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FRÉCHET FRAMES FOR SHIFT INVARIANT
WEIGHTED SPACES1

Suzana Simić2

Abstract. In the present paper we analyze Fréchet frame of the form
{ϕ(·−j) | j ∈ Zd}. With a known condition on ϕ, we show that the given
sequence constitutes a frame for a test space isomorphic to the space of
periodic smooth functions so that its dual is the multiple of the space of
periodic distributions by ϕ̂.
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1. Introduction

Frame theory was introduced in [9] and up to now it has been developed
very well in connection to wavelet theory, time frequency analysis and sampling
theory (see [1], [2], [5], [7], [10], [13], [14], [15], . . .). Shift invariant spaces are
generated by the frames of the form {ϕ(x − na)}n∈Zd and in Banach spaces,
especially Lp spaces, has been developed by Aldroubi, Sun and Tang [4], who
studied frames of the form {ϕi(· − j) | j ∈ Zd, 1 6 i 6 r} in Lp spaces. On the
other hand, in [16] and [17] the authors introduced Fréchet frames and in this
way enabled the analysis of various test function spaces and their duals spaces
of distributions.

In Section 2 we recall from [16] and [17] the definitions concerning Fréchet
frames. Section 3 contains preliminary results on shift invariant weighted spaces,
extensions of the corresponding results in [4]. Our main result is given in Section
4. We prove that {ϕ(·−j) | j ∈ Rd} is a frame for weighted shift invariant spaces
through several equivalent conditions. In the end we conclude that {ϕ(·−j) | j ∈
Rd} forms a Fréchet frame for a space of test functions XF = F−1(ϕ̂·P(−π, π)),
where P is the space of periodic test functions.

2. Notation and notions

We will recall basic notions following [6], [11], [16].
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We denote by (X, ‖·‖) a Banach space, by (X∗, ‖·‖∗) its dual space, (Θ, |||·|||)
is a Banach sequence space. If the coordinate functionals on Θ are continuous,
or, equivalently, if the convergence in Θ implies the convergence of the corre-
sponding coordinates, then Θ is called a BK-space.

We refer to [11] for the basic definitions of frames. p-frames in shift-invariant
spaces of Lp were considered in [4], while p-frames in general Banach spaces were
studied in [8].

Let {(Ys, | · |s)}s∈N0 , N0 = N ∪ {0}, be a family of separable Banach spaces
such that

(1) {0} 6=
⋂

s∈N0

Ys ⊆ · · · ⊆ Y2 ⊆ Y1 ⊆ Y0,

(2) | · |0 6 | · |1 6 | · |2 6 · · · ,

(3) YF :=
⋂

s∈N0

Ys is dense in Ys, s ∈ N0.

Then YF is a Fréchet space with the sequence of norms | · |s, s ∈ N0.
We will always assume that {(Xs, ‖ · ‖s)}s∈N0 and {(Θs, ||| · |||s)}s∈N0 are

sequences of Banach spaces which satisfy (1)-(3). For fixed s ∈ N0, an operator
V : ΘF → XF will be called s-bounded if there exists a constant Ks > 0 such
that ‖V ({ci}i∈N)‖s 6 Ks|||{ci}i∈N|||s for all {ci}i∈N ∈ ΘF . If V is s-bounded
for every s ∈ N0, then V will be called F -bounded.
Let {(Θs, ||| · |||s)}s∈N0 be a sequence of BK-spaces, as well. Then a sequence
{gi}i∈N ∈ (X∗

F )N is called a pre-F -frame for XF with respect to ΘF if for every
s ∈ N0, there exist constants 0 < As 6 Bs < +∞ such that

(4) {gi(f)}i∈N ∈ ΘF , f ∈ XF ,

(5) As‖f‖s 6 |||{gi(f)}i∈N|||s 6 Bs‖f‖s, f ∈ XF .

The constants Bs and As, s ∈ N0, are called resp. upper and lower bounds
for {gi}i∈N. If As = Bs, s ∈ N0, then the pre-F -frame is called tight. If there
exists an F -bounded operator V : ΘF → XF such that V ({gi(f)}i∈N) = f for
all f ∈ XF , then a pre-F -frame {gi}i∈N is called an F -frame (Fréchet frame) for
XF with respect to ΘF and V is called an F -frame operator for {gi}i∈N. When
(4) holds and at least the upper inequality in (5) holds, then {gi}i∈N is called
an F -Bessel sequence for XF with respect to ΘF with bounds Bs, s ∈ N0.

When X = XF = Xs and Θ = ΘF = Θs, then one obtains the definitions of
Θ-frame, Banach frame and Θ-Bessel sequence, respectively.
If {gi}i∈N is a pre-F -frame for XF with respect to ΘF with lower bounds As

and upper bounds Bs , s ∈ N0, then for every s ∈ N0 we have

As‖f‖s 6 |||{gs
i (f)}i∈N|||s 6 λsBs‖f‖s, f ∈ Xs,
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where gs
i is the continuous extension of gi on Xs . We will consider the following

operators

(6) Us : Xs → Θs, Usf = {gs
i (f)}i∈N, s ∈ N0,

(7) U : XF → ΘF , Uf = {gi(f)}i∈N,

and

(8) U−1
s : R(Us) → Xs, U−1 : R(U) → XF .

The shift invariant spaces of the form

V (ϕ) =
{ ∑

j∈Zd

cjϕ(· − j)
}

,

where c = {cj}j∈Zd is taken from some sequence space, are considered in [4]. ϕ
is called generator of V (ϕ). The space Vp(ϕ) is the shift invariant space of the
form Vp(ϕ) = { ∑

k∈Zd

ckϕ(· − k) | c = {ck}k∈Zd ∈ `p. Let V0(ϕ) be the space of

finite linear combination of integer translates of ϕ and V0,p(ϕ) be the Lp closure
of V0(ϕ). Obviously, we have V0(ϕ) ⊂ Vp(ϕ) ⊂ V0,p(ϕ). A function in V0,p(ϕ)
is not necessarily generated by `p coefficients. If Vp(ϕ) is itself closed, i.e. a
Banach space, then Vp(ϕ) = V0,p(ϕ).

3. Preliminary result

Considering p-frames for shift invariant subspaces of Lp space, Aldroubi, Sun
and Tung in [4] proved that when a sequence of translations of a finite set of
appropriate functions ϕ1, . . . , ϕr forms an `p-frame for the shift-invariant space
Vp(ϕ1, . . . , ϕr) ⊆ Lp, for some p > 1, then this sequence is also an `r-frame for
Vr(ϕ1, . . . , ϕr) for all values of r > 1.

In this paper we will consider weighted Lp
s , s > 0, spaces. A function f

belongs to Lp
s with weight function ωs(x) = (1 + |x|)s, x ∈ Rd, s > 0, if ωsf

belongs to Lp. Equipped with the norm ‖f‖Lp
s

= ‖ωsf‖Lp , the space Lp
s is a

Banach space. Let s > 0, 1 6 p < +∞ and

Lp
s :=

{
f

∣∣ ‖f‖Lp
s

:=
( ∫

[0,1]d

( ∑

j∈Zd

|f(x + j)|(1 + |x + j|)s
)p

dx
)1/p

< +∞
}

,

L∞s :=
{

f
∣∣ ‖f‖L∞s := sup

x∈[0,1]d

∑

j∈Zd

|f(x + j)|(1 + |x + j|)s < +∞
}

;

W p
s :=

{
f

∣∣ ‖f‖W p
s

:=
( ∑

j∈Zd

sup
x∈[0,1]d

|f(x + j)|p(1 + |j|)ps
)1/p

< +∞
}

;
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`p
s :=

{
c = {ci}i∈N

∣∣ ‖c‖`p
s

=
( ∑

i∈N
|ci|p(1 + |i|)sp

)1/p

< +∞
}

.

Obviously we have W p
s ⊂ W q

s ⊂ L∞s ⊂ Lq
s ⊂ Lp

s ⊂ Lp
s , where 1 6 p 6 q 6 +∞.

For p = 1 and s = 0 we also have L1 = L1.
Next we recall the inequalities from [3].

Lemma 1. a) Let f ∈ Lp
s, g ∈ L1

s and 1 6 p 6 +∞. Then

(9) ‖f ∗ g‖Lp
s

6 ‖f‖Lp
s
‖g‖L1

s
.

b) If f ∈ Lp
s, 1 6 p 6 +∞, and g ∈ W 1

s , then f ∗ g ∈ W p
s and

(10) ‖f ∗ g‖W p
s

6 ‖f‖Lp
s
‖g‖W 1

s
.

c) If c ∈ `p
s and d ∈ `1s, then c ∗ d ∈ `p

s and

(11) ‖c ∗ d‖`p
s

6 ‖c‖`p
s
‖d‖`1s

.

For any sequence c = {ci}i∈N ∈ `p
s and f ∈ Lp

s , 1 6 p 6 +∞, define, as in
[4], their semi-convolution f ∗′ c by

(f ∗′ c)(x) =
∑

j∈Zd

cjf(x− j), x ∈ Rd.

Lemma 2. a) If f ∈ W p
s , 1 6 p 6 +∞, and c ∈ `1s, then the function f ∗′ c

belongs to W p
s and

(12) ‖f ∗′ c‖W p
s

6 ‖c‖`1s
‖f‖W p

s
,

and also if f ∈ W 1
s and c ∈ `p

s, 1 6 p 6 +∞, then the function f ∗′ c belongs to
W p

s and

(13) ‖f ∗′ c‖W p
s

6 ‖c‖`p
s
‖f‖W 1

s
.

b) If f ∈ Lp
s and c ∈ `1s, than f ∗′ c belongs to f ∈ Lp

s and

(14) ‖f ∗′ c‖Lp
s

6 ‖c‖`1s
‖f‖Lp

s
.

c) f ∗′ · is a continuous map from `p
s to Lp

s, and also from `1s to Lp
s if f ∈ Lp

s,
1 6 p 6 +∞.

We will give the proof of the next lemma since it is differently possed in [4].

Lemma 3. Let f ∈ Lp
s and g ∈ W 1

s , 1 6 p 6 +∞, s > 0. Then the sequence{ ∫
Rd

f(x)g(x− j)dx
}

j∈Zd
belongs to `p

s and we have

(15)
∥∥∥
{ ∫

Rd

f(x)g(x− j)dx
}

j∈Zd

∥∥∥
`p

s

6 ‖f‖Lp
s
‖g‖W 1

s
.
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Proof. Using inequality (11) for fixed x ∈ Rd, we obtain

∥∥∥
{ ∫

Rd

f(x)g(x− j)dx
}

j∈Zd

∥∥∥
`p

s

=
( ∑

j∈Zd

∣∣∣
∫

Rd

f(x)g(x− j)dx
∣∣∣
p

(1 + |j|)sp
)1/p

6
( ∑

j∈Zd

( ∫

Rd

|f(x)||g(x− j)|dx
)p

(1 + |j|)sp
)1/p

=
( ∑

j∈Zd

( ∫

[0,1]d

∑

k∈Zd

|f(x + k)||g(x + k − j)|dx
)p

(1 + |j|)sp
)1/p

6
( ∑

j∈Zd

∫

[0,1]d

( ∑

k∈Zd

|f(x + k)||g(x + k − j)|dx
)p

(1 + |j|)spdx
)1/p

=
( ∑

j∈Zd

∫

[0,1]d

( ∑

k∈Zd

|f(x + k)||g(x + k − j)|(1 + |k|)s
)p

dx
)1/p

6
( ∫

[0,1]d

∑

j∈Zd

( ∑

k∈Zd

|f(x + k)||g(x + k − j)|(1 + |k|)s
)p

dx
)1/p

6
( ∫

[0,1]d

∑

j∈Zd

|f(x + j)|p(1 + |j|)sp
( ∑

k∈Zd

|g(x− k)|(1 + |k|)s
)p

dx
)1/p

6 ‖f‖Lp
s

(
sup

x∈[0,1]d

( ∑

k∈Zd

|g(x− k)|(1 + |k|)s
)p)1/p

6 ‖f‖Lp
s
‖g‖W 1

s
. 2

4. Main result

Our main result is related to Theorem 1 in [4].

Let ϕ ∈ Lp
s , 1 6 p 6 ∞. We consider shift-invariant spaces of the form

(16) V p
s (ϕ) =

{ ∑

j∈Zd

cjϕ(· − j)
∣∣∣ c ∈ `p

s

}
.

Note, if s = 0, then we have space V p(ϕ) considered in [4].

Theorem 1. Let ϕ ∈ ⋂
s>0

W 1
s . Then the following statements are equivalent

to each other.

i) V p
s (ϕ) is closed in Lp

s for all s > 0 and for all 1 6 p 6 +∞.

ii) For all s > 0 and 1 6 p 6 +∞, the family {ϕ(·−j) | j ∈ Zd} is a p-frame
for V p

s (ϕ), i.e. there exist positive constants As, Bs (depending on ϕ and
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s) such that
(17)

As‖f‖Lp
s

6
∥∥∥
{ ∫

Rd

f(x)ϕ(x− j)dx
}

j∈Zd

∥∥∥
`p

s

6 Bs‖f‖Lp
s
, ∀f ∈ V p

s (ϕ).

iii) There exist positive constants C1 and C2 such that

(18) 0 < C1 6
∑

j∈Zd

|ϕ̂(x + j)|2 6 C2 < +∞, a.e. x ∈ Rd.

iv) There exist positive constants K1
s and K2

s (depending on ϕ and s) such
that for all 1 6 p 6 +∞ we have

(19) K1
s‖f‖Lp

s
6 inf

c∈M
‖c‖`p

s
6 K2

s‖f‖Lp
s
, ∀f ∈ V p

s (ϕ), s > 0,

where

(20) M =
{

c = {ck}k∈Zd ∈ `p
s | f(·) =

∑

k∈Zd

ckϕ(· − k)
}

.

v) There exists ψ ∈ ⋂
s>0

W 1
s such that

(21)
f =

∑

j∈Zd

〈f, ψ(· − j)〉ϕ(· − j) =
∑

j∈Zd

〈f, ϕ(· − j)〉ψ(· − j), ∀f ∈ V p
s (ϕ).

Proof.
v) ⇒ iv)

Let f =
∑

j∈Zd

〈f, ψ(· − j)〉ϕ(· − j) and let M be given by (20). Using (15) we

have
inf

c∈M
‖c‖`p

s
6

∥∥∥
{ ∫

Rd

f(x)ψ(x− j)dx
}

j∈Zd

∥∥∥
`p

s

6 ‖f‖Lp
s
‖ψ‖W 1

s
.

For K2
s = ‖ψ‖W 1

s
we have the right-hand side of the inequality.

Using (13), we have

‖f‖Lp
s

6 ‖f‖W p
s

= ‖ϕ ∗′ c‖W p
s

6 ‖ϕ‖W 1
s
‖c‖`p

s
,

and for K1
s = 1

‖ϕ‖W1
s

we prove the left-hand side of the inequality (19).

Assertions v) ⇒ ii), ii) ⇔ iv), and iv) ⇒ i) are simple and their proofs are
omitted.

iii) ⇒ iv)
We have already seen that for ϕ ∈ W 1

s and c ∈ `p
s , 1 6 p 6 +∞, the inequality

‖ϕ ∗′ c‖W p
s

6 ‖c‖`p
s
‖ϕ‖W 1

s
,
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holds. With ‖ϕ ∗′ c‖Lp
s

6 ‖ϕ ∗′ c‖W p
s

for all 1 6 p 6 +∞, and K1
s = ‖ϕ‖−1

W 1
s
, we

have that the left side of the inequality (17).
The family {ϕ(· − k) | k ∈ Zd} with the condition (18) is a Riesz basis of

V 2(ϕ) (see [3]), so there exists a unique function ψ ∈ V 2(ϕ) such that {ψ(· −
k) | k ∈ Zd} is also a Riesz basis for V 2(ϕ) and such that it satisfies the
biorthogonality relations

〈ψ(x), ϕ(x)〉 = 1, 〈ψ(x), ϕ(x− k)〉 = 0, k 6= 0.

Theorem 2.3 in [3] says that if ϕ ∈ W 1
s and the family {ϕ(· − k) | k ∈ Zd} is a

Riesz basis for V 2(ϕ), then the dual generator ψ is in W 1
s . Since we have that

ϕ ∈ W 1
s for all s > 0, then we have that ψ ∈ ⋂

s>0

W 1
s . Since

(ϕ ∗′ c)(x) =
∑

k∈Zd

ckϕ(x− k) ∈ V p
s (ϕ),

then ck, k ∈ Zd, can be expressed in the form

ck =
∫

Rd

(ϕ ∗′ c)(x)ψ(x− k)dx.

For 1 6 p 6 +∞ (with usual changes for p = ∞), we have

|ck(1 + |k|)s|p =
∣∣∣
∫

Rd

(ϕ ∗′ c)(x)ψ(x− k)(1 + |k|)sdx
∣∣∣
p

6
( ∫

[0,1]d

∑

j∈Zd

|ϕ ∗′ c|(x + j)|ψ(x + j − k)|(1 + |k|)sdx
)p

6
∫

[0,1]d

( ∑

j∈Zd

|ϕ ∗′ c|(|ψ(x + j − k)|(1 + |k|)s
)p

dx.

We sum over k ∈ Zd and obtain
∑

k∈Zd

|ck|p(1 + |k|)sp 6
∫

[0,1]d

∑

j∈Zd

( ∑

k∈Zd

|ϕ ∗′ c|(x + j)|ψ(x + j − k)|(1 + |k|)s
)p

dx

6
∫

[0,1]d

∑

k∈Zd

|ϕ ∗′ c|p(x + k)|(1 + |k|)sp
( ∑

k∈Zd

|ψ(x + k)|(1 + |k|)s
)p

dx

6 ‖ψ‖p
W 1

s
‖ϕ ∗′ c‖p

Lp
s
.

It follows
‖c‖`p

s
6 ‖ψ‖W 1

s
‖ϕ ∗′ c‖Lp

s
.

For the lower bound in the inequality (19) one may choose K2
s = ‖ψ‖W 1

s
. Finally,

‖c‖`p
s

6 K2
s‖f‖Lp

s
.
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i) ⇒ iii)
Since V p

s (ϕ) is closed in Lp
s for all 1 6 p 6 +∞, s > 0, then for p = 2 and

s = 1 we have the standard assumption on the generator ϕ, i.e. there exist two
constants C1 and C2 such that

0 < C1 6
∑

j∈Zd

|ϕ̂(x + j)|2 6 C2 < +∞, a.e. x ∈ Rd.

2

Corollary 1. Let ϕ ∈ ⋂
s>0

W 1
s . Then V p

s (ϕ) ⊂ V q
s (ϕ), for all 1 6 p 6 q 6

+∞ and s > 0.

Proof. Let f(x) =
∑

k∈Zd

ckϕ(x − k), for some c = {ck}k∈Zd ∈ `p
s , 1 6 p 6

+∞. Since `p
s ⊂ `q

s, 1 6 p 6 q 6 +∞, Theorem 1 implies the inequalities

‖f‖Lq
s

6 Bs‖c‖`q
s

6 B′
s‖c‖`p

s
6 ‖f‖Lp

s
, ∀s > 0, 1 6 p 6 q 6 +∞.

2

Remark 1. From the inequalities (19) and (17) we can conclude that `p
s

and V p
s are isomorphic Banach spaces for all s > 0 and 1 6 p 6 +∞, and for

f ∈ V p
s (ϕ) we have the equivalence between inf

c∈M
{‖c‖`p

s
} and the Lp

s-norm of f .

As a consequence of Theorem 1 and from [3, Theorem 1], and since `p
s1
⊂ `p

s2
,

for 0 6 s2 6 s1, we have the following corollary.

Corollary 2. Let ϕ ∈ ⋂
s>0

W 1
s . Then V p

s1
(ϕ) ⊂ V p

s2
(ϕ) for 0 6 s2 6 s1 and

every 1 6 p 6 +∞.

We construct Fréchet spaces XF,p, p > 1, as the intersection of translator
invariant spaces V p

s (ϕ), s ∈ N. Note that, for 1 6 p 6 +∞,

{0} 6=
⋂

s∈N0

V p
s (ϕ) ⊆ · · · ⊆ V p

2 (ϕ) ⊆ V p
1 (ϕ) ⊆ V p

0 (ϕ) = V p(ϕ).

Also, we have that XF,p =
⋂

s∈N0

V p
s (ϕ) is dense in V p

s (ϕ) for all s ∈ N0. The

corresponding sequence space QF,p, p > 1, is the intersection of the weighted
sequence space `p

s , s ∈ N0. Note that
⋂

s∈N0

`p
s , for every p > 1, is actually

the space of rapidly decreasing sequences s. We proved that if ϕ ∈ W 1
s , then a

sequence {ϕ(·−k) | k ∈ Zd} is a p-frame for V p
s (ϕ) as well as {ϕ(·−k) | k ∈ Zd}

is an r-frame for V r
s (ϕ), for all 1 6 r 6 +∞. So we have that the definition

of XF,p does not depend on p > 1, so {ϕ(· − k) | k ∈ Zd} is a pre-F -frame
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for XF,p as well as that {ϕ(· − k) | k ∈ Zd} is a pre-F -frame for XF,r, for all
1 6 r 6 +∞.

Since the corresponding function space for s is the space of rapidly increasing
functions

S = {f | ‖f‖m = sup
n6m

(1 + |x|2)m/2|f (n)(x)| < +∞},

and its dual is S ′- the space of slowly decreasing distributions, we obtain that
dual space of Fréchet space XF = XF,p, for any p, is isomorphic to (a comple-
mented subspace of) the space S ′.

Denote by P(−π, π) the space of smooth 2π-periodic functions with the
family of norms |θ|k = sup{|θ(k)(t)|; t ∈ (−π, π)}, k ∈ N0. It is a Fréchet space
and its dual is the space of 2π-periodic tempered distributions. Denote by F
and F−1 the Fourier transformation and its inverse transformation, respectively.
We have

Theorem 2. Let ϕ ∈ ⋂
s>0

W 1
s and XF =

⋂
s∈N0

V p
s (ϕ) for some 1 6 p 6 +∞.

Then
XF = F−1(ϕ̂ · P(−π, π)),

in the topological sense.

Proof. For f ∈ XF we have f =
∑

j∈Zd

cjϕ(· − j), for some sequence c =

{cj}j∈Zd ∈ s. Then

f̂ = ̂∑

j∈Zd

cjϕ(· − j) =
( ∑

j∈Zd

cje
ij·

)
ϕ̂.

This implies the assertion. 2
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