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AN INTEGRAL UNIVALENT OPERATOR DEFINED
BY GENERALIZED Al-OBOUDI DIFFERENTIAL
OPERATOR ON THE CLASSES 7;, T;, AND S;(p)

Serap Bulut®

Abstract. In [4], Breaz and Breaz gave the univalence conditions of the
integral operator Fy , of the analytic functions belonging to the classes
T2, 72, and S(p).

The purpose of this paper is to generalize the integral operator Fu n by
means of the generalized Al-Oboudi differential operator and investigate
univalence conditions of this generalized integral operator considering the
classes 7;,7;,, and S;(p) (j =2,3,...).
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1. Introduction

Let A be the class of all functions of the form
(1.1) f(z) :erZakzk
k=2
which are analytic in the open unit disk

U={zeC:|z| <1}.

Also, let S denote the subclass of A consisting of functions f which are univalent
in U.

The following definition of fractional derivative given by Owa [7] (also by
Srivastava and Owa [I3]) will be required in our investigation.

The fractional derivative of order v for a function fis defined by

1 d [* f©
1.2 D7 f(z) = —/ ¢ (0<y<1),
(-2 O ta &k oot )
where the function f is analytic in a simply connected region of the complex
z-plane containing the origin, and the multiplicity of (z — £)~7 is removed by
requiring log(z — &) to be real when z — £ > 0.
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It readily follows from (2] that

I'k+1) _
DY = "L k7 (0<y<1,keN={1,2,..}).
Using D7 f, Owa and Srivastava [§] introduced the operator Q7 : A — A,
which is known as an extension of fractional derivative and fractional integral,
as follows:

Vf(z) = TR2=7)2"DIf(z), 7#234,...
_ ~Tk+DI2-7)
(1.3) = kz k:—|—1— " apz".
Note that

Qf(2) = f(2).
n [2], Al-Oboudi and Al-Amoudi defined the linear multiplier fractional
differential operator DY'" as follows:
Df(z) = f(2),
DYf(z) = (L=NQf(z)+ Xz (Qf(2)
(1.4) = D](f(z)), A>0,0<y<1,

DYf(x) = D} (DY'f()),

(1.5) DM f(2) ToN (D’;—lﬂf(z)) , neN

If f is given by (L)), then by (I3), (C4) and (LA, we see that

(1.6) DY f(z) =24 Y Wpn (v, N axz®, n e No=NU{0},
k=2

where

(17) Wi () = | N e L (=)

Remark 1. (i) When v = 0, we get the Al-Oboudi differential operator [1].

(ii) When v = 0 and A = 1, we get the Saldgean differential operator [10].

(iii) When n = 1 and A = 0, we get the Owa-Srivastava fractional differential
operator [g].

Let A; be the subclass of A consisting of functions f given by

(1.8) fR)=z+ > ad®  (GeN=N\{1}={2,3,...}).

k=j+1
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Let 7 be the univalent subclass of A consisting of functions f which satisfy

2f1() .
7o) 1‘<1 (z € ).

Let 7; be the subclass of 7 for which f*)(0) =0 (k =2,3,...,5). Let 7},
be the subclass of 7; consisting of functions f of the form (L)) which satisfy

2f'(2)
(f(2))?

for some p (0 < p < 1), and let us denote 7; 1 = 7;.
For some real p with 0 < p < 2, we define the subclass S(p) of A consisting
of all functions f which satisfy

(1.11) ‘(jé;)>/,

n [12], Singh has shown that if f € S(p), then f satisfies
2(2)
(f(2))?

Let S;(p) be the subclass of A consisting of functions f € A; which satisfy

(1) and

(1.9)

(1.10)

—1’<u (z€)

<p (z € V).

(1.12)

qupﬁ (z € U).

22f'(z
f(2))
and let us denote Sz (p) = S(p).

(1.13)

3— ‘ p|z|j (2 €U,j € NY),

The subclasses 7;, 7}, and S;(p) are introduced by Seenivasagan [11].
The following results will be required in our investigation.
General Schwarz Lemma. [6] Let the function f be regular in the disk

Ur ={z€C:|z| < R}, with |f(2)] < M for fixed M. If f has one zero with
multiplicity order bigger than m for z = 0, then

M m
PN < A" (=€ Ug)
The equality can hold only if f(z) = e (M/R™) 2™, where 0 is a constant.
Theorem A. [9] Let « € C, Rea > 0 and f € A. If [ satisfies

2f"(2)
f'(z)

1_ ‘Z|2Rea

Rea

<1 (z € 1),
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then, for any complex number B with Re 8 > Rea, the integral operator

1

(1.14) Fs(z) = {ﬁ/ztﬁ‘lf’(t)dt}ﬁ

0

1s in the class S.

In [4], Breaz and Breaz gave the following results.

Theorem B. [4] Let g; € Tz, gi(2) = 2+ alz® +aiz* +--- \Vi=1,n, n €N
which satisfy the properties
229i(2)
(9i(2))?

If 1g:(2)| < 1, Vz € U, Vi = 1,n, then for every complex number «, satisfying
the properties

—1‘ <1, VzelU,¥i=1,n.

Rea

Rea >0, Re(n(a—1)+1)>Rea, and |a—1]< 3
n

the function

1
n(a—1)+1

119)  Fun() = {(nla =0+ 1) [ (@) (gul)" e}

s univalent.

Theorem C. [4] Let g; € Tz ., 9i(2) = z4asz3+ai2z*+ - Vi=1,n, n € N,
a € C, Rea >0 so that

Rea
n(p+2)
If 1gi(2)| <1, Vz €U, i =1,n, then we have F, , € S.

Re(n(a —1)+1) > Rea, |a—1]|<

Theorem D. [4] Let g; € S(p), 0 < p < 2, gi(2) = 2+ alz® +alz + -,
Vi=1,n, n€N, a € C, Rea > 0 so that

Re(n(a—1)+1) >Rea, |a—1]< %.

If 19:(2)] <1, Vz € U, i = 1,n, then we have F, , € S.
In [3], Breaz gave the extensions of Theorems B, C, and D as follows.

Theorem B'. [3] Let M > 1, g; € T3, gi(2) = z +a%2® +alz + -+,
i€ {l,...,n}, n €N so that it satisfies the properties
2 gi(2)

(9:(2))?

—1‘<17 VzeUVie{l,...,n}.
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If 1g:i(2)| < M, Vz €U, Vi € {1,...,n}, then for every complex number o, such
that
Rea

Rea > 1 < e
ea>1, |a |_(2M+1)n

the function Fy , is univalent.

Theorem C/. [3} Let M Z 17 g; € 772)”’ gl(z;) = Z—|—aéz3 +aiz4 + cee
ie{l,...,n}, neN. Let a € C, be such that

Rea

Rea > 1, < "
ea= [ |_n(Mu+M+l)

If |g:i(2)| < M, VzeU, ie{l,...,n}, then the function F, , € S.

Theorem D'. [3] Let M > 1, g; € S(p), 0 < p < 2, gi(2) = z + a}z® +
alz*+--- ie{l,...,n}, neN. Let a € C be such that

Rea

Rea > 1, < —
ezl le—ll= Tor =3

If |g:i(2)| < M, VzeU, ie{l,...,n}, then the function F, , € S.

Now, we define a new general integral operator by means of the generalized
Al-Oboudi differential operator as follows.

Definition 1. Let n € N, m € Ng, a € C, A > 0, 0 < v < 1. We define the

integral operator Gy by
(1.16)

2 n CE s
Gy (2) = {[n (a—1)+ 1]/0 H (DY gs()* " dt} (z €U,

where g1,...,9, € Aand D}"" is the generalized Al-Oboudi differential opera-
tor.

Remark 2. In the special case n = 1 we obtain the integral operator

(1.17) G (z) = {a/o (DT g (1)) dt}“ (» € U).

Remark 3. If we set v = 0 in ([TI6) and (I7)), then we get the integral
operators G, m o and G, o respectively defined in [5].

In this paper we generalize the results of [3].
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2. Main Results
Theorem 2.1. Let g;, defined by

(2.1) gi(z) =z + Z ak,izk

k=j+1

S. Bulut

be in the class T; forie {l,...,n},n €N, j € Nj, and satisfy the properties

2% (DY gi(2))

O Tg(2)?

If

|DT7791(2)|§M, (Mlzl,ZGU,ZG{l,,

and o € C be such that

Re(n(a —1)+1)>Rea >0, and |a—1|<

m,y
Dy"9ilz) =1+ Z Ui (7, A) agi2 1
_]J,-l
and D )
A Gilz
=2 40
. #
for all z € U.

From (LI6) we obtain that

<1l (z€eU,ied],...,

n})?

Rea

(n € No)

Y (2M; + 1)
then the integral operator G\"\""" defined by (LIG) is in the class S.
Proof. Since g; € 7T; (i € {1,...,n},n €N, j € N}), by (L), we have

a—1 n(aj1)+1
Gy (2) = {(n(a—1)+1 / (o= 1)H< 3 it ) dt} :
0

Define a function

(2.2) h(z) = /0 ﬁ (W)al dt.

Then we obtain
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From (Z3)), we get
1— 2R | 20" (2)
Rea h(z)
1- |2\2Rea 2 (DY gi(2))" || DX gil2)
2.4 < ——|a—1 1].
4 < g 'Z (e
From the hypothesis, we have |DY"7g;(z)| < M; (= € U; i € {1,...,n}), then
by the general Schwarz lemma we obtain that
IDY"7gi(2)| < Milz|  (i€{l,....n};z€T).
We apply this result in inequality (24]), then we find
1— 2R | 207 (2)
Rea R (z)
1- |2\2Rea "9i(2))’
< ———|a—1 —a——— M, +1
- Rea |Z Dm,vgl z))? "
S (L e
- Rea gi(2))?
< iy Z (2M; + 1)
-  Rea
< 1
since |a — 1] < % Applying Theorem A, we obtain that G’ is in
the class S. O
Corollary 2.2. Let g;, defined by 2.1)), be in the class T; fori € {1,...,n},
n € N, j € N, and satisfy the properties
2 (DY gi(2))
——1 <1 (zeU ie{l,...,n}).
If
IDY"7gi(2)] <M (M >1;2€U;ie{l,...,n}),
and o € C be such that
Re(n(a—1)+1) >Rea >0, and \04—1|<ﬂ
- ’ - (2M + 1)n’
then the integral operator G\ defined by (ILIG)) is in the class S.
Proof. In Theorem 2.1l we consider M; = My =---= M, = M. O
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Corollary 2.3. In Corollary22, if we set DA gi = Dgl’ogi =g; 1€{l,...

and
(i) j = 2, then we have Theorem B’'.
(ii) j = 2 and M = 1, then we have Theorem B.

Theorem 2.4. Let g;, defined by 2.1)), be in the class T; . forie {1,...

n € N, j € N7, and satisfy the properties

2 (DY gi(2))

Org(2)?

<wp, O<p,<1,zeU ie{l,...,n}).

If
IDY7gi(2)] < M (M; > 15 z € Us i € {1,...,n}),

and o € C be such that
Rea

Re(n(a —1)+1) >Rea >0, and |a—1]<

then the integral operator G\'\""" defined by (LIB) is in the class S.

oy (g +1)M; + 1)

Proof. Considering the function h defined by (Z2), we take the same steps as

in the proof of Theorem 2.1 Then, we obtain that

1—|z2R 207 (2)
Rea h(z)
S “Rea | 1§;<<m e )

IN

a—1| «—
‘Rea|2((ui+1)Mi+l)§1
1=1

for g; € T;,, (i € {1,...,n}). In view of Theorem A, we have G\'["" € S. O

Corollary 2.5. Let g;, defined by 2.1)), be in the class T; ,,, forie {1,.
n € N, j € N7, and satisfy the properties

2 9:(2))

wmw4»2‘1

<p, (O<p;<1,zeU,ie{l,...,n}).

If
IDY"7gi(z)| <M (M >1;2€Usie{l,...,n}),

and o € C be such that
Rea

Re(n(a—1)+1) >Rea>0, and |a—1|<

then the integral operator G\'\""" defined by (LIB) is in the class S.

oy (( + )M + 1)

SO
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Proof. In Theorem 2.4, we consider M; = My =---= M, = M. O

Corollary 2.6. Let g;, defined by (Z1)), be in the class T;, forie {1,...,n},
n € N, j € N, and satisfy the properties

2 (D} gi(2)

O g2

<p (O<p<l zeU ie{l,...,n}).

If
DY 7gi(z)| < M (M > 15z € Usi € {1,...,n}),

and o € C be such that
Rea
(w+ 1M+ 1)n

then the integral operator GY\'\""" defined by (LIG) is in the class S.

Re(n(a—1)+1) >Rea>0, and |a—1|<

Proof. In Corollary 2.5 we consider pq = ptg = -+ = p,, = . O

Corollary 2.7. In Corollary2.8, if we set D>\ gi = Dgl’ogi =g (ie{l,...,n})
and

(i) j =2, then we have Theorem C’.

(ii) 7 =2 and M =1, then we have Theorem C.

Theorem 2.8. Let g;, defined by 2.1)), be in the class S;(p;) fori € {1,...,n},
n € N, j € N, and satisfy the properties

2% (DY gi(2))

O Tg(2)?

<pi (0<p;i<2 ze€U, ie{l,...,n}).

If
DY gi(2)] < My (M; > 1; 2 € U3 i € {1,...,n}),

and o € C be such that

Rea
> (i + )M + 1)
then the integral operator GY\'\""" defined by (LIB) is in the class S.

Re(n(a —1)+1) >Rea >0, and Ja—1|<

Proof. Considering the function h defined by (22)) and following the same way
as in the proof of Theorem 2. we see that

1—[z2R? | 207 (2)
Rea h(z)
I (Z))’
O (R )
< |01;goj|2((pi+l)Mi+1)§l
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for g; € Sj(pi) (i €{1,...,n}). Therefore, we get Gy'"” € S by Theorem
A. O

Corollary 2.9. Let g;, defined by 211, be in the class Sj(p;) fori e {1,...,n},
n € N, j € N, and satisfy the properties

22 (DY gi(2))

(Dm’”gx DER.

<p; (0<p; <2 2z€U,ie{l,...,n}).

If
DX 7gi(2)| < M (M 215 2 € U3 i € {1,....m}),

and o« € C be such that

Rea

Re(n(a—1)+1)>Rea>0, and |a—1|< =5
(n{ )+ | | doici((pi + )M + 1)

then the integral operator GY\'\""" defined by (LIB) is in the class S.

Proof. In Theorem 2.8, we consider My = My = --- = M,, = M. O

Corollary 2.10. Let g;, defined by (21)), be in the class S;(p) fori e {1,...,n},
n € N, j € NY, and satisfy the properties

2% (DY gi(2))

O Tg(2)?

<p (0<p<2 2z€eU,ie{l,...,n}).

If
DY gi(2)] < M (M >1;2€Usie{l,...,n}),

and o € C be such that

Rea

_ > < 7
Re(n(a—1)+1)>Rea >0, and |a-1|< ((p+1)M+1)n’

then the integral operator G\'\""" defined by (LIG) is in the class S.

Proof. In Corollary 229 we consider p; = ps = -+ = p, = p. 0

Corollary 2.11. In Corollary IO, if we set Dg\”gi = DM = g
(i e{l,...,n}) and

(i) j = 2, then we have Theorem D’.

(ii) j =2 and M =1, then we have Theorem D.
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