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SOME CHARACTERIZATIONS OF INCLINED
CURVES IN EUCLIDEAN En SPACE

Ahmad T. Ali1, Rafael López2

Abstract. We consider a unit speed curve α in the Euclidean n-
dimensional space En and denote the Frenet frame of α by {V1, . . . ,Vn}.
We say that α is a cylindrical helix if its tangent vector V1 makes a
constant angle with a fixed direction U . In this work we give different
characterizations of such curves in terms of their curvatures.
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1. Introduction and statement of results

An helix in the Euclidean 3-space E3 is a curve where the tangent lines
make a constant angle with a fixed direction. An helix curve is characterized by
the fact that the ratio κ/τ is constant along the curve, where κ and τ are the
curvature and the torsion of α, respectively. Helices are well known curves in
classical differential geometry of space curves [4] and we refer to the reader for
recent works on this type of curves [2, 7]. Recently, Magden [3] have introduced
the concept of cylindrical helix in the Euclidean 4-space E4, saying that the
tangent lines make a constant angle with a fixed directions. He characterizes a
cylindrical helix in E4 if and only if the function
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is constant along the curve, where κ3 and κ4 are the third and the fourth
curvature of the the curve. See also [5].

In this work we consider the generalization of the concept of general helices
in the Euclidean n-space En. Let α : I ⊂ R → En be an arbitrary curve in
En. Recall that the curve α is said to be of unit speed (or parameterized by
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the arc-length function s) if 〈α′(s), α′(s)〉 = 1, where 〈, 〉 is the standard scalar
product in the Euclidean space En given by

〈X, Y 〉 =
n∑

i=1

xi yi,

for each X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ En.
Let {V1(s), . . . ,Vn(s)} be the moving frame along α, where the vectors Vi

are mutually orthogonal vectors satisfying 〈Vi,Vi〉 = 1. The Frenet equations
for α are given by ([2])
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Recall that the functions κi(s) are called the i-th curvatures of α. If κn−1(s) =
0 for any s ∈ I, then Vn(s) is a constant vector V and the curve α lies in an
(n − 1)-dimensional affine subspace orthogonal to V , which is isometric to the
Euclidean (n − 1)-space En−1. We will assume throughout this work that all
the curvatures satisfy κi(s) 6= 0 for any s ∈ I, 1 ≤ i ≤ n− 1.

Definition 1.1. A unit speed curve α : I → En is called cylindrical helix if its
tangent vector V1 makes a constant angle with a fixed direction U .

Our main result in this work is the following characterization of cylindrical
helices in the Euclidean n-space En.

Theorem 1.2. Let α : I → En be a unit speed curve in En. Define the functions

(3) G1 = 1, G2 = 0, Gi =
1

κi−1

[
κi−2Gi−2 + G′i−1

]
, 3 ≤ i ≤ n.

Then α is a cylindrical helix if and only if the function

(4)
n∑

i=3

G2
i = C

is constant. Moreover, the constant C = tan2 θ, θ being the angle that makes
V1 with the fixed direction U that determines α.

This theorem generalizes in arbitrary dimensions what happens for n = 3
and n = 4, namely: if n = 3, (4) writes G2

3 = κ1/κ2 = κ/τ and for n = 4, (4)
agrees with (1).
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2. Proof of Theorem 1.2

Let α be a unit speed curve in En. Assume that α is a cylindrical helix curve.
Let U be the direction with which V1 makes a constant angle θ and, without loss
of generality, we suppose that 〈U,U〉 = 1. Consider the differentiable functions
ai, 1 ≤ i ≤ n,

(5) U =
n∑

i=1

ai(s)Vi(s), s ∈ I,

that is,
ai = 〈Vi, U〉, 1 ≤ i ≤ n.

Then the function a1(s) = 〈V1(s), U〉 is constant, and it agrees with cos θ:

(6) a1(s) = 〈V1, U〉 = cos θ

for any s. By differentiating (6) with respect to s and using the Frenet formula
(2) we have

a′1(s) = κ1 〈V2, U〉 = κ1 a2 = 0.

Then a2 = 0 and therefore U lies in the subspace Sp(V1,V3, . . . ,Vn). Because
the vector field U is constant, a differentiation in (5), together with (2) gives
the following ordinary differential equation system

(7)

κ1a1 − κ2a3 = 0
a′3 − κ3a4 = 0
a′4 + κ3a3 − κ4a5 = 0
...
a′n−1 + κn−2an−2 − κn−1an = 0
a′n + κn−1an−1 = 0





Define the functions Gi = Gi(s) as follows

(8) ai(s) = Gi(s) a1, 3 ≤ i ≤ n.

We point out that a1 6= 0: on the contrary, (7) gives ai = 0, for 3 ≤ i ≤ n and
so, U = 0: contradiction. The first (n− 2)-equations in (7) lead to

(9)

G3 =
κ1

κ2

G4 =
1
κ3

G′3

G5 =
1
κ4

[
κ3G3 + G′4

]

...

Gn−1 =
1

κn−2

[
κn−3Gn−3 + G′n−2

]

Gn =
1

κn−1

[
κn−2Gn−2 + G′n−1

]
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The last equation of (7) leads to the following condition;

(10) G′n + κn−1Gn−1 = 0.

We do the change of variables:

t(s) =
∫ s

κn−1(u)du,
dt

ds
= κn−1(s).

In particular, from the last equation of (9), we have

G′n−1(t) = Gn(t)−
(κn−2(t)

κn−1(t)

)
Gn−2(t).

As a consequence, if α is a cylindrical helix, substituting the equation (10) in
the last equation yields

G′′n(t) + Gn(t) =
κn−2(t)Gn−2(t)

κn−1(t)
.

The general solution of this equation is

Gn(t) =
(
A−

∫
κn−2(t)Gn−2(t)

κn−1(t)
sin t dt

)
cos t(11)

+
(
B +

∫
κn−2(t)Gn−2(t)

κn−1(t)
cos t dt

)
sin t,

where A and B are arbitrary constants. Then (11) takes the following form
(12)

Gn(s) =
(
A− ∫ [

κn−2(s)Gn−2(s) sin
∫

κn−1(s)ds
]
ds

)
cos

∫
κn−1(s)ds

+
(
B +

∫ [
κn−2(s)Gn−2(s) cos

∫
κn−1(s)ds

]
ds

)
sin

∫
κn−1(s)ds.

From (10), the function Gn−1 is given by
(13)

Gn−1(s) =
(
A− ∫ [

κn−2(s)Gn−2(s) sin
∫

κn−1(s)ds
]
ds

)
sin

∫
κn−1(s)ds

−
(
B +

∫ [
κn−2(s)Gn−2(s) cos

∫
κn−1(s)ds

]
ds

)
cos

∫
κn−1(s)ds.

From equation (9), we have

n−2∑

i=3

GiG
′
i = G3κ3G4 + G4

(
κ4G5 − κ3G3

)
+ . . .

+ Gn−3

(
κn−3Gn−2 − κn−4Gn−4

)
+ Gn−2G

′
n−2

= Gn−2

(
G′n−2 + κn−3Gn−3

)

= κn−2Gn−2Gn−1
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Substituting (13) in the above equation and integrate it, we have

(14)

∑n−2
i=3 G2

i = C −
(
A− ∫ [

κn−2(s)Gn−2(s) sin
∫

κn−1ds
]
ds

)2

−
(
B +

∫ [
κn−2(s)Gn−2(s) cos

∫
κn−1ds

]
ds

)2

,

where C is a constant of integration. From Equations (12) and (13), we have

(15)
G2

n + G2
n−1 =

(
A− ∫ [

κn−2(s)Gn−2(s) sin
∫

κn−1ds
]
ds

)2

+
(
B +

∫ [
κn−2(s)Gn−2(s) cos

∫
κn−1ds

]
ds

)2

,

It follows from (14) and (15) that
n∑

i=3

G2
i = C.

Moreover, the constant C is calculated as follows. From (8), together with the
(n− 2)-equations (9), we have

C =
n∑

i=3

G2
i =

1
a2
1

n∑

i=3

a2
i =

1− a2
1

a2
1

= tan2 θ,

where we have used (2) and the fact that U is a unit vector field.
We do the converse of Theorem. Assume that the condition (9) is satisfied

for a curve α. Let θ ∈ R be so that C = tan2 θ. Define the unit vector U by

U = cos θ
[
V1 +

n∑

i=3

Gi Vi

]
.

By taking into account (9), a differentiation of U gives that
dU

ds
= 0, which

means that U is a constant vector field. On the other hand, the scalar product
between the unit tangent vector field V1 with U is

〈V1(s), U〉 = cos θ.

Thus α is a cylindrical helix curve. This finishes the proof of Theorem 1.2.
As a direct consequence of the proof, we generalize Theorem 1.2 in Minkowski

space and for timelike curves.

Theorem 2.1. Let En
1 be the Minkowski n-dimensional space and let α : I →

En
1 be a unit speed timelike curve. Then α is a cylindrical helix if and only if

the function
∑n

i=3 G2
i is constant, where the functions Gi are defined as in (3).

Proof. The proof is carried the same steps as above, and we omit the details.
We only point out that the fact that α is timelike means that V1(s) = α′(s) is
a timelike vector field. The other Vi in the Frenet frame, 2 ≤ i ≤ n, are unit
spacelike vectors, and the second equation in (2) changes to V′

2 = κ1V1 +κ2V3

([1, 6]).
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3. Further characterizations of cylindrical helices

In this section we present new characterizations of a cylindrical helix in En.
The first one is a consequence of Theorem 1.2.

Theorem 3.1. Let α : I ⊂ R → En be a unit speed curve in the Euclidean
space En. Then α is a cylindrical helix if and only if there exists a C2-function
Gn(s) such that

(16) Gn =
1

κn−1

[
κn−2Gn−2 + G′n−1

]
,

dGn

ds
= −κn−1(s)Gn−1(s),

where

G1 = 1, G2 = 0, Gi =
1

κi−1

[
κi−2Gi−2 + G′i−1

]
, 3 ≤ i ≤ n− 1.

Proof. Let now assume that α is a cylindrical helix. By using Theorem 1.2 and
by the differentiation of the (constant) function given in (4), we obtain

0 =
n∑

i=3

Gi G′i

= G3κ3G4 + G4

(
κ4G5 − κ3G3

)
+ . . .

. . . + Gn−1

(
κn−1Gn − κn−2Gn−2

)
+ GnG′n

= Gn

(
G′n + κn−1Gn−1

)
.

This shows (16). Conversely, if (16) holds, we define a vector field U by

U = cos θ
[
V1 +

n∑

i=3

Gi Vi

]
.

By the Frenet equations (2), dU
ds = 0, and so, U is constant. On the other hand,

〈V1(s), U〉 = cos θ is constant, and this means that α is a cylindrical helix.

At the end, we give an integral characterization of a cylindrical helix.

Theorem 3.2. Let α : I ⊂ R → En be a unit speed curve in the Euclidean
space En. Then α is a cylindrical helix if and only if the following condition is
satisfied

(17)
Gn−1(s) =

(
A− ∫ [

κn−2Gn−2 sin
∫

κn−1ds
]
ds

)
sin

∫ s
κn−1(u)du

−
(
B +

∫ [
κn−2Gn−2 cos

∫
κn−1ds

]
ds

)
cos

∫ s
κn−1(u)du.

for some constants A and B.
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Proof. Suppose that α is a cylindrical helix. By using Theorem 3.1, let define
m(s) and n(s) by

φ(s) =
∫ s

κn−1(u)du,

(18)
m(s) = Gn(s) cos φ + Gn−1(s) sin φ +

∫
κn−2Gn−2 sin φds,

n(s) = Gn(s) sin φ−Gn−1(s) cos φ− ∫
κn−2Gn−2 cosφ ds.

If we differentiate equations (18) with respect to s, and taking into account of

(17) and (16), we obtain
dm

ds
= 0 and

dn

ds
= 0. Therefore, there exist constants

A and B such that m(s) = A and n(s) = B. By substituting into (18) and
solving the resulting equations for Gn−1(s), we get

Gn−1(s) =
(
A−

∫
κn−2Gn−2 sin φds

)
sin φ−

(
B+

∫
κn−2Gn−2 cosφ ds

)
cosφ.

Conversely, suppose that (17) holds. In order to apply Theorem 3.1, we
define Gn(s) by

Gn(s) =
(
A−

∫
κn−2Gn−2 sin φds

)
cos φ +

(
B +

∫
κn−2Gn−2 cosφds

)
sinφ.

with φ(s) =
∫ s

κn−1(u)du. A direct differentiation of (17) gives

G′n−1 = κn−1Gn − κn−2Gn−2.

This shows the left condition in (16). Moreover, a straightforward computation
leads to G′n(s) = −κn−1Gn−1, which finishes the proof.

We end this section with a characterization of cylindrical helices only in
terms of the curvatures of α. From the definitions of Gi in (3), one can express
the functions Gi in terms of G3 and the curvatures of α as follows:

(19) Gj =
∑j−3

i=0 AjiG
(i)
3 , 3 ≤ j ≤ n,

where

G
(i)
3 =

d(i)G3

dsi
, G

(0)
3 = G3 =

κ1

κ2
.

Then

G4 = κ−1
3 G′3 = A41G

′
3 + A40G3, A41 = κ−1

3 , A40 = 0
G5 = A52G

′′
3 + A51G

′
3 + A50G3, A52 = κ−1

4 A41, A51 = κ−1
4 A′41, A50 = κ−1

4 κ3

and so on. Define the functions Aji = Aij(s), 3 ≤ j, 0 ≤ i ≤ j − 3 as the
following:

A30 = 1, A40 = 0

Aj0 = κ−1
j−1κj−2A(j−2)0 + κ−1

j−1A
′
(j−1)0, 5 ≤ j ≤ n
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Aj(j−3) = κ−1
j−1κ

−1
j−2κ

−1
j−3...κ

−1
4 κ−1

3 , for 4 ≤ j ≤ n

Aj(j−4) = κ−1
j−1

(
κ−1

j−2κ
−1
j−3 . . . κ−1

4 κ−1
3

)′
+ κ−1

j−1κ
−1
j−2

(
κ−1

j−3 . . . κ−1
4 κ−1

3

)′

+ . . . + κ−1
j−1κ

−1
j−2κ

−1
j−3 . . . κ−1

4

(
κ−1

3

)′
,

for 5 ≤ j ≤ n

Aji = κ−1
j−1κj−2A(j−2)i + κ−1

j−1

(
A′(j−1)i + A(j−1)(i−1)

)

for 1 ≤ i ≤ j − 5, 6 ≤ j ≤ n

and Aji = 0 otherwise.
The second equation of (16) leads the following condition:

(20)

An(n−3)G
(n−2)
3 +

(
A′n(n−3) + An(n−4)

)
G

(n−3)
3

+
∑n−4

i=1

[
A′ni + An(i−1) + κn−1A(n−1)i

]
G

(i)
3

+
(
A′n0 + κn−1A(n−1)0

)
G3 = 0, n ≥ 3.

As a consequence of (20) and Theorem 1.2, we have the following corollary.

Corollary 3.3. Let α : I → En be a unit speed curve in En. The next state-
ments are equivalent:

1. α is a cylindrical helix.

2.

0 = An(n−3)

(κ1

κ2

)(n−2)

+
(
A′n(n−3) + An(n−4)

)(κ1

κ2

)(n−3)

+
∑n−4

i=1

[
A′ni + An(i−1) + κn−1A(n−1)i

](κ1

κ2

)(i)

+
(
A′n0 + κn−1A(n−1)0

)(κ1

κ2

)
, n ≥ 3.

3. The function

∑n
j=3

∑j−3
i=0

∑j−3
k=0 AjiAjk

(κ1

κ2

)(i)(κ1

κ2

)(k)

= C

is constant, j − i ≥ 3, j − k ≥ 3.
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[6] Petrović-Torgašev, M., Šućurović, E., W-curves in Minkowski spacetime. Novi.
Sad. J. Math. 32 (2002), 55–65.

[7] Scofield, P.D., Curves of constant precession. Amer. Math. Monthly 102 (1995),
531–537.

Received by the editors January 13, 2009


	Introduction and statement of results
	Proof of Theorem 1.2
	Further characterizations of cylindrical helices

