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AN INTEGRAL UNIVALENT OPERATOR DEFINED
BY GENERALIZED Al-OBOUDI DIFFERENTIAL
OPERATOR ON THE CLASSES Tj, Tj,µ AND Sj(p)

Serap Bulut1

Abstract. In [4], Breaz and Breaz gave the univalence conditions of the
integral operator Fα,n of the analytic functions belonging to the classes
T2, T2,µ and S(p).

The purpose of this paper is to generalize the integral operator Fα,n by
means of the generalized Al-Oboudi differential operator and investigate
univalence conditions of this generalized integral operator considering the
classes Tj , Tj,µ and Sj(p) (j = 2, 3, . . .).
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1. Introduction

Let A be the class of all functions of the form

(1.1) f(z) = z +
∞∑

k=2

akzk

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1} .

Also, let S denote the subclass of A consisting of functions f which are univalent
in U.

The following definition of fractional derivative given by Owa [7] (also by
Srivastava and Owa [13]) will be required in our investigation.

The fractional derivative of order γ for a function f is defined by

(1.2) Dγ
z f(z) =

1
Γ(1− γ)

d

dz

∫ z

0

f(ξ)
(z − ξ)γ

dξ (0 ≤ γ < 1),

where the function f is analytic in a simply connected region of the complex
z-plane containing the origin, and the multiplicity of (z − ξ)−γ is removed by
requiring log(z − ξ) to be real when z − ξ > 0.
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It readily follows from (1.2) that

Dγ
z zk =

Γ(k + 1)
Γ(k + 1− γ)

zk−γ (0 ≤ γ < 1, k ∈ N = {1, 2, . . .}).

Using Dγ
z f , Owa and Srivastava [8] introduced the operator Ωγ : A → A,

which is known as an extension of fractional derivative and fractional integral,
as follows:

Ωγf(z) = Γ (2− γ) zγDγ
z f(z), γ 6= 2, 3, 4, . . .

= z +
∞∑

k=2

Γ(k + 1)Γ (2− γ)
Γ(k + 1− γ)

akzk.(1.3)

Note that
Ω0f(z) = f(z).

In [2], Al-Oboudi and Al-Amoudi defined the linear multiplier fractional
differential operator Dn,γ

λ as follows:

D0f(z) = f(z),
D1,γ

λ f(z) = (1− λ)Ωγf(z) + λz (Ωγf(z))′

= Dγ
λ (f(z)) , λ ≥ 0, 0 ≤ γ < 1,(1.4)

D2,γ
λ f(z) = Dγ

λ

(
D1,γ

λ f(z)
)

,

...
Dn,γ

λ f(z) = Dγ
λ

(
Dn−1,γ

λ f(z)
)

, n ∈ N.(1.5)

If f is given by (1.1), then by (1.3), (1.4) and (1.5), we see that

(1.6) Dn,γ
λ f(z) = z +

∞∑

k=2

Ψk,n (γ, λ) akzk, n ∈ N0 = N∪{0} ,

where

(1.7) Ψk,n (γ, λ) =
[
Γ(k + 1)Γ (2− γ)

Γ(k + 1− γ)
(1 + (k − 1) λ)

]n

.

Remark 1. (i) When γ = 0, we get the Al-Oboudi differential operator [1].
(ii) When γ = 0 and λ = 1, we get the Sălăgean differential operator [10].
(iii) When n = 1 and λ = 0, we get the Owa-Srivastava fractional differential

operator [8].
Let Aj be the subclass of A consisting of functions f given by

(1.8) f(z) = z +
∞∑

k=j+1

akzk (j ∈ N∗1 := N\ {1} = {2, 3, . . .}).
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Let T be the univalent subclass of A consisting of functions f which satisfy

(1.9)
∣∣∣∣
z2f ′(z)
(f(z))2

− 1
∣∣∣∣ < 1 (z ∈ U).

Let Tj be the subclass of T for which f (k)(0) = 0 (k = 2, 3, . . . , j). Let Tj,µ

be the subclass of Tj consisting of functions f of the form (1.8) which satisfy

(1.10)
∣∣∣∣
z2f ′(z)
(f(z))2

− 1
∣∣∣∣ < µ (z ∈ U)

for some µ (0 < µ ≤ 1), and let us denote Tj,1 ≡ Tj .
For some real p with 0 < p ≤ 2, we define the subclass S(p) of A consisting

of all functions f which satisfy

(1.11)

∣∣∣∣∣
(

z

f(z)

)′′∣∣∣∣∣ ≤ p (z ∈ U).

In [12], Singh has shown that if f ∈ S(p), then f satisfies

(1.12)
∣∣∣∣
z2f ′(z)
(f(z))2

− 1
∣∣∣∣ ≤ p |z|2 (z ∈ U).

Let Sj(p) be the subclass of A consisting of functions f ∈ Aj which satisfy
(1.11) and

(1.13)
∣∣∣∣
z2f ′(z)
(f(z))2

− 1
∣∣∣∣ ≤ p |z|j (z ∈ U, j ∈ N∗1),

and let us denote S2(p) ≡ S(p).

The subclasses Tj , Tj,µ and Sj(p) are introduced by Seenivasagan [11].

The following results will be required in our investigation.

General Schwarz Lemma. [6] Let the function f be regular in the disk
UR = {z ∈ C : |z| < R}, with |f(z)| < M for fixed M . If f has one zero with
multiplicity order bigger than m for z = 0, then

|f(z)| ≤ M

Rm
|z|m (z ∈ UR).

The equality can hold only if f(z) = eiθ(M/Rm) zm, where θ is a constant.

Theorem A. [9] Let α ∈ C, Reα > 0 and f ∈ A. If f satisfies

1− |z|2 Re α

Re α

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 (z ∈ U),
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then, for any complex number β with Re β ≥ Re α, the integral operator

(1.14) Fβ(z) =
{

β

∫ z

0

tβ−1f ′(t)dt

} 1
β

is in the class S.

In [4], Breaz and Breaz gave the following results.

Theorem B. [4] Let gi ∈ T2, gi(z) = z +ai
3z

3 +ai
4z

4 + · · · , ∀i = 1, n, n ∈ N
which satisfy the properties

∣∣∣∣
z2g′i(z)
(gi(z))2

− 1
∣∣∣∣ < 1, ∀z ∈ U,∀i = 1, n.

If |gi(z)| ≤ 1, ∀z ∈ U, ∀i = 1, n, then for every complex number α, satisfying
the properties

Re α > 0, Re (n(α− 1) + 1) ≥ Re α, and |α− 1| ≤ Re α

3n

the function

(1.15) Fα,n(z) =
{

(n(α− 1) + 1)
∫ z

0

(g1(t))
α−1

. . . (gn(t))α−1
dt

} 1
n(α−1)+1

is univalent.

Theorem C. [4] Let gi ∈ T2,µ, gi(z) = z+ai
3z

3+ai
4z

4+· · · , ∀i = 1, n, n ∈ N,
α ∈ C, Re α > 0 so that

Re (n(α− 1) + 1) ≥ Re α, |α− 1| ≤ Re α

n(µ + 2)
.

If |gi(z)| ≤ 1, ∀z ∈ U, i = 1, n, then we have Fα,n ∈ S.

Theorem D. [4] Let gi ∈ S(p), 0 < p < 2, gi(z) = z + ai
3z

3 + ai
4z

4 + · · · ,
∀i = 1, n, n ∈ N, α ∈ C, Re α > 0 so that

Re (n(α− 1) + 1) ≥ Reα, |α− 1| ≤ Re α

n(p + 2)
.

If |gi(z)| ≤ 1, ∀z ∈ U, i = 1, n, then we have Fα,n ∈ S.

In [3], Breaz gave the extensions of Theorems B, C, and D as follows.

Theorem B′. [3] Let M ≥ 1, gi ∈ T2, gi(z) = z + ai
3z

3 + ai
4z

4 + · · · ,
i ∈ {1, . . . , n} , n ∈ N so that it satisfies the properties

∣∣∣∣
z2g′i(z)
(gi(z))2

− 1
∣∣∣∣ < 1, ∀z ∈ U,∀i ∈ {1, . . . , n} .
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If |gi(z)| ≤ M, ∀z ∈ U, ∀i ∈ {1, . . . , n}, then for every complex number α, such
that

Reα ≥ 1, |α− 1| ≤ Re α

(2M + 1)n

the function Fα,n is univalent.

Theorem C′. [3] Let M ≥ 1, gi ∈ T2,µ, gi(z) = z + ai
3z

3 + ai
4z

4 + · · · ,
i ∈ {1, . . . , n} , n ∈ N. Let α ∈ C, be such that

Re α ≥ 1, |α− 1| ≤ Re α

n(Mµ + M + 1)
.

If |gi(z)| ≤ M, ∀z ∈ U, i ∈ {1, . . . , n}, then the function Fα,n ∈ S.

Theorem D′. [3] Let M ≥ 1, gi ∈ S(p), 0 < p < 2, gi(z) = z + ai
3z

3 +
ai
4z

4 + · · · , i ∈ {1, . . . , n} , n ∈ N. Let α ∈ C be such that

Reα ≥ 1, |α− 1| ≤ Re α

n(Mp + M + 1)
.

If |gi(z)| ≤ M, ∀z ∈ U, i ∈ {1, . . . , n}, then the function Fα,n ∈ S.

Now, we define a new general integral operator by means of the generalized
Al-Oboudi differential operator as follows.

Definition 1. Let n ∈ N, m ∈ N0, α ∈ C, λ ≥ 0, 0 ≤ γ < 1. We define the
integral operator Gm,γ

λ,α by
(1.16)

Gn,m,γ
λ,α (z) =

{
[n (α− 1) + 1]

∫ z

0

n∏

i=1

(Dm,γ
λ gi(t))

α−1
dt

} 1
n(α−1)+1

(z ∈ U),

where g1, . . . , gn ∈ A and Dm,γ
λ is the generalized Al-Oboudi differential opera-

tor.

Remark 2. In the special case n = 1 we obtain the integral operator

(1.17) Gm,γ
λ,α (z) =

{
α

∫ z

0

(Dm,γ
λ g(t))α−1

dt

} 1
α

(z ∈ U).

Remark 3. If we set γ = 0 in (1.16) and (1.17), then we get the integral
operators Gn,m,α and Gm,α respectively defined in [5].

In this paper we generalize the results of [3].
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2. Main Results

Theorem 2.1. Let gi, defined by

(2.1) gi(z) = z +
∞∑

k=j+1

ak,iz
k

be in the class Tj for i ∈ {1, . . . , n} , n ∈ N, j ∈ N∗1, and satisfy the properties
∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ < 1 (z ∈ U, i ∈ {1, . . . , n}) .

If
|Dm,γ

λ gi(z)| ≤ Mi (Mi ≥ 1 ; z ∈ U ; i ∈ {1, . . . , n}),
and α ∈ C be such that

Re (n(α− 1) + 1) ≥ Re α > 0, and |α− 1| ≤ Re α∑n
i=1(2Mi + 1)

,

then the integral operator Gn,m,γ
λ,α defined by (1.16) is in the class S.

Proof. Since gi ∈ Tj (i ∈ {1, . . . , n} , n ∈ N, j ∈ N∗1), by (1.6), we have

Dm,γ
λ gi(z)

z
= 1 +

∞∑

k=j+1

Ψk,n (γ, λ) ak,iz
k−1 (n ∈ N0)

and
Dm,γ

λ gi(z)
z

6= 0

for all z ∈ U.
From (1.16) we obtain that

Gn,m,γ
λ,α (z) =

{
(n(α− 1) + 1)

∫ z

0

tn(α−1)
n∏

i=1

(
Dm,γ

λ gi(t)
t

)α−1

dt

} 1
n(α−1)+1

.

Define a function

(2.2) h(z) =
∫ z

0

n∏

i=1

(
Dm,γ

λ gi(t)
t

)α−1

dt.

Then we obtain

h′(z) =
n∏

i=1

(
Dm,γ

λ gi(z)
z

)α−1

.

It is clear that h(0) = h′(0)− 1 = 0. Also, a simple computation yields

(2.3)
zh′′(z)
h′(z)

= (α− 1)
n∑

i=1

(
z (Dm,γ

λ gi(z))′

Dm,γ
λ gi(z)

− 1

)
.
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From (2.3), we get

1− |z|2 Re α

Re α

∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣

≤ 1− |z|2 Re α

Re α
|α− 1|

n∑

i=1

(∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

∣∣∣∣∣
∣∣∣∣
Dm,γ

λ gi(z)
z

∣∣∣∣ + 1

)
.(2.4)

From the hypothesis, we have |Dm,γ
λ gi(z)| ≤ Mi (z ∈ U ; i ∈ {1, . . . , n}), then

by the general Schwarz lemma we obtain that

|Dm,γ
λ gi(z)| ≤ Mi |z| (i ∈ {1, . . . , n} ; z ∈ U).

We apply this result in inequality (2.4), then we find

1− |z|2 Re α

Re α

∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣

≤ 1− |z|2 Re α

Reα
|α− 1|

n∑

i=1

(∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

∣∣∣∣∣ Mi + 1

)

≤ 1− |z|2 Re α

Reα
|α− 1|

n∑

i=1

(∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ Mi + Mi + 1

)

≤ |α− 1|
Re α

n∑

i=1

(2Mi + 1)

≤ 1

since |α− 1| ≤ Re α∑n
i=1(2Mi+1) . Applying Theorem A, we obtain that Gn,m,γ

λ,α is in
the class S.

Corollary 2.2. Let gi, defined by (2.1), be in the class Tj for i ∈ {1, . . . , n} ,
n ∈ N, j ∈ N∗1, and satisfy the properties

∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ < 1 (z ∈ U, i ∈ {1, . . . , n}) .

If
|Dm,γ

λ gi(z)| ≤ M (M ≥ 1 ; z ∈ U ; i ∈ {1, . . . , n}),
and α ∈ C be such that

Re (n(α− 1) + 1) ≥ Re α > 0, and |α− 1| ≤ Re α

(2M + 1)n
,

then the integral operator Gn,m,γ
λ,α defined by (1.16) is in the class S.

Proof. In Theorem 2.1, we consider M1 = M2 = · · · = Mn = M .
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Corollary 2.3. In Corollary 2.2, if we set D0,γ
λ gi = Dm,0

0 gi = gi (i ∈ {1, . . . , n})
and

(i) j = 2, then we have Theorem B ′.
(ii) j = 2 and M = 1, then we have Theorem B.

Theorem 2.4. Let gi, defined by (2.1), be in the class Tj,µi
for i ∈ {1, . . . , n} ,

n ∈ N, j ∈ N∗1, and satisfy the properties
∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ < µi (0 < µi ≤ 1, z ∈ U, i ∈ {1, . . . , n}) .

If
|Dm,γ

λ gi(z)| ≤ Mi (Mi ≥ 1 ; z ∈ U ; i ∈ {1, . . . , n}),
and α ∈ C be such that

Re (n(α− 1) + 1) ≥ Re α > 0, and |α− 1| ≤ Re α∑n
i=1((µi + 1)Mi + 1)

,

then the integral operator Gn,m,γ
λ,α defined by (1.16) is in the class S.

Proof. Considering the function h defined by (2.2), we take the same steps as
in the proof of Theorem 2.1. Then, we obtain that

1− |z|2 Re α

Re α

∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣

≤ 1− |z|2 Re α

Re α
|α− 1|

n∑

i=1

(∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ Mi + Mi + 1

)

≤ |α− 1|
Re α

n∑

i=1

((µi + 1)Mi + 1) ≤ 1

for gi ∈ Tj,µi
(i ∈ {1, . . . , n}). In view of Theorem A, we have Gn,m,γ

λ,α ∈ S.

Corollary 2.5. Let gi, defined by (2.1), be in the class Tj,µi
for i ∈ {1, . . . , n} ,

n ∈ N, j ∈ N∗1, and satisfy the properties
∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ < µi (0 < µi ≤ 1, z ∈ U, i ∈ {1, . . . , n}) .

If
|Dm,γ

λ gi(z)| ≤ M (M ≥ 1 ; z ∈ U ; i ∈ {1, . . . , n}),
and α ∈ C be such that

Re (n(α− 1) + 1) ≥ Re α > 0, and |α− 1| ≤ Re α∑n
i=1((µi + 1)M + 1)

,

then the integral operator Gn,m,γ
λ,α defined by (1.16) is in the class S.
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Proof. In Theorem 2.4, we consider M1 = M2 = · · · = Mn = M .

Corollary 2.6. Let gi, defined by (2.1), be in the class Tj,µ for i ∈ {1, . . . , n} ,
n ∈ N, j ∈ N∗1, and satisfy the properties

∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ < µ (0 < µ ≤ 1, z ∈ U, i ∈ {1, . . . , n}) .

If
|Dm,γ

λ gi(z)| ≤ M (M ≥ 1 ; z ∈ U ; i ∈ {1, . . . , n}),
and α ∈ C be such that

Re (n(α− 1) + 1) ≥ Re α > 0, and |α− 1| ≤ Re α

((µ + 1)M + 1)n
,

then the integral operator Gn,m,γ
λ,α defined by (1.16) is in the class S.

Proof. In Corollary 2.5, we consider µ1 = µ2 = · · · = µn = µ.

Corollary 2.7. In Corollary 2.6, if we set D0,γ
λ gi = Dm,0

0 gi = gi (i ∈ {1, . . . , n})
and

(i) j = 2, then we have Theorem C ′.
(ii) j = 2 and M = 1, then we have Theorem C.

Theorem 2.8. Let gi, defined by (2.1), be in the class Sj(pi) for i ∈ {1, . . . , n} ,
n ∈ N, j ∈ N∗1, and satisfy the properties

∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ < pi (0 < pi ≤ 2, z ∈ U, i ∈ {1, . . . , n}) .

If
|Dm,γ

λ gi(z)| ≤ Mi (Mi ≥ 1 ; z ∈ U ; i ∈ {1, . . . , n}),
and α ∈ C be such that

Re (n(α− 1) + 1) ≥ Reα > 0, and |α− 1| ≤ Re α∑n
i=1((pi + 1)Mi + 1)

,

then the integral operator Gn,m,γ
λ,α defined by (1.16) is in the class S.

Proof. Considering the function h defined by (2.2) and following the same way
as in the proof of Theorem 2.1, we see that

1− |z|2 Re α

Re α

∣∣∣∣
zh′′(z)
h′(z)

∣∣∣∣

≤ 1− |z|2 Re α

Reα
|α− 1|

n∑

i=1

(∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ Mi + Mi + 1

)

≤ |α− 1|
Re α

n∑

i=1

((pi + 1)Mi + 1) ≤ 1
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for gi ∈ Sj(pi) (i ∈ {1, . . . , n}). Therefore, we get Gn,m,γ
λ,α ∈ S by Theorem

A.

Corollary 2.9. Let gi, defined by (2.1), be in the class Sj(pi) for i ∈ {1, . . . , n} ,
n ∈ N, j ∈ N∗1, and satisfy the properties

∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ < pi (0 < pi ≤ 2, z ∈ U, i ∈ {1, . . . , n}) .

If

|Dm,γ
λ gi(z)| ≤ M (M ≥ 1 ; z ∈ U ; i ∈ {1, . . . , n}),

and α ∈ C be such that

Re (n(α− 1) + 1) ≥ Reα > 0, and |α− 1| ≤ Re α∑n
i=1((pi + 1)M + 1)

,

then the integral operator Gn,m,γ
λ,α defined by (1.16) is in the class S.

Proof. In Theorem 2.8, we consider M1 = M2 = · · · = Mn = M .

Corollary 2.10. Let gi, defined by (2.1), be in the class Sj(p) for i ∈ {1, . . . , n} ,
n ∈ N, j ∈ N∗1, and satisfy the properties

∣∣∣∣∣
z2 (Dm,γ

λ gi(z))′

(Dm,γ
λ gi(z))2

− 1

∣∣∣∣∣ < p (0 < p ≤ 2, z ∈ U, i ∈ {1, . . . , n}) .

If

|Dm,γ
λ gi(z)| ≤ M (M ≥ 1 ; z ∈ U ; i ∈ {1, . . . , n}),

and α ∈ C be such that

Re (n(α− 1) + 1) ≥ Re α > 0, and |α− 1| ≤ Re α

((p + 1)M + 1)n
,

then the integral operator Gn,m,γ
λ,α defined by (1.16) is in the class S.

Proof. In Corollary 2.9, we consider p1 = p2 = · · · = pn = p.

Corollary 2.11. In Corollary 2.10, if we set D0,γ
λ gi = Dm,0

0 gi = gi

(i ∈ {1, . . . , n}) and
(i) j = 2, then we have Theorem D ′.
(ii) j = 2 and M = 1, then we have Theorem D.
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