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EXISTENCE AND UNIQUENESS OF ξη-MULTIPLE
FIXED POINTS OF MIXED MONOTONE

OPERATORS

Neeraj Anant Pande1, J. Achari 2

Abstract. In this paper, we firstly coin the concept of ξη-multiple fixed
point and then obtain necessary and sufficient conditions for a class of
mixed monotone operators to have this point. We see that these con-
ditions can be considerably loosened for monotone operators acting on
pairs of points, which are multiples of the same point. Also when a cone
is chosen to be a normal solid cone and monotone operator on interior of
the cone, the necessary and sufficient conditions get reduced further. The
introduction of adjoint sequence generalizes further the main result.
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1. Introduction

Monotone operators have been the center of attraction for mathematicians
working on fixed point theory [1]-[8]. Monotonicity helps in convergence of
schemes of iterates to fixed points in many situations [7]. Mixed monotone
operators form further interesting class of mappings having combination of two
reverse-directed properties. We devise some results which guarantee generalized
fixed points for mixed monotone operators. We also consider concavity and
convexity properties along with monotonicities as has been done earlier [8].
The uniqueness of the respective fixed points in each case is also a noteworthy
property.

Before beginning our discussion of the basic definitions of the structures that
we work with, we propose a new definition of λ-multiple fixed point.

Definition 1.1. Suppose X and Y are two linear spaces over the same field F
and f : X → Y . For 0 6= λ ∈ F , a point x ∈ X is said to be λ-multiple fixed
point of f if, and only if, f(λx) = x.

This is a new concept introduced by us specially to incorporate a similar
property in a wider sense. In fact, λ-multiple fixed point is generalization of the
usual fixed point in which λ = 1.
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Now we recapitulate basic terminologies required for the development of the
subject matter of this paper.

Definition 1.2. A non-empty closed convex subset P of a real Banach space E
is said to be a cone if

x ∈ P and λ ≥ 0 ⇒ λx ∈ P,
x,−x ∈ P ⇒ x = 0.

If a real Banach space contains a cone, then it can be provided with addi-
tional partial order structure.

Definition 1.3. If P is a cone in a real Banach space E, then E is a partially
ordered set with respect to the partial order relation induced by P given by x ≤ y
if, and only if, y − x ∈ P .

We introduce two types of cones which are of interest for us.

Definition 1.4. A cone P is said to be solid cone if its interior P ◦ = {x ∈ P : x
is interior point of P} is non-empty.

Definition 1.5. A cone P is said to be normal cone if there exists a constant
N > 0 such that for x, y ∈ E, 0 ≤ x ≤ y implies ‖x‖ ≤ N‖y‖.

The positive constant whose existence makes a cone normal is called nor-
mality constant.

Definition 1.6. The set of all elements of the space, which are bounded by some
positive multiples of h is denoted by Ph.
i.e., Ph = {x ∈ E : λ (x)h ≤ x ≤ µ (x)h, for some λ (x) , µ (x) > 0}.

By the very definition, it is clear that Ph ⊂ P and Ph contains all positive
multiples of its own elements. Now using the well-known properties of both
monotonicities simultaneously, one gets the following.

Definition 1.7. An operator A : Ph×Ph → Ph is said to be a mixed monotone
operator if A(x, y) is non-decreasing in the first component and non-increasing
in the second component, i.e., if x1 ≤ x2 and y1 ≥ y2 ⇒ A(x1, y1) ≤ A(x2, y2).

The λ-multiple fixed point concept can be extended to monotone operators.

Definition 1.8. A point x ∈ E is called ξη-multiple fixed point of a mixed
monotone operator A : Ph×Ph → Ph, if and only if, x = A (ξx, ηx) = A (ηx, ξx).

The special case of ξ = η = 1 leads to usual fixed point.

2. Main Results

An obvious and straightforward lemma begins the journey of the main re-
sults.
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Lemma 2.1. Let E be a real Banach space, P a cone in E, h > 0 and A :
Ph × Ph → Ph. Then the following two statements are equivalent:
(a) For all 0 < α < 1, there exists β ≥ 1

α > 1
with α2β < 1 and 0 < θ = θ

(
α2β

)
< 1 such that

(2.1) A (αu, βv) ≥ (
α2β

)θ(α2β)
A (u, v) (for all u, v ∈ Ph, u ≤ v)

(b) For all 0 < α < 1, there exists β ≥ 1
α > 1

with α2β < 1 and 0 < ψ = ψ
(
α2β

)
< 1 such that

(2.2) A (αu, βv) ≥ (
α2β

) [
1 + ψ

(
α2β

)]
A (u, v) (for all u, v ∈ Ph, u ≤ v)

where
(
α2β

) [
1 + ψ

(
α2β

)]
< 1.

Proof. If (a) holds, let ψ
(
α2β

)
=

(
α2β

)θ(α2β)−1 − 1. Then (b) holds with
0 < ψ = ψ

(
α2β

)
< 1 and

(
α2β

) [
1 + ψ

(
α2β

)]
< 1.

Conversely, if (b) holds, it is easy to see that (a) holds with the choice of
0 < θ = θ

(
α2β

)
< 1 as

θ
(
α2β

)
=

log
[(

α2β
) (

1 + ψ
(
α2β

))]

log (α2β)
.

This completes the proof.
The interchangeable usability of the two equivalent conditions in Lemma 2.1

is employed to prove the important ξη-multiple fixed point results ahead.

Theorem 2.1. (see [2],[3],[8]) Suppose that E is a real Banach space, P is
a normal cone in E, h > 0, and A : Ph × Ph → Ph is a mixed monotone
operator such that for all 0 < α < 1, there exists β ≥ 1

α > 1 with α2β < 1 and
0 < θ = θ

(
α2β

)
< 1 such that

A (αu, βv) ≥ (
α2β

)θ(α2β)
A (u, v) (for all u, v ∈ Ph, u ≤ v).

Then for any ξ, η > 0, A has a unique ξη-multiple fixed point x∗ in Ph if, and
only if, there exist u0, v0 ∈ Ph with u0 ≤ v0, u0 ≤ A (ξu0, ηv0) and A (ηv0, ξu0) ≤
v0. Further, for every pair of sequences {xn} and {yn} constructed as

xn = A (ξxn−1, ηyn−1) ,(2.3)
yn = A (ηyn−1, ξxn−1) ,(2.4)

for each n ≥ 1 and x0, y0 ∈ [ξx0, ηy0] , lim
n→∞

xn = lim
n→∞

yn = x∗.

Proof. First we assume that for ξ, η > 0, the given condition is satisfied and
there exist u0 and v0 with u0 ≤ v0, u0 ≤ A (ξu0, ηv0) and A (ηv0, ξu0) ≤ v0.
Now starting with u0 and v0, we construct sequences {un} and {vn} employing
scheme of (2.3) and (2.4),

un = A (ξun−1, ηvn−1) ,

vn = A (ηvn−1, ξun−1) .
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By very definitions, un, vn ∈ Ph for all n. Also, by the given conditions and
mixed monotonicity of A,

{
u0 ≤ A (ξu0, ηv0) = u1

v1 = A (ηv0, ξu0) ≤ v0{
u1 = A (ξu0, ηv0) ≤ A (ξu1, ηv1) = u2

v2 = A (ηv1, ξu1) ≤ A (ηv0, ξu0) = v1

...{
un = A (ξun−1, ηvn−1) ≤ A (ξun, ηvn) = un+1

vn+1 = A (ηvn, ξun) ≤ A (ηvn−1, ξun−1) = vn

Thus, u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ un+1 ≤ · · · ≤ vn+1 ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0.
For each n, there exists 0 < λ ≤ 1 such that λvn ≤ un ≤ vn. Let µn =
sup {0 < λ ≤ 1|λvn ≤ un}. Clearly, 0 < µn ≤ 1, and as {un} and {vn} are non-
retreating, {µn} is non-decreasing sequence. Hence lim

n→∞
µn = µ with 0 < µ ≤ 1.

If possible, suppose that 0 < µ < 1. For each n and corresponding µn, we choose
βn > 0 such that for 0 < µn√

µβn
< 1, the corresponding conditional value is βn

µn
≥

1
µn√
µβn

=
√

µβn

µn
with A

(
µn√
µβn

u, βn

µn
v
)
≥

(
µn

µ

)θ(µn
µ )

A (u, v) for u, v ∈ Ph, u ≤ v.

Also, we choose β > 0, such that ξun ≥ µn√
ββn

ηvn, ηvn ≤ ββn

µn
ξun, and for

0 <
√

µ
β < 1, the corresponding conditional value is β ≥ 1√

µ/β
=

√
β
µ , with

A
(√

µ
β u, βv

)
≥ µθ(µ)A (u, v), for u, v ∈ Ph, u ≤ v. Now

un+1 = A (ξun, ηvn)

≥ A

(
µn√
ββn

ηvn,
ββn

µn
ξun

)

= A

(
µn√
µβn

√
µ

β
ηvn,

βn

µn
(βξun)

)

≥
(

µn√
µβn

)2
βn

µn

(
1 + ψ

((
µn√
µβn

)2
βn

µn

))

×A

(√
µ

β
ηvn, βξun

)

=
µn

µ

(
1 + ψ

(
µn

µ

))
A

(√
µ

β
ηvn, βξun

)

≥ µn

µ
A

(√
µ

β
ηvn, βξun

)

≥ µn

µ

((√
µ

β

)2

β

)(
1 + ψ

((√
µ

β

)2

β

))
A (ηvn, ξun)

=
µn

µ
µ (1 + ψ (µ)) A (ηvn, ξun)

= µn (1 + ψ (µ)) vn+1
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But by definition of µn+1, we have µn+1 ≥ µn (1 + ψ (µ)). As n → ∞, µ ≥
µ (1 + ψ (µ)), and this is a contradiction, since ψ (µ) > 0. So the supposition
that 0 < µ < 1 is wrong and µ = 1.
For any positive integer p,

0 ≤ un+p − un ≤ vn − un ≤ vn − µnvn = (1− µn) vn ≤ (1− µn) v0.

Since P is a normal cone, ‖un+p − un‖ ≤ N (1− µn) ‖v0‖ → N (1− µ) ‖v0‖ =
0, as n → ∞. Thus, {un} is a Cauchy sequence. Similarly, it is seen that
{vn} is also a Cauchy sequence. Completeness of E guarantees that there exist
u∗, v∗ ∈ E such that un → u∗ and vn → v∗. Again, since {un} is non-decreasing
and {vn} is non-increasing with un ≤ vn, un ≤ u∗ ≤ v∗ ≤ vn, in particular,
u∗, v∗ ∈ E. As earlier, v∗ − u∗ ≤ vn − un ≤ (1− µn) vn ≤ (1− µn) v0, and as
n →∞, ‖v∗ − u∗‖ = 0. This gives u∗ = v∗ = x∗, say. Now,
un+1 = A (ξun, ηvn) ≤ A (ξu∗, ηv∗) = A (ξx∗, ηx∗) ≤ A (ηvn, ξun) = vn+1.
As n →∞, A (ξx∗, ηx∗) = x∗, the ξη-multiple fixed point of A.
We prove that this ξη-multiple fixed point is unique.
If possible, suppose that there are two distinct ξη-multiple fixed points, viz., x∗

and y∗ in Ph. So, A (ξx∗, ηx∗) = x∗ and A (ξy∗, ηy∗) = y∗.
Let λ0 = sup

{
λ > 0 : λy∗ ≤ x∗ ≤ (

1
λ

)
y∗

}
, 0 < λ0 ≤ 1.

But if 0 < λ0 < 1, by the given condition, there exists ω ≥
(

1
λ0

)
, such that

A (λ0u, ωv) ≥ (
λ2

0ω
)θ(λ2

0ω)
A (u, v). Now,

x∗ = A (ξx∗, ηx∗)

≥ A

(
ξλ0y

∗, η
(

1
λ0

)
y∗

)

≥ A (λ0ξy
∗, ωηy∗)

≥ (
λ2

0ω
)θ(λ2

0ω)
A (ξy∗, ηy∗)

≥ λ
θ(λ2

0ω)
0 y∗,

and this is not possible since it gives λ
θ(λ2

0ω)
0 > λ0, contradicting the definition

of λ0. Therefore, λ0 = 1. But this means that x∗ = y∗. So, the supposition is
wrong and the ξη-multiple fixed point is unique.
Now, suppose conversely that A has a unique ξη-multiple fixed point x∗ in Ph.
Taking u0 = v0 = x∗, it is straightforward that, u0 = x∗ = A (ξx∗, ηx∗) ≤
A (ξu0, ηv0) and A (ξu0, ηv0) = A (ξx∗, ηx∗) ≤ x∗ = v0

Finally, for x0, y0 ∈ [ξu0, ηv0] and the sequences {xn} and {yn} given by (2.3)
and (2.4), respectively, since ξun ≤ xn ≤ ηvn and ξun ≤ yn ≤ ηvn, and P is a
normal cone, lim

n→∞
xn = lim

n→∞
yn = x∗. This completes the proof of the theorem.

3. Same Element Multiple Arguments Operators

At times, the initial condition for values of mixed monotone operator A may
not be satisfied by all general members of Ph as the two argument components
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of A but only by multiples of the same member. For this situation, the following
corollary comes into picture with the choice of special forms of the initial points
in Theorem 2.1.

Corollary 3.1. (see [8]) Suppose that E is a real Banach space, P is a normal
cone in E, h > 0, and A : Ph×Ph → Ph is a mixed monotone operator such that
for all 0 < α < 1, there exists β ≥ 1

α > 1 with α2β < 1 and 0 < θ = θ
(
α2β

)
< 1

such that
A (αu, βu) ≥ (

α2β
)θ(α2β)

A (u, u) , (for u ∈ Ph) .

Then A has a unique ξη-multiple fixed point x∗ in Ph if, and only if, there exists
x0 ∈ Ph and α0 ∈ (0, 1) , β0 with α2

0β0 < 1 such that α0x0 ≤ A (ξα0x0, ηβ0x0)
and A (ηβ0x0, ξα0x0) ≤ β0x0.

Proof. Taking u0 = α0x0 and v0 = β0x0, and proceeding as in proof of
Theorem 2.1 above, the proof gets completed.

The condition for the two components in the class of mixed monotone oper-
ators considered by us when restricted to multiples of the same members of P ◦,
offers more freedom to the θ function, and necessary and sufficient condition for
the existence of ξη-multiple fixed point is reduced.

Corollary 3.2. (see [4], [8]) Suppose that E is a real Banach space, P is a
normal solid cone in E, and A : P ◦ × P ◦ → P ◦ is a mixed monotone operator
such that for all α ∈ [γ, δ] ⊂ (0, 1), there exists β ≥ 1

α , and 0 < θ = θ (γ, δ) < 1

satisfying A (αx, βx) ≥ (
α2β

)θ(α2β)
A (x, x) for all x ∈ P ◦. Then A has a

unique ξη-multiple fixed point x∗ in P ◦ and for all x0 ∈ P ◦, An (x0, x0) =
A (xn−1, xn−1) → x∗ = A (x∗, x∗).

Proof. For every x0 ∈ P ◦, there exists a 0 < δ < 1, satisfying δx0 ≤
A (ξx0, ηx0) and A (ηx0, ξx0) ≤ 1

δ x0. Using the given hypothesis, for every
α0 ∈ [γ, δ] ⊂ (0, 1), there exist β0 ≥ 1

α0
and 0 < θ0 = θ0 (γ, δ) < 1, such that

A (α0x0, β0x0) ≥
(
α2

0β0

)θ0(γ,δ)
A (x0, x0) .

Interestingly, using mixed monotonicity, this also gives

A (α0x0, α0x0) ≥ A (α0x0, β0x0) ≥
(
α2

0β0

)θ0(γ,δ)
A (x0, x0) , and

A (β0x0, β0x0) ≤ (
α2

0β0

)−θ0(γ,δ)
A

(
α0β0x0, β

2
0x0

)

≤ (
α2

0β0

)−θ0(γ,δ)
A (x0, x0)

For all sequences {γn} satisfying 0 < γn < 1, and γ1 > γ2 > · · · > γn > · · · > 0,
let ∀n, θn = inf

{
θ ∈ (0, 1) |A (αx, αx) ≥ (

α2β
)θ

A (x, x) ∀α ∈ [γn, δ] , x ∈ P ◦
}

.
Clearly, θ1 < θ2 < · · · < θn < · · · < 1, {θn} is a monotonic increasing se-
quence bounded above by 1 and hence its limit exists. Let lim

n→∞
θn = θ with

0 < θ ≤ 1. Now there are two possible cases. Firstly, if δ
1

1−2θ1 > γ1, we
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take such α0 ∈ (γ1, δ1) ⊂ [γ, δ], where δ1 = min
{

δ
1

1−2θ1 , β
1

−1−2θ1
0

}
, for the

corresponding conditional β0, A (ηβ0x0, ξα0x0) ≤ β2θ1
0 A (ηx0, ξx0). From the

choice of δ1, firstly, α0 < δ
1

1−2θ1 , i.e., α1−2θ1
0 < δ, i.e., α1−2θ1

0 < βθ1
0 δ and

α0 <
(
α2

0β0

)θ1
δ; also, β0 ≥ 1

α0
> 1

δ
1

1−2θ1
, i.e., β1−2θ1

0 > 1
δ or β0 >

β
2θ1
0
δ . Now

the choice of u0 = α0x0 and v0 = β0x0 gives u0 = α0x0 ≤
(
α2

0β0

)θ1
δx0 ≤(

α2
0β0

)θ1
A (ξx0, ηx0) ≤ A (ξα0x0, ηβ0x0) = A (ξu0, ηvo), and A (ηv0, ξu0) =

A (ηβ0x0, ξα0x0) ≤ β2θ1
0 A (ηx0, ξx0) ≤ β2θ1

0
1
δ x0 ≤ β0x0 = v0. In this case, all

conditions in Theorem 2.1 are satisfied and there exists the required unique
ξη-multiple fixed point.

In the other case, if δ
1

1−2θ1 ≤ γ1, for n ≥ 2, we take γn = γ1δ
1

1−2θn−1 , which
gives as required that γn > 0 and {γn} is decreasing sequence. There exists

some positive integer N0 such that γn = γ1δ
1

1−2θn−1 < δ
1

1−2θn , for all n ≥ N0.

We take such α0 ∈ (γN0 , δ1) ⊂ [γ, δ], where δ1 = min
{

δ
1

1−2θN0 , β
1

−1−2θN0
0

}
, for

the corresponding conditional β0, A (ηβ0x0, ξα0x0) ≤ β
2θN0
0 A (ηx0, ξx0). Just

as in the previous case, now we also get the required conditions. This completes
the proof of the theorem.

4. A Special Case

Both, Theorem 2.1 and Corollary 3.1 following it, have given the necessary
and sufficient condition for the existence of a unique ξη-multiple fixed point
for the mixed monotone operator A : Ph × Ph → Ph. If instead of Ph, the
interior P ◦ for a solid cone is taken into account for the operator A, and the
function θ = θ

(
α2β

)
involved in the initial condition is restricted to a fixed

fraction 0 < θ < 1, it is quite interesting to see that the necessary and sufficient
condition is again reduced.

Corollary 4.1. (see [2], [8]) Suppose that E is a real Banach space, P is a
normal solid cone in E, and A : P ◦ × P ◦ → P ◦ is a mixed monotone operator
such that for all 0 < α < 1, there exists β ≥ 1

α > 1 with α2β < 1 and 0 < θ < 1
such that

A (αu, βv) ≥ (
α2β

)θ
A (u, v) (for all u, v ∈ Ph, u ≤ v).

Then for every ξ, η > 0, A has a unique ξη-multiple fixed point, and hence also
the usual fixed point, x∗ in P ◦. Also, for any x0, y0 ∈ P ◦, the sequences {xn}
and {yn} defined by,

xn = A (ξxn−1, ηyn−1) ,
yn = A (ηyn−1, ξxn−1)

for each n ≥ 1, are convergent with lim
n→∞

xn = lim
n→∞

yn = x∗
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Proof. For any x0, y0 ∈ P ◦, and ξ, η > 0, we choose a sufficiently small µ0

with the corresponding conditional value ω, satisfying µ0x0 ≤ x0 ≤ ωx0, µ0x0 ≤(
µ2

0ω
)θ

A (ξx0, ηx0) and A (µ0ηωx0, ωξµ0x0) ≤
(
µ2

0ω
)θ

ωx0.
Then taking u0 = µ0x0 and v0 = ωx0, gives u0 ≤ v0. Using the other two
conditions on µ0,

u0 = µox0 ≤ (
µ2

0ω
)θ

A (ξx0, ηx0)
≤ A (ξµ0x0, ηωx0) = A (ξu0, ηv0) = u1,

v1 = A (ηv0, ξu0) = A (ηωx0, ξµ0x0)

≤ (
µ2

0ω
)−θ

A (µ0ηωx0, ωξµ0x0) ≤ ωx0 = v0.

We get the sequences {un} and {vn} like those in Theorem 2.1. Following the
same steps as there, completes this proof.

The extra advantage of Corollary 4.1 is that it works for every ξ and η, and
hence also guarantees the usual fixed point of A.

5. Convexity and Concavity

Like most of the authors working on this line, we now turn to convexity and
concavity in the following well-known senses.

Definition 5.1. An operator A on a real Banach space E is said to be (−γ)-
convex if, and only if, for each x and for each 0 < µ < 1, µγA (µx) ≤ A (x).

Definition 5.2. An operator A on a real Banach space E is said to be concave
if, and only if, for each x and for each 0 < µ < 1, A (µx + (1− µ) y) ≥ µA (x)+
(1− µ)A (y).

Theorem 2.1 can be again applied to obtain the fixed point for mixed mono-
tone operator having concavity property at first component and some (−γ)-
convexity property at the other.

Theorem 5.1. (see [3],[8]) Suppose that E is a real Banach space, P is a
normal solid cone in E, and A : P ◦ × P ◦ → P ◦ is a mixed monotone operator
such that
(a) For fixed y, A (·, y) : P ◦ → P ◦ is concave and for fixed x, A (x, ·) : P ◦ → P ◦

is (−γ)-convex.
(b) There exist u0, v0 ∈ P, 0 < ε < 1, and ξ, η > 0 such that 0 ¿ u0 < v0, u0 ≤
A (ξu0, ηv0) , A (ηv0, ξu0) ≤ v0, and A (0, v0) ≥ εA (u0, v0).
Then A has a unique ξη-multiple fixed point x∗ in [u0, v0]. Further, for every
pair of sequences {xn} and {yn} constructed as

xn = A (ξxn−1, ηyn−1) ,

yn = A (ηyn−1, ξxn−1) ,

for each n ≥ 1 and x0, y0 ∈ [ξu0, ηv0] , lim
n→∞

xn = lim
n→∞

yn = x∗.
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Proof. For all h ∈ P ◦, Ph = P ◦. So, A : Ph × Ph → Ph. For all 0 <
α < 1, we choose β ≥ 1

α and 0 < θ = θ
(
α2β

)
< 1 such that α2β < 1

and
(
α2β

)θ(α2β)
βγ ≤ ε. Now, first using the convexity of A in the second

component and then concavity in the first,

A (αu, βv) ≥
(

1
β

)γ

A

(
αu,

1
β

βv

)
=

(
1
β

)γ

A (αu, v)

=
(

1
β

)γ

A (αu + (1− α) 0, v)

≥
(

1
β

)γ

[αA (u, v) + (1− α)A (0, v)]

≥
(

1
β

)γ

[αA (u, v) + (1− α) εA (u, v)]

=
(

1
β

)γ

[α + (1− α) ε]A (u, v)

=
(

1
β

)γ

[α + ε− αε]A (u, v)

≥
(

1
β

)γ

[α + ε− α] A (u, v) =
(

1
β

)γ

εA (u, v)

≥
(

1
β

)γ (
α2β

)θ(α2β)
βγA (u, v)

=
(
α2β

)θ(α2β)
A (u, v) .

This ensures that all requirements are satisfied for the application of Theorem
2.1, and there exists a unique ξη-multiple fixed point of A. The convergence
of the given sequences to the fixed point is also an easy consequence. This
completes the proof.

6. Further Generalizations

Now, while extending our own results, first of all, we give a generalization
of our Lemma 2.1.

Lemma 6.1. Let E be a real Banach space, P a cone in E, h > 0 and A :
Ph × Ph → Ph. Then the following two statements are equivalent:
(a) For all 0 < α < 1 and u, v ∈ Ph, there exists β ≥ 1

α > 1 with α2β < 1 and
0 < θ = θ

(
α2β, u, v

)
< 1 such that

A (αu, βv) ≥ (
α2β

)θ(α2β,u,v)
A (u, v)

(b) For all 0 < α < 1 and u, v ∈ Ph, there exists β ≥ 1
α > 1 with α2β < 1 and

0 < ψ = ψ
(
α2β, u, v

)
< 1 such that

A (αu, βv) ≥ (
α2β

) [
1 + ψ

(
α2β, u, v

)]
A (u, v)
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where
(
α2β

) [
1 + ψ

(
α2β, u, v

)]
< 1.

Proof. The proof is verbatim similar to that of Lemma 2.1, with replacement
of θ

(
α2β

)
by θ

(
α2β, u, v

)
and ψ

(
α2β

)
by ψ

(
α2β, u, v

)
.

In addition to α2β, the functions θ and ψ in Lemma 6.1 depend on the points
u and v of Ph; whereas in Lemma 2.1, they are free of u and v.

Now we need the concept of adjoint sequence for extending few main results.

Definition 6.1. Suppose E be a real Banach space, P a normal cone in E, h >
0, A : Ph × Ph → Ph be an operator, and ξ, η > 0 and u0, v0 ∈ Ph. If there
exists 0 < λ0 < min

{
η
ξ , 1

}
such that λ0v0 ≤ u0 ≤ v0, we define un and vn for

n > 0 by

un = A (ξun−1, ηvn−1) ,

vn = A (ηvn−1, ξun−1) .

A sequence {ψn} is called ξη-adjoint sequence of A with respect to λ0, u0, and
v0 if, and only if, 0 < λn = λ0 (1 + ψn)n

< 1 for λnvn ≤ un ≤ vn, n ≥ 0.

For mixed monotone operators, this hypothesis and any of the equivalent
conditions (a) or (b) in Lemma 6.1 are sufficient to guarantee the existence of
such ξη-adjoint sequence.

Lemma 6.2. Let E be a real Banach space, P a normal cone in E, h > 0 and
A : Ph × Ph → Ph a mixed monotone operator such that for all 0 < α < 1 and
u, v ∈ Ph, there exists β ≥ 1

α > 1 with α2β < 1 and 0 < θ = θ
(
α2β, u, v

)
< 1

such that A (αu, βv) ≥ (
α2β

)θ(α2β,u,v)
A (u, v). Then for any 0 < ξ ≤ η, u0, v0 ∈

Ph with u0 ≤ v0, and 0 < λ0 < 1 with λ0v0 ≤ u0 ≤ v0, there exists a ξη-adjoint
sequence of A with respect to λ0, u0 and v0.

Proof. Given ξ, η > 0; u0, v0 ∈ Ph with ξu0 ≤ ηv0; and 0 < λ0 < 1, we
choose α, 0 < α < ξλ0

η , with the corresponding conditional β, η
ξλ0

< β, such
that λ0 ≤ α2β < 1. Clearly, v1 = A (ηv0, ξu0) ≥ A (ξu0, ηv0) = u1.
Now, by Lemma 6.1 there exists ψ′1 = ψ′1

(
α2β, u0, v0

)
such that

u1 = A (ξu0, ηv0)

≥ A

(
ξλ0v0, η

1
λ0

u0

)

≥ A (αηv0, βξu0)
≥ (

α2β
) [

1 + ψ′1
(
α2β, u0,v0

)]
A (ηv0, ξu0)

≥ λ0

[
1 + ψ′1

(
α2β, u0,v0

)]
v1

≥ λ1v1,

taking 0 < ψ1 ≤ ψ′1 and 0 < λ1 = λ0 (1 + ψ1) < 1.
Thus, λ1v1 ≤ u1 ≤ v1.
Again, clearly, v2 = A (ηv1, ξu1) ≥ A (ξu1, ηv1) = u2.
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We choose α1, 0 < α1 < ξλ1
η , with the corresponding β1,

η
ξλ1

< β1, such that
λ1 ≤ α2

1β1 < 1.
By Lemma 6.1, there exists ψ′2 = ψ′2

(
α2β, u1, v1

)
such that

u2 = A (ξu1, ηv1)

≥ A

(
ξλ1v1, η

1
λ1

u1

)

≥ A (α1ηv1, β1ξu1)
≥ (

α2
1β1

) [
1 + ψ′2

(
α2

1β1, u1,v1

)]
A (ηv1, ξu1)

≥ λ1

[
1 + ψ′2

(
α2

1β1, u1,v1

)]
v2,

where 0 < λ1 (1 + ψ′2) < 1. Taking ψ2 = min {ψ1, ψ
′
2},

u2 ≥ λ1 (1 + ψ2) v2 ≥ λ0 (1 + ψ2)
2
v2 = λ2v2

with 0 < λ2 = λ0 (1 + ψ2)
2

< 1.
Thus, this time also, λ2v2 ≤ u2 ≤ v2.
Continuing by induction, ∀n, we get λn such that 0 < λn = λ0 (1 + ψn)n

< 1
and λnvn ≤ un ≤ vn. The sequence {ψn} obtained in the process is the required
ξη-adjoint sequence of A with respect to λ0, u0, and v0. This completes the
proof.

We are all set to give the most general result.

Theorem 6.1. (see [8])Suppose that E is a real Banach space, P is a normal
cone in E, h > 0, and A : Ph × Ph → Ph is a mixed monotone operator such
that for all 0 < α < 1 and u, v ∈ Ph, there exists β ≥ 1

α > 1 with α2β < 1 and

0 < θ = θ
(
α2β, u, v

)
< 1 such that A (αu, βv) ≥ (

α2β
)θ(α2β,u,v)

A (u, v). Then
for any ξ, η > 0, A has a unique ξη-multiple fixed point x∗ in Ph if, and only if,
there exist u0, v0 ∈ Ph, satisfying
(a) u0 ≤ v0, u0 ≤ A (ξu0, ηv0) and A (ηv0, ξu0) ≤ v0,
(b) If there exists λ0 > 0 such that λ0v0 ≤ u0, then there exists a ξη-adjoint
sequence {ψn} of A with respect to λ0, u0, and v0 such that lim

n→∞
nψn = ln 1

λ0

Proof. First we assume that for any ξ, η > 0, the given conditions are
satisfied and there exist u0 and v0 in Ph with u0 ≤ v0, u0 ≤ A (ξu0, ηv0) and
A (ηv0, ξu0) ≤ v0. Now starting with u0 and v0, we construct the sequences
{un} and {vn} employing the same recursive scheme,

un = A (ξun−1, ηvn−1) ,

vn = A (ηvn−1, ξun−1) .

By very definitions, un, vn ∈ Ph for all n. Also, by the given conditions and
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mixed monotonicity of A,
{

u0 ≤ A (ξu0, ηv0) = u1

v1 = A (ηv0, ξu0) ≤ v0{
u1 = A (ξu0, ηv0) ≤ A (ξu1, ηv1) = u2

v2 = A (ηv1, ξu1) ≤ A (ηv0, ξu0) = v1

...{
un = A (ξun−1, ηvn−1) ≤ A (ξun, ηvn) = un+1

vn+1 = A (ηvn, ξun) ≤ A (ηvn−1, ξun−1) = vn

Thus, u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ un+1 ≤ · · · ≤ vn+1 ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0.
This guarantees the existence of 0 < λ0 < 1, for which λ0v0 ≤ u0 ≤ v0. So, by
the second condition, we get the ξη-adjoint sequence {ψn} of A with respect to
λ0, u0, and v0 such that un ≥ λ0 (1 + ψn)n

vn and lim
n→∞

nψn = ln 1
λ0

. Now

vn − un ≤ vn − λ0 (1 + ψn)n
vn = [1− λ0 (1 + ψn)n] vn ≤ [1− λ0 (1 + ψn)n] v0.

If N is the normality constant of the normal cone P ,

‖vn − un‖ ≤ N [1− λ0 (1 + ψn)n] ‖v0‖
The adjoint sequence {ψn} is such that ψn → 0 as n →∞. So,

λ0 (1 + ψn)n = λ0

[
(1 + ψn)

1
ψn

]nψn → λ0e
nψn → λ0

1
λ0

= 1

This shows that ‖vn − un‖ → 0 as n → ∞. {un} and {vn} are Cauchy se-
quences. As E is complete, un is non-decreasing, vn is non-increasing, Ph is
closed and un ≤ vn, there exist u∗, v∗ ∈ Ph, such that un → u∗ and vn → v∗ as
n →∞. Since un ≤ u∗ ≤ v∗ ≤ vn, we must have u∗ = v∗ = x∗, say. Now,
un+1 = A (ξun, ηvn) ≤ A (ξu∗, ηv∗) = A (ξx∗, ηx∗) ≤ A (ηvn, ξun) = vn+1. As
n → ∞, x∗ ≤ A (ξx∗, ηx∗) ≤ x∗, implies that A (ξx∗, ηx∗) = x∗, i.e., x∗ is the
ξη-multiple fixed point of A.
We prove that this ξη-multiple fixed point is unique.
If possible, suppose that there are two distinct ξη-multiple fixed points, viz., x∗

and y∗, in Ph. So, A (ξx∗, ηx∗) = x∗ and A (ξy∗, ηy∗) = y∗.
Let λ0 = sup

{
λ > 0|λy∗ ≤ x∗ ≤ (

1
λ

)
y∗

}
, 0 < λ0 ≤ 1.

But if 0 < λ0 < 1, then by the given condition, there exists ω ≥ 1
λ0

, such that

A (λ0u, ωv) ≥ (
λ2

0ω
)θ(λ2

0ω)
A (u, v). Now,

x∗ = A (ξx∗, ηx∗)

≥ A

(
ξλ0y

∗, η
(

1
λ0

)
y∗

)

≥ A (λ0ξy
∗, ωηy∗)

≥ (
λ2

0ω
)θ(λ2

0ω)
A (ξy∗, ηy∗)

≥ λ
θ(λ2

0ω)
0 y∗,
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and this is not possible since it gives λ
θ(λ2

0ω)
0 > λ0, contradicting the definition

of λ0. Therefore, λ0 = 1. But this means that x∗ = y∗. So, the supposition is
wrong and the ξη-multiple fixed point is unique.
Now, suppose conversely that x∗ is a ξη-multiple fixed point of A. We choose
that 0 < α < 1 in our initial condition for which the corresponding β is such

that
(
α2β

)θ(α2β,x∗)
x∗ ≥ α and αξ ≤ βη. Now, taking u0 = αx∗ and v0 = βx∗,

we get u0 ≤ v0. Also,

A (ξu0, ηv0) = A (αξx∗, βηx∗)

≥ (
α2β

)θ(α2β,x∗)
A (ξx∗, ηx∗)

=
(
α2β

)θ(α2β,x∗)
x∗

≥ αx∗ = u0,

A (ηv0, ξu0) = A (βηx∗, αξx∗)

≤ (
α2β

)−θ(α2β,x∗)
A (ηx∗, ξx∗)

=
(
α2β

)−θ(α2β,x∗)
x∗

≤ βx∗ = v0.

Thus the first required condition is satisfied. Now again we define {un} and
{vn} by

un = A (ξun−1, ηvn−1) ,

vn = A (ηvn−1, ξun−1) ,

so that as in proof of Thoerem 2.1,

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ un+1 ≤ · · · ≤ vn+1 ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0;

{un} and {vn} happen to be Cauchy sequences and hence convergent and both
converge to x∗. By monotonocities of {un} and {vn}, we can find {τn} such

that τnvn ≤ un, so that 0 ≤ τn ≤ 1 and τn → 1. Now taking ψn =
(

τn

λ0

) 1
n − 1,

τn = λ0 (1 + ψn)n and λ0 (1 + ψn)n
vn ≤ un, By definition, {ψn} is adjoint

sequence of A with respect to λ0, u0, and v0. And finally,

0 = lim
n→∞

ln τn = lim
n→∞

(
ln λ0 + ln

[
(1 + ψn)

1
ψn

]nψn
)

= lim
n→∞

(
ln λ0 + nψn ln

[
(1 + ψn)

1
ψn

])

giving lim
n→∞

nψn = ln 1
λ0

as required. This completes the proof of the theorem.

Applications. This paper generalizes many results of earlier works [2],
[3], [4], [5], [8]. In most of our hypotheses, the entity θ is not constant, but
a function; in fact, at times a very general function. The conditions used are
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both sufficient as well as necessary to guarantee the existence and uniqueness
of the required fixed point. We use simple metric everywhere instead of more
demanding Thompson or Hilbert metric. In view of all this, the previously
established theorems become simple consequences of the applications of results
of this paper. Further, all the results proved here are for ξη-multiple fixed point
and naturally, as the application, they also guarantee the usual fixed point under
the choice of ξ = η = 1.
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