in [4. φ is called generator of $V(\varphi)$. The space $V_{p}(\varphi)$ is the shift invariant space of the form $V_{p}(\varphi)=\left\{\sum_{k \in \mathbb{Z}^{d}} c_{k} \varphi(\cdot-k) \mid c=\left\{c_{k}\right\}_{k \in \mathbb{Z}^{d}} \in \ell^{p}\right.$. Let $V_{0}(\varphi)$ be the space of finite linear combination of integer translates of φ and $V_{0, p}(\varphi)$ be the L^{p} closure of $V_{0}(\varphi)$. Obviously, we have $V_{0}(\varphi) \subset V_{p}(\varphi) \subset V_{0, p}(\varphi)$. A function in $V_{0, p}(\varphi)$ is not necessarily generated by ℓ^{p} coefficients. If $V_{p}(\varphi)$ is itself closed, i.e. a Banach space, then $V_{p}(\varphi)=V_{0, p}(\varphi)$.

3. Preliminary result

Considering p-frames for shift invariant subspaces of L^{p} space, Aldroubi, Sun and Tung in [4] proved that when a sequence of translations of a finite set of appropriate functions $\varphi_{1}, \ldots, \varphi_{r}$ forms an ℓ^{p}-frame for the shift-invariant space $V_{p}\left(\varphi_{1}, \ldots, \varphi_{r}\right) \subseteq L^{p}$, for some $p>1$, then this sequence is also an ℓ^{r}-frame for $V_{r}\left(\varphi_{1}, \ldots, \varphi_{r}\right)$ for all values of $r>1$.

In this paper we will consider weighted $L_{s}^{p}, s \geqslant 0$, spaces. A function f belongs to L_{s}^{p} with weight function $\omega_{s}(x)=(1+|x|)^{s}, x \in \mathbb{R}^{d}, s \geqslant 0$, if $\omega_{s} f$ belongs to L^{p}. Equipped with the norm $\|f\|_{L_{s}^{p}}=\left\|\omega_{s} f\right\|_{L^{p}}$, the space L_{s}^{p} is a Banach space. Let $s \geqslant 0,1 \leqslant p<+\infty$ and

$$
\begin{gathered}
\mathcal{L}_{s}^{p}:=\left\{f \mid\|f\|_{\mathcal{L}_{s}^{p}}:=\left(\int_{[0,1]^{d}}\left(\sum_{j \in \mathbb{Z}^{d}}|f(x+j)|(1+|x+j|)^{s}\right)^{p} d x\right)^{1 / p}<+\infty\right\}, \\
\mathcal{L}_{s}^{\infty}:=\left\{f\left|\|f\|_{\mathcal{L}_{s}^{\infty}}:=\sup _{x \in[0,1]^{d}} \sum_{j \in \mathbb{Z}^{d}}\right| f(x+j) \mid(1+|x+j|)^{s}<+\infty\right\} ; \\
W_{s}^{p}:=\left\{f \mid\|f\|_{W_{s}^{p}}:=\left(\sum_{j \in \mathbb{Z}^{d}} \sup _{x \in[0,1]^{d}}|f(x+j)|^{p}(1+|j|)^{p s}\right)^{1 / p}<+\infty\right\} ;
\end{gathered}
$$

$$
\ell_{s}^{p}:=\left\{c=\left\{c_{i}\right\}_{i \in \mathbb{N}} \mid\|c\|_{\ell_{s}^{p}}=\left(\sum_{i \in \mathbb{N}}\left|c_{i}\right|^{p}(1+|i|)^{s p}\right)^{1 / p}<+\infty\right\} .
$$

Obviously we have $W_{s}^{p} \subset W_{s}^{q} \subset \mathcal{L}_{s}^{\infty} \subset \mathcal{L}_{s}^{q} \subset \mathcal{L}_{s}^{p} \subset L_{s}^{p}$, where $1 \leqslant p \leqslant q \leqslant+\infty$. For $p=1$ and $s=0$ we also have $\mathcal{L}^{1}=L^{1}$.

Next we recall the inequalities from 3].
Lemma 1. a) Let $f \in L_{s}^{p}, g \in L_{s}^{1}$ and $1 \leqslant p \leqslant+\infty$. Then

$$
\begin{equation*}
\|f * g\|_{L_{s}^{p}} \leqslant\|f\|_{L_{s}^{p}}\|g\|_{L_{s}^{1}} . \tag{9}
\end{equation*}
$$

b) If $f \in L_{s}^{p}, 1 \leqslant p \leqslant+\infty$, and $g \in W_{s}^{1}$, then $f * g \in W_{s}^{p}$ and

$$
\begin{equation*}
\|f * g\|_{W_{s}^{p}} \leqslant\|f\|_{L_{s}^{p}}\|g\|_{W_{s}^{1}} \tag{10}
\end{equation*}
$$

c) If $c \in \ell_{s}^{p}$ and $d \in \ell_{s}^{1}$, then $c * d \in \ell_{s}^{p}$ and

$$
\begin{equation*}
\|c * d\|_{\ell_{s}^{p}} \leqslant\|c\|_{\ell_{s}^{p}}\|d\|_{\ell_{s}^{1}} . \tag{11}
\end{equation*}
$$

For any sequence $c=\left\{c_{i}\right\}_{i \in \mathbb{N}} \in \ell_{s}^{p}$ and $f \in \mathcal{L}_{s}^{p}, 1 \leqslant p \leqslant+\infty$, define, as in [4], their semi-convolution $f *^{\prime} c$ by

$$
\left(f *^{\prime} c\right)(x)=\sum_{j \in \mathbb{Z}^{d}} c_{j} f(x-j), \quad x \in \mathbb{R}^{d}
$$

Lemma 2. a) If $f \in W_{s}^{p}, 1 \leqslant p \leqslant+\infty$, and $c \in \ell_{s}^{1}$, then the function $f *^{\prime} c$ belongs to W_{s}^{p} and

$$
\begin{equation*}
\left\|f *^{\prime} c\right\|_{W_{s}^{p}} \leqslant\|c\|_{\ell_{s}^{1}}\|f\|_{W_{s}^{p}}, \tag{12}
\end{equation*}
$$

and also if $f \in W_{s}^{1}$ and $c \in \ell_{s}^{p}, 1 \leqslant p \leqslant+\infty$, then the function $f *^{\prime} c$ belongs to W_{s}^{p} and

$$
\begin{equation*}
\left\|f *^{\prime} c\right\|_{W_{s}^{p}} \leqslant\|c\|_{\ell_{s}^{p}}\|f\|_{W_{s}^{1}} . \tag{13}
\end{equation*}
$$

b) If $f \in \mathcal{L}_{s}^{p}$ and $c \in \ell_{s}^{1}$, than $f *^{\prime} c$ belongs to $f \in \mathcal{L}_{s}^{p}$ and

$$
\begin{equation*}
\left\|f *^{\prime} c\right\|_{\mathcal{L}_{s}^{p}} \leqslant\|c\|_{\ell_{s}^{1}}\|f\|_{\mathcal{L}_{s}^{p}} \tag{14}
\end{equation*}
$$

c) $f *^{\prime} \cdot$ is a continuous map from ℓ_{s}^{p} to L_{s}^{p}, and also from ℓ_{s}^{1} to \mathcal{L}_{s}^{p} if $f \in \mathcal{L}_{s}^{p}$, $1 \leqslant p \leqslant+\infty$.

We will give the proof of the next lemma since it is differently possed in [4].
Lemma 3. Let $f \in L_{s}^{p}$ and $g \in W_{s}^{1}, 1 \leqslant p \leqslant+\infty, s \geqslant 0$. Then the sequence $\left\{\int_{\mathbb{R}^{d}} f(x) g(x-j) d x\right\}_{j \in \mathbb{Z}^{d}}$ belongs to ℓ_{s}^{p} and we have

$$
\begin{equation*}
\left\|\left\{\int_{\mathbb{R}^{d}} f(x) \overline{g(x-j)} d x\right\}_{j \in \mathbb{Z}^{d}}\right\|_{\ell_{s}^{p}} \leqslant\|f\|_{L_{s}^{p}}\|g\|_{W_{s}^{1}} . \tag{15}
\end{equation*}
$$

Proof. Using inequality (11) for fixed $x \in \mathbb{R}^{d}$, we obtain

$$
\begin{aligned}
& \left\|\left\{\int_{\mathbb{R}^{d}} f(x) \overline{g(x-j)} d x\right\}_{j \in \mathbb{Z}^{d}}\right\|_{\ell_{s}^{p}}=\left(\sum_{j \in \mathbb{Z}^{d}}\left|\int_{\mathbb{R}^{d}} f(x) \overline{g(x-j)} d x\right|^{p}(1+|j|)^{s p}\right)^{1 / p} \\
& \leqslant\left(\sum_{j \in \mathbb{Z}^{d}}\left(\int_{\mathbb{R}^{d}}|f(x) \| g(x-j)| d x\right)^{p}(1+|j|)^{s p}\right)^{1 / p} \\
& =\left(\sum_{j \in \mathbb{Z}^{d}}\left(\int_{[0,1]^{d}} \sum_{k \in \mathbb{Z}^{d}}|f(x+k) \| g(x+k-j)| d x\right)^{p}(1+|j|)^{s p}\right)^{1 / p} \\
& \leqslant\left(\sum_{j \in \mathbb{Z}^{d}} \int_{[0,1]^{d}}\left(\sum_{k \in \mathbb{Z}^{d}}|f(x+k) \| g(x+k-j)| d x\right)^{p}(1+|j|)^{s p} d x\right)^{1 / p} \\
& =\left(\sum_{j \in \mathbb{Z}^{d}} \int_{[0,1]^{d}}\left(\sum_{k \in \mathbb{Z}^{d}}|f(x+k) \| g(x+k-j)|(1+|k|)^{s}\right)^{p} d x\right)^{1 / p} \\
& \leqslant\left(\int_{[0,1]^{d}} \sum_{j \in \mathbb{Z}^{d}}\left(\sum_{k \in \mathbb{Z}^{d}}|f(x+k) \| g(x+k-j)|(1+|k|)^{s}\right)^{p} d x\right)^{1 / p} \\
& \leqslant\left(\int_{[0,1]^{d}} \sum_{j \in \mathbb{Z}^{d}}|f(x+j)|^{p}(1+|j|)^{s p}\left(\sum_{k \in \mathbb{Z}^{d}}|g(x-k)|(1+|k|)^{s}\right)^{p} d x\right)^{1 / p} \\
& \leqslant\|f\|_{L_{s}^{p}}\left(\sup _{x \in[0,1]^{d}}\left(\sum_{k \in \mathbb{Z}^{d}}|g(x-k)|(1+|k|)^{s}\right)^{p}\right)^{1 / p} \leqslant\|f\|_{L_{s}^{p} \|}\|g\|_{W_{s}^{1}} .
\end{aligned}
$$

4. Main result

Our main result is related to Theorem 1 in [4].
Let $\varphi \in \mathcal{L}_{s}^{p}, 1 \leqslant p \leqslant \infty$. We consider shift-invariant spaces of the form

$$
\begin{equation*}
V_{s}^{p}(\varphi)=\left\{\sum_{j \in \mathbb{Z}^{d}} c_{j} \varphi(\cdot-j) \mid c \in \ell_{s}^{p}\right\} \tag{16}
\end{equation*}
$$

Note, if $s=0$, then we have space $V^{p}(\varphi)$ considered in [4].
Theorem 1. Let $\varphi \in \bigcap_{s \geqslant 0} W_{s}^{1}$. Then the following statements are equivalent to each other.
i) $V_{s}^{p}(\varphi)$ is closed in L_{s}^{p} for all $s \geqslant 0$ and for all $1 \leqslant p \leqslant+\infty$.
ii) For all $s \geqslant 0$ and $1 \leqslant p \leqslant+\infty$, the family $\left\{\varphi(\cdot-j) \mid j \in \mathbb{Z}^{d}\right\}$ is a p-frame for $V_{s}^{p}(\varphi)$, i.e. there exist positive constants A_{s}, B_{s} (depending on φ and
s) such that

$$
\begin{equation*}
A_{s}\|f\|_{L_{s}^{p}} \leqslant\left\|\left\{\int_{\mathbb{R}^{d}} f(x) \overline{\varphi(x-j)} d x\right\}_{j \in \mathbb{Z}^{d}}\right\|_{\ell_{s}^{p}} \leqslant B_{s}\|f\|_{L_{s}^{p}}, \quad \forall f \in V_{s}^{p}(\varphi) \tag{17}
\end{equation*}
$$

iii) There exist positive constants C_{1} and C_{2} such that

$$
\begin{equation*}
0<C_{1} \leqslant \sum_{j \in \mathbb{Z}^{d}}|\widehat{\varphi}(x+j)|^{2} \leqslant C_{2}<+\infty, \quad \text { a.e. } x \in \mathbb{R}^{d} \tag{18}
\end{equation*}
$$

iv) There exist positive constants K_{s}^{1} and K_{s}^{2} (depending on φ and s) such that for all $1 \leqslant p \leqslant+\infty$ we have

$$
\begin{equation*}
K_{s}^{1}\|f\|_{L_{s}^{p}} \leqslant \inf _{c \in M}\|c\|_{\ell_{s}^{p}} \leqslant K_{s}^{2}\|f\|_{L_{s}^{p}}, \quad \forall f \in V_{s}^{p}(\varphi), s \geqslant 0 \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\left\{c=\left\{c_{k}\right\}_{k \in \mathbb{Z}^{d}} \in \ell_{s}^{p} \mid f(\cdot)=\sum_{k \in \mathbb{Z}^{d}} c_{k} \varphi(\cdot-k)\right\} . \tag{20}
\end{equation*}
$$

v) There exists $\psi \in \bigcap_{s \geqslant 0} W_{s}^{1}$ such that

$$
\begin{equation*}
f=\sum_{j \in \mathbb{Z}^{d}}\langle f, \psi(\cdot-j)\rangle \varphi(\cdot-j)=\sum_{j \in \mathbb{Z}^{d}}\langle f, \varphi(\cdot-j)\rangle \psi(\cdot-j), \quad \forall f \in V_{s}^{p}(\varphi) \tag{21}
\end{equation*}
$$

Proof.

$v) \Rightarrow i v)$
Let $f=\sum_{j \in \mathbb{Z}^{d}}\langle f, \psi(\cdot-j)\rangle \varphi(\cdot-j)$ and let M be given by (20). Using (15) we have

$$
\inf _{c \in M}\|c\|_{\ell_{s}^{p}} \leqslant\left\|\left\{\int_{\mathbb{R}^{d}} f(x) \overline{\psi(x-j)} d x\right\}_{j \in \mathbb{Z}^{d}}\right\|_{\ell_{s}^{p}} \leqslant\|f\|_{L_{s}^{p}}\|\psi\|_{W_{s}^{1}}
$$

For $K_{s}^{2}=\|\psi\|_{W_{s}^{1}}$ we have the right-hand side of the inequality.
Using (13), we have

$$
\|f\|_{L_{s}^{p}} \leqslant\|f\|_{W_{s}^{p}}=\left\|\varphi *^{\prime} c\right\|_{W_{s}^{p}} \leqslant\|\varphi\|_{W_{s}^{1}}\|c\|_{\ell_{s}^{p}}
$$

and for $K_{s}^{1}=\frac{1}{\|\varphi\|_{W_{s}^{1}}}$ we prove the left-hand side of the inequality (19).
Assertions $v) \Rightarrow i i), i i) \Leftrightarrow i v$), and $i v) \Rightarrow i$) are simple and their proofs are omitted.

$$
i i i) \Rightarrow i v)
$$

We have already seen that for $\varphi \in W_{s}^{1}$ and $c \in \ell_{s}^{p}, 1 \leqslant p \leqslant+\infty$, the inequality

$$
\left\|\varphi *^{\prime} c\right\|_{W_{s}^{p}} \leqslant\|c\|_{\ell_{s}^{p}}\|\varphi\|_{W_{s}^{1}},
$$

holds. With $\left\|\varphi *^{\prime} c\right\|_{L_{s}^{p}} \leqslant\left\|\varphi *^{\prime} c\right\|_{W_{s}^{p}}$ for all $1 \leqslant p \leqslant+\infty$, and $K_{s}^{1}=\|\varphi\|_{W_{s}^{1}}^{-1}$, we have that the left side of the inequality (17).

The family $\left\{\varphi(\cdot-k) \mid k \in \mathbb{Z}^{d}\right\}$ with the condition (18) is a Riesz basis of $V^{2}(\varphi)$ (see [3]), so there exists a unique function $\psi \in V^{2}(\varphi)$ such that $\{\psi(\cdot-$ $\left.k) \mid k \in \mathbb{Z}^{d}\right\}$ is also a Riesz basis for $V^{2}(\varphi)$ and such that it satisfies the biorthogonality relations

$$
\langle\psi(x), \varphi(x)\rangle=1, \quad\langle\psi(x), \varphi(x-k)\rangle=0, \quad k \neq 0
$$

Theorem 2.3 in [3] says that if $\varphi \in W_{s}^{1}$ and the family $\left\{\varphi(\cdot-k) \mid k \in \mathbb{Z}^{d}\right\}$ is a Riesz basis for $V^{2}(\varphi)$, then the dual generator ψ is in W_{s}^{1}. Since we have that $\varphi \in W_{s}^{1}$ for all $s \geqslant 0$, then we have that $\psi \in \bigcap_{s \geqslant 0} W_{s}^{1}$. Since

$$
\left(\varphi *^{\prime} c\right)(x)=\sum_{k \in \mathbb{Z}^{d}} c_{k} \varphi(x-k) \in V_{s}^{p}(\varphi)
$$

then $c_{k}, k \in \mathbb{Z}^{d}$, can be expressed in the form

$$
c_{k}=\int_{\mathbb{R}^{d}}\left(\varphi *^{\prime} c\right)(x) \overline{\psi(x-k)} d x
$$

For $1 \leqslant p \leqslant+\infty$ (with usual changes for $p=\infty$), we have

$$
\begin{aligned}
\left|c_{k}(1+|k|)^{s}\right|^{p} & =\left|\int_{\mathbb{R}^{d}}\left(\varphi *^{\prime} c\right)(x) \overline{\psi(x-k)}(1+|k|)^{s} d x\right|^{p} \\
& \leqslant\left(\int_{[0,1]^{d}} \sum_{j \in \mathbb{Z}^{d}}\left|\varphi *^{\prime} c\right|(x+j)|\psi(x+j-k)|(1+|k|)^{s} d x\right)^{p} \\
& \leqslant \int_{[0,1]^{d}}\left(\sum_{j \in \mathbb{Z}^{d}}\left|\varphi *^{\prime} c\right|\left(|\psi(x+j-k)|(1+|k|)^{s}\right)^{p} d x\right.
\end{aligned}
$$

We sum over $k \in \mathbb{Z}^{d}$ and obtain

$$
\begin{aligned}
& \sum_{k \in \mathbb{Z}^{d}}\left|c_{k}\right|^{p}(1+|k|)^{s p} \leqslant \int_{[0,1]^{d}} \sum_{j \in \mathbb{Z}^{d}}\left(\sum_{k \in \mathbb{Z}^{d}}\left|\varphi *^{\prime} c\right|(x+j)|\psi(x+j-k)|(1+|k|)^{s}\right)^{p} d x \\
& \leqslant \int_{[0,1]^{d}} \sum_{k \in \mathbb{Z}^{d}}\left|\varphi *^{\prime} c\right|^{p}(x+k) \mid(1+|k|)^{s p}\left(\sum_{k \in \mathbb{Z}^{d}}|\psi(x+k)|(1+|k|)^{s}\right)^{p} d x \\
& \leqslant\|\psi\|_{W_{s}^{1}}^{p}\left\|\varphi *^{\prime} c\right\|_{L_{s}^{p}}^{p} .
\end{aligned}
$$

It follows

$$
\|c\|_{\ell_{s}^{p}} \leqslant\|\psi\|_{W_{s}^{1}}\left\|\varphi *^{\prime} c\right\|_{L_{s}^{p}}
$$

For the lower bound in the inequality (19) one may choose $K_{s}^{2}=\|\psi\|_{W_{s}^{1}}$. Finally,

$$
\|c\|_{\ell_{s}^{p}} \leqslant K_{s}^{2}\|f\|_{L_{s}^{p}} .
$$

i) $\Rightarrow i i i)$

Since $V_{s}^{p}(\varphi)$ is closed in L_{s}^{p} for all $1 \leqslant p \leqslant+\infty, s \geqslant 0$, then for $p=2$ and $s=1$ we have the standard assumption on the generator φ, i.e. there exist two constants C_{1} and C_{2} such that

$$
0<C_{1} \leqslant \sum_{j \in \mathbb{Z}^{d}}|\widehat{\varphi}(x+j)|^{2} \leqslant C_{2}<+\infty, \quad \text { a.e. } x \in \mathbb{R}^{d}
$$

Corollary 1. Let $\varphi \in \bigcap_{s \geqslant 0} W_{s}^{1}$. Then $V_{s}^{p}(\varphi) \subset V_{s}^{q}(\varphi)$, for all $1 \leqslant p \leqslant q \leqslant$ $+\infty$ and $s \geqslant 0$.

Proof. Let $f(x)=\sum_{k \in \mathbb{Z}^{d}} c_{k} \varphi(x-k)$, for some $c=\left\{c_{k}\right\}_{k \in \mathbb{Z}^{d}} \in \ell_{s}^{p}, 1 \leqslant p \leqslant$ $+\infty$. Since $\ell_{s}^{p} \subset \ell_{s}^{q}, 1 \leqslant p \leqslant q \leqslant+\infty$, Theorem 1 implies the inequalities
$\|f\|_{L_{s}^{q}} \leqslant B_{s}\|c\|_{\ell_{s}^{q}} \leqslant B_{s}^{\prime}\|c\|_{\ell_{s}^{p}} \leqslant\|f\|_{L_{s}^{p}}, \quad \forall s \geqslant 0,1 \leqslant p \leqslant q \leqslant+\infty$.

Remark 1. From the inequalities (19) and (17) we can conclude that ℓ_{s}^{p} and V_{s}^{p} are isomorphic Banach spaces for all $s \geqslant 0$ and $1 \leqslant p \leqslant+\infty$, and for $f \in V_{s}^{p}(\varphi)$ we have the equivalence between $\inf _{c \in M}\left\{\|c\|_{\ell_{s}^{p}}\right\}$ and the L_{s}^{p}-norm of f.

As a consequence of Theorem[1] and from [3. Theorem 1], and since $\ell_{s_{1}}^{p} \subset \ell_{s_{2}}^{p}$, for $0 \leqslant s_{2} \leqslant s_{1}$, we have the following corollary.

Corollary 2. Let $\varphi \in \bigcap_{s \geqslant 0} W_{s}^{1}$. Then $V_{s_{1}}^{p}(\varphi) \subset V_{s_{2}}^{p}(\varphi)$ for $0 \leqslant s_{2} \leqslant s_{1}$ and every $1 \leqslant p \leqslant+\infty$.

We construct Fréchet spaces $X_{F, p}, p \geqslant 1$, as the intersection of translator invariant spaces $V_{s}^{p}(\varphi), s \in \mathbb{N}$. Note that, for $1 \leqslant p \leqslant+\infty$,

$$
\{\mathbf{0}\} \neq \bigcap_{s \in \mathbb{N}_{0}} V_{s}^{p}(\varphi) \subseteq \cdots \subseteq V_{2}^{p}(\varphi) \subseteq V_{1}^{p}(\varphi) \subseteq V_{0}^{p}(\varphi)=V^{p}(\varphi)
$$

Also, we have that $X_{F, p}=\bigcap_{s \in \mathbb{N}_{0}} V_{s}^{p}(\varphi)$ is dense in $V_{s}^{p}(\varphi)$ for all $s \in \mathbb{N}_{0}$. The corresponding sequence space $Q_{F, p}, p \geqslant 1$, is the intersection of the weighted sequence space $\ell_{s}^{p}, s \in \mathbb{N}_{0}$. Note that $\bigcap_{s \in \mathbb{N}_{0}} \ell_{s}^{p}$, for every $p \geqslant 1$, is actually the space of rapidly decreasing sequences s. We proved that if $\varphi \in W_{s}^{1}$, then a sequence $\left\{\varphi(\cdot-k) \mid k \in \mathbb{Z}^{d}\right\}$ is a p-frame for $V_{s}^{p}(\varphi)$ as well as $\left\{\varphi(\cdot-k) \mid k \in \mathbb{Z}^{d}\right\}$ is an r-frame for $V_{s}^{r}(\varphi)$, for all $1 \leqslant r \leqslant+\infty$. So we have that the definition of $X_{F, p}$ does not depend on $p \geqslant 1$, so $\left\{\varphi(\cdot-k) \mid k \in \mathbb{Z}^{d}\right\}$ is a pre- F-frame
for $X_{F, p}$ as well as that $\left\{\varphi(\cdot-k) \mid k \in \mathbb{Z}^{d}\right\}$ is a pre- F-frame for $X_{F, r}$, for all $1 \leqslant r \leqslant+\infty$.

Since the corresponding function space for s is the space of rapidly increasing functions

$$
\mathcal{S}=\left\{f\left|\|f\|_{m}=\sup _{n \leqslant m}\left(1+|x|^{2}\right)^{m / 2}\right| f^{(n)}(x) \mid<+\infty\right\}
$$

and its dual is \mathcal{S}^{\prime} - the space of slowly decreasing distributions, we obtain that dual space of Fréchet space $X_{F}=X_{F, p}$, for any p, is isomorphic to (a complemented subspace of) the space \mathcal{S}^{\prime}.

Denote by $\mathcal{P}(-\pi, \pi)$ the space of smooth 2π-periodic functions with the family of norms $|\theta|_{k}=\sup \left\{\left|\theta^{(k)}(t)\right| ; t \in(-\pi, \pi)\right\}, k \in \mathbb{N}_{0}$. It is a Fréchet space and its dual is the space of 2π-periodic tempered distributions. Denote by \mathcal{F} and \mathcal{F}^{-1} the Fourier transformation and its inverse transformation, respectively. We have

Theorem 2. Let $\varphi \in \bigcap_{s \geqslant 0} W_{s}^{1}$ and $X_{F}=\bigcap_{s \in \mathbb{N}_{0}} V_{s}^{p}(\varphi)$ for some $1 \leqslant p \leqslant+\infty$. Then

$$
X_{F}=\mathcal{F}^{-1}(\hat{\varphi} \cdot \mathcal{P}(-\pi, \pi)),
$$

in the topological sense.
Proof. For $f \in X_{F}$ we have $f=\sum_{j \in \mathbb{Z}^{d}} c_{j} \varphi(\cdot-j)$, for some sequence $c=$ $\left\{c_{j}\right\}_{j \in \mathbb{Z}^{d}} \in s$. Then

$$
\left.\widehat{f}=\sum_{j \in \mathbb{Z}^{d}} \widehat{c_{j} \varphi(\cdot}-j\right)=\left(\sum_{j \in \mathbb{Z}^{d}} c_{j} e^{i j \cdot}\right) \widehat{\varphi}
$$

This implies the assertion.

References

[1] Aldroubi, A., Obique projections in atomic spaces. Proc. Am. Math. Soc., 124 (1996), 2051-2060.
[2] Aldroubi, A., Exact iterative reconstruction algorithm for multivariate irregulaely sampled functions in spline-like space: the L^{p} theory. Proc. Am. Math. Soc., 126 (1998), 2677-2686.
[3] Aldroubi, A., Gröchenig K., Non-uniform sampling and reconstruction in shiftinvariant spaces. SIAM Review , 43, (2001), 585-620.
[4] Aldroubi, A., Sun, Q., Tang, W., p-frames and shift invariant subspaces of L^{p}. J. Fourier Anal. Appl., 7 (2001), 1-21.
[5] Benedetto, J. J., Frame decomposition, sampling and uncertainty principle inequalities. in [6, 247-304.
[6] Benedetto, J. J., Frazier, M. W., Wavelets: Mathematics and Applications. Boca Raton, FL: CRC Press, 1994.
[7] Christensen, O., Heil, C., Perturbations of Banach frames and atomic decompositions. Math. Nach., 185 (1997), 33-47.
[8] Christensen, O., Stoeva, D. T., p-frames in separable Banach spaces . Adv. Comp. Math. 18(2-4) (2003), 117-126.
[9] Duffin, R. J., Schaeffer, A. C., A class of nonharmonic Fourier series. Trans. Am. Math. Soc, 72 (1952), 341-3666.
[10] Gröchenig, K., Describing functions: atomic decompositions versus frames. Monatsh. Math., 112 (1991), 1-42.
[11] Gröchenig, K., Foundations of Time-Frequency Analysis. Boston, Birkhäuser, 2001.
[12] Heil, C., A Basis Theory Primer. Manuscript, 1997.
[13] Heil, C. E., Walnut, D. F., Continuous and discrete wavelet transforms. SIAM Review, 31 (1989), 628-666.
[14] Mallat, S., A Wavelet Tour of Signal Processing. New York: Academic Press, 1998.
[15] Meyer, Y., Ondelettes. Hermann, Paris, Editeurs des Science et des Arts, 1990.
[16] Pilipović, S., Stoeva, D. T., Series expansions in Fréchet spaces and construction of Fréchet frames. preprint, 2009.
[17] Pilipović, S., Stoeva, D. T., Teofanov, N., Frames for Fréchet spaces . Bull. Cl. Sci. Math. Nat. Sci. Math., 32 (2007), 69-84.
[18] Strichartz, R. S., A Guide to Distribution Theory and Fourier Transforms. New Jersey: World Scientific, 1994.

Received by the editors July 5, 2009

[^0]: ${ }^{1}$ Supported by the Project No. 144016
 ${ }^{2}$ Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac 34000, Serbia, e-mail: suzanasimic@kg.ac.rs

