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Abstract. Starting from a fixed point relation, we construct very fast
iterative methods of Ostrowski-root’s type for the simultaneous inclusion
of all multiple zeros of a polynomial. The proposed methods possess a
great computational efficiency since the acceleration of the convergence
is attained with only a few additional calculations. Using the concept of
the R-order of convergence of mutually dependent sequences, we present
the convergence analysis of the total-step method with Schröder’s and
Halley’s corrections under computationally verifiable initial conditions.
Further acceleration is attained by the Gauss-Seidel approach (single-step
mode). Numerical examples are given to demonstrate properties of the
proposed inclusion methods.
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1. Introduction

We consider very fast iterative methods for the simultaneous inclusion of
multiple (real or complex) zeros of a polynomial. This kind of methods works
in circular complex interval arithmetic (arithmetic of disks) and produces disks
in the complex plane in every iteration, each of them containing the sought
zero of a polynomial. In this way, the automatic control of the upper bound
of errors is provided. Besides, there exists the ability to incorporate rounding
errors without altering the fundamental structure of interval method, which is
another good property of interval methods. These very convenient features are
the main advantages of interval methods in relation to iterative methods realized
in ordinary complex arithmetic. An additional preference of interval methods
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is a relatively easy construction of computationally verifiable initial conditions
that guarantee the convergence of the iterative process, which is a very hard
problem working in ordinary real or complex arithmetic. The reviewed good
properties launched interval methods in the last decades as a very powerful
self-validated tool in solving many problems of applied mathematics, physics,
engineering branches and other disciplines.

We concentrate on the interval simultaneous methods based on the Ostrowski-
like fixed point relation. Our main goal is to give a precise convergence analysis
that includes computationally verifiable initial conditions. Using an approach
with corrections, proposed first in [2] and [11], we construct modified inter-
val methods of Ostrowski’s type with very fast convergence on the account of
only a few additional numerical operations. In this way, a high computational
efficiency of the proposed methods is achieved.

This paper is organized as follows. In Section 2 we give a fixed-point relation
which makes the basis for the construction of the simultaneous Ostrowski-like
interval method of the fourth order and the criterion for the choice of a proper
square root of a disk. The new total-step methods of Ostrowski’s type with
the increased convergence speed are constructed in Section 3 using Schröder’s
and Halley’s corrections. The convergence analysis of these methods is given in
Section 4. The corresponding single-step methods are discussed in Section 5,
while numerical results are given in Section 6.

The construction of inclusion methods and their convergence analysis, stud-
ied in this paper, require the basic definitions and properties of circular complex
arithmetic (arithmetic of disks), introduced by Gargantini and Henrici [4]. A
circular closed region (disk) Z := {z : |z − c| ≤ r} with center c := mid Z
and radius r := rad Z will be denoted by parametric notation Z := {c; r}.
Throughout this paper, disks in the complex plane will be denoted by capital
letters.

The inversion of a disk Z not containing 0 is defined by the Möbius trans-
formation,

(1) ZIE = {c; r}IE =
{c̄; r}
|c|2 − r2

(|c| > r, i.e., 0 /∈ Z).

The inversion ZIE is an exact operation, that is, ZIE = {z−1 : z ∈ Z}. Besides
the exact inversion ZIE of a disk Z, it is sometime preferable to use the so-called
centered inversion ZIC defined by

(2) ZIC = {c; r}IC :=
{1

c
;

r

|c|(|c| − r)

}
⊇ ZIE (0 /∈ Z).

We will use the symbol INV to denote both mentioned types of inversion of a
disk, that is, INV ∈ {()IE , ()IC}.

Let Zk := {ck; rk} (k = 1, 2), then

Z1 ± Z2 = {c1 ± c2; r1 + r2},
Z1 · Z2 := {c1c2; |c1|r2 + |c2|r1 + r1r2} ⊇ {z1z2 : z1 ∈ Z1, z2 ∈ Z2},
Z1 : Z2 = Z1 · INV Z2 (0 /∈ Z2, INV ∈ {()IE , ()IC}.
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The square root of a disk {c; r} in the centered form, where c = |c|eiθ and
|c| > r, is defined as the union of two disjoint disks (see [3]):

(3) {c; r}1/2 :=
{√

|c|eiθ/2; ρ
} ⋃{

−
√
|c|eiθ/2; ρ

}
, ρ =

r√
|c|+

√
|c| − r

.

Throughout this paper we will use the following simple property

(4) {c1; r1} ∩ {c2; r2} = ∅ ⇐⇒ |c1 − c2| > r1 + r2.

We will also often apply very important inclusion property of circular interval
arithmetic:

if z ∈ Z, then f(z) ∈ f(Z) = {f(z) : z ∈ Z} ⊆ F (Z),

where F is a circular interval extension of a complex function f. More details
about operations and properties of the circular arithmetic can be found in the
books [1], [9], [10] and [13].

2. Fixed-point relation and the basic method

Let P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0 be a monic polynomial of degree

n ≥ 3 with multiple zeros ζ1, . . . , ζk of the respective multiplicities µ1, . . . , µk,
µ1 + · · ·+ µk = n (2 ≤ k ≤ n), that is,

(5) P (z) =
k∏

j=1

(z − ζj)µj ,

and let

δ1(z) =
P ′(z)
P (z)

, δ2(z) =
P ′(z)2 − P (z)P ′′(z)

P (z)2
.

From the factorization (5) we find

δ1(z) =
d

dz

(
log P (z)

)
=

k∑

j=1

µj

z − ζj
=

µi

z − ζi
+

∑
j∈Ik
j 6=i

µj

z − ζj
,

δ2(z) = − d

dz

(
δ1(z)

)
=

k∑

j=1

µj

(z − ζj)2
=

µi

(z − ζi)2
+

∑
j∈Ik
j 6=i

µj

(z − ζj)2
.

where Ik := {1, . . . , k} is the index set. We single out the term z − ζi from the
last relation and obtain the following fixed-point relation

(6) ζi = z −
√

µi[
δ2(z)−

∑
j∈Ik
j 6=i

µj

( 1
z − ζj

)2
]1/2

∗

(i ∈ Ik).
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The symbol ∗ indicates that one of the two complex numbers has to be selected.
This value is chosen in such a way that the right-hand side reduces to ζi.

Suppose that k disjoint disks Z1, . . . , Zk, such that ζj ∈ Zj (j ∈ Ik), have
been found. Let us put z = zi = mid Zi in (6). Since ζj ∈ Zj (j ∈ Ik), according
to the inclusion isotonicity property we obtain

(7) ζi ∈ zi−√µi INV2

[
δ2(zi)−

∑
j∈Ik
j 6=i

µj

(
INV1(zi−Zj)

)2
]1/2

∗
=: Ẑi, (i ∈ Ik),

where INV1, INV2 ∈ {()IE , ()IC}. The subscripts 1 and 2 point to the order
of application of the inversion of disks; first, the inversion INV1 is applied
to the addends, and then INV2 is used in the final step of calculation in the
circular complex arithmetic. This approach is assumed in all iterative formulae
considered in this paper, concerned with interval methods.

Let us introduce the following vectors:

Z (m) =
(
Z

(m)
1 , . . . , Z

(m)
k

)
(current inclusion disks),

Z
(m)
N =

(
Z

(m)
N,1 , . . . , Z

(m)
N,k

)
, Z

(m)
N,i = Z

(m)
i −N

(
z
(m)
i

)
(Schröder’s disks),

Z
(m)
H =

(
Z

(m)
H,1 , . . . , Z

(m)
H,k

)
, Z

(m)
H,i = Z

(m)
i −H

(
z
(m)
i

)
(Halley’s disks),

where

N(zi) = µi
P (zi)
P ′(zi)

, H(zi) =
P (zi)(1 + 1/µi

2

)
P ′(zi)− P (zi)P ′′(zi)

2P ′(zi)

,

and m = 0, 1, ... is the iteration index. The corrections N(z) and H(z) appear in
Schröder’s root-finding method ẑ = z −N(z) of the second order, and Halley’s
method ẑ = z −H(z) of the third order, respectively.

In order to ease the reading and writing, we will sometimes omit the iter-
ation index and write, for example, zi, ri, ẑi, r̂i, Zi, Ẑi, ZN,i, ZH,i instead of
z
(m)
i , r

(m)
i , z

(m+1)
i , r

(m+1)
i , Z

(m)
i , Z

(m+1)
i , Z

(m)
N,i , Z

(m)
H,i . In what follows, we will

write w1 ∼ w2 or w1 = OM (w2) (the same order of moduli) for two complex
numbers w1 and w2 that satisfy |w1| = O(|w2|), where O is the Landau symbol.

Let us define the disk

(8) Sq,i(X,Y) :=
i−1∑

j=1

µj

(
INV1(xi −Xj)

)q

+
k∑

j=1+1

µj

(
INV1(xi − Yj)

)q

,

where q ∈ {1, 2} and INV1 ∈ {()IE , ()IC}. X = (X1, . . . , Xk) and Y =
(Y1, . . . , Yk) are vectors whose components are disks.

Assume that we have found initial disjoint disks Z
(0)
1 , ..., Z

(0)
k containing the

zeros ζ1, . . . , ζk, that is, ζi ∈ Z
(0)
i for all i ∈ Ik. The relation (7) suggests the
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following total-step method for the simultaneous inclusion of all multiple zeros
of a polynomial P,

(9) Z
(m+1)
i = z

(m)
i −√µi INV2

([
δ2

(
z
(m)
i

)−S2,i

(
Z (m),Z (m)

)]1/2

∗

)
(i ∈ Ik),

where INV2 ∈ {()IE , ()IC} and m = 0, 1, . . . . Implementing the iterative for-
mula (9) we first apply the inversion INV1 under the sums (8), and then the
inversion INV2 in the final step. The convergence order of the interval method
(9) is four, independently of the type of applied inversion (see [3]).

According to (3), the square root of a disk in (9) produces two disks; the
symbol ∗ indicates that one of these disks has to be chosen. We can state the
criterion for the choice of a proper disk in a similar manner as in [3]:

Let
[
δ2

(
z
(m)
i

)−S2,i

(
Z (m),Z (m)

)]1/2

= D
(m)
1,i

⋃
D

(m)
2,i . Among the disks D

(m)
1,i

and D
(m)
2,i , one has to choose that disk whose center minimizes

∣∣∣∣∣
P ′

(
z
(m)
i

)

µiP
(
z
(m)
i

) −mid D
(m)
q,i

∣∣∣∣∣ (q = 1, 2).

The convergence of the method (9) can be accelerated by applying the Gauss-
Seidel approach [9]. Thus, we use the already calculated circular approximations
in the same iteration and obtain the single-step method
(10)

Z
(m+1)
i = z

(m)
i −√µi INV2

([
δ2

(
z
(m)
i

)− S2,i

(
Z (m+1),Z (m)

)]1/2

∗

)
(i ∈ Ik).

The R-order of convergence of the single-step method (10) is at least 3 + xn,
where xn is the unique positive root of the equation xn − x− 3 = 0, see [9, Ch.
4]. The values of the R-order belong to the range (4, 5.303) for n ≥ 2.

Remark 1. Omitting the sum in the iterative formulae (9) and (10) we obtain
the Ostrowski iterative formula [7]

z(m+1) = z(m) −
√

µi[
δ2(z(m))

]1/2

∗

with cubic convergence, also known as square-root method. For this reason, the
methods (9) and (10), as well as their modifications which will be considered in
this paper, are referred to as Ostrowski-like methods or square-root methods.
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3. Inclusion methods with corrections

Let us introduce the following abbreviations

r(m) = max
1≤i≤k

r
(m)
i , ρ(m) = min

1≤i,j≤k
i 6=j

{∣∣z(m)
i − z

(m)
j

∣∣− r
(m)
j

}
,

ε
(m)
i = z

(m)
i − ζi, ε(m) = max

1≤i≤k

∣∣ε(m)
i

∣∣, µ = min
1≤i≤k

µi,

Σ(m)
q,i =

∑
j∈Ik
j 6=i

µj(
z
(m)
i − ζj

)q δ
(m)
q,i =

k∑

j=1

µj(
z
(m)
i − ζj

)q , (q = 1, 2).

A Further increase of the convergence speed of the iterative method (9) can be
achieved using Schröder’s and Halley’s corrections in a similar way as in [2, 8, 11].
In this construction we assume that the initial inclusion disks Z

(0)
1 , . . . , Z

(0)
k ,

containing the zeros ζ1, . . . , ζk, are chosen in such a way that each disk Z
(0)
i −

N
(
mid (Z(0)

i )
)

or Z
(0)
i −H

(
mid (Z(0)

i )
)

also contains the zero ζi (i ∈ Ik). This
is the subject of the following assertion.

Lemma 1. Let Z1, . . . , Zk be inclusion disks for the zeros ζ1, . . . , ζk, ζi ∈ Zi,
and let zi = mid Zi, ri = rad Zi, r := max {r1, . . . , rk}, εi = zi − ζi. If the
inclusion disks Z1, . . . , Zk are chosen so that the inequality

(11) ρ > 3(n− µ)r

is valid, then the following is true for every i ∈ Ik :

(i) ζi ∈ Zi ⇒ ζi ∈ ZN,i := Zi −N(zi);

(ii) ζi ∈ Zi ⇒ ζi ∈ ZH,i := Zi −H(zi).

Proof. Of (i): According to the properties of circular arithmetic, we should
prove the implication

|zi − ζi| ≤ ri ⇒ |zi −N(zi)− ζi| ≤ ri.

Using the triangle inequality

|zi − ζj | ≥ |zi − zj | − |zj − ζj | ≥ |zi − zj | − rj ≥ ρ,

we find

(12) |Σq,i| =
∣∣∣∣∣
∑
j∈Ik
j 6=i

µj

(zi − ζj)q

∣∣∣∣∣ ≤
∑
j∈Ik
j 6=i

µj

|zi − ζj |q ≤
n− µi

ρq
, (q = 1, 2).

Using (11) and (12) (for q = 1) we get

ri <
ρ

3(n− µi)
≤ 1

3|Σ1,i| ,
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wherefrom

ri|Σ1,i|
µi − ri|Σ1,i| <

1
2
.

Since |εi| = |zi − ζi| ≤ ri, according to the last inequality we get

|zi −N(zi)− ζi| = |εi −N(zi)| = |εi − µi/δ1,i| = |εi|2
∣∣∣ Σ1,i

µi + εiΣ1,i

∣∣∣

≤ r2
i |Σ1,i|

µi − ri|Σ1,i| <
1
2
· ri < ri.

Of (ii): Similarly as in the proof of assertion (i), we prove the implication

|zi − ζi| ≤ ri ⇒ |zi −H(zi)− ζi| ≤ ri.

Using the denotation

δq,i =
k∑

j=1

µj

(zi − ζj)q
(q = 1, 2),

we obtain

H(zi) =
2δ1,i

1
µ i

δ2
1,i + δ2,i

=

2
k∑

j=1

µj

zi − ζj

1
µi

( k∑

j=1

µj

zi − ζj

)2

+
k∑

j=1

µj

(zi − ζj)2

=
2(µi/εi + Σ1,i)

(µi/εi + Σ1,i)2/µi + µi/ε2
i + Σ2,i

=
2εi(µi + εiΣ1,i)

2µi + 2εiΣ1,i + ε2
i (Σ

2
1,i/µi + Σ2,i)

.

Now we have

zi −H(zi)− ζi = εi − 2εi(µi + εiΣ1,i)
2µi + 2εiΣ1,i + ε2

i (Σ
2
1,i/µi + Σ2,i)

=
ε3
i (Σ

2
1,i/µi + Σ2,i)

2µi + 2εiΣ1,i + ε2
i (Σ

2
1,i/µi + Σ2,i)
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so that, by (11) and (12),

|zi −H(zi)− ζi| =

∣∣∣∣∣
ε3
i (Σ

2
1,i/µi + Σ2,i)

2µi + 2εiΣ1,i + ε2
i (Σ

2
1,i/µi + Σ2,i)

∣∣∣∣∣

<

1
µi

(n− µi

ρ

)2

+
n− µi

ρ2

2µi − 2
n− µi

ρ
ri − 1

µi

(n− µi

ρ

)2

r2
i −

n− µi

ρ2
r2
i

· r3
i

<

(n− µi)nr2
i

µiρ2

4
3
− n(n− µi)r2

i

µiρ2

· ri <

n

9µi(n− µi)
4
3
− n

9µi(n− µi)

· ri

≤ 1
7
· ri < ri.

2

Starting from the fixed-point relation (6), in this section we construct the
total-step Ostrowski-like methods with Schröder’s and Halley’s corrections for
the inclusion of multiple zeros of polynomials. To study the convergence analysis
of both methods simultaneously, we indicate these methods with the superscripts
λ = 1 (for Schröder’s correction) and λ = 2 (for Halley’s correction). Then the
corresponding vectors of disk approximations are denoted by

Z (0) =
(
Z1, . . . , Zk

)
,

Z (1) =
(
Z

(1)
1 , . . . , Z

(1)
k

)
=

(
ZN,1, . . . , ZN,k

)
,

Z (2) =
(
Z

(2)
1 , . . . , Z

(2)
k

)
=

(
ZH,1, . . . , ZH,k

)
.

The corresponding corrections are N(zi) = C(1)(zi) and H(zi) = C(2)(zi). If we
deal without corrections (λ = 0), then the vector of current disk approximations
is denoted by Z (0), as above.

For simplicity, we will omit the iteration index for all quantities at the m-th
iteration and denote the quantities at the (m+1)-st iteration with the additional
symbol ˆ (“hat”). Now, the Ostrowski-like methods with/without corrections
can be presented in the unique form as

(13) Ẑi = zi −√µi INV2

([
δ2,i − S2,i

(
Z (λ),Z (λ)

)]1/2

∗

)
(i ∈ Ik, λ = 0, 1, 2).

4. Convergence analysis

Before stating the convergence theorem and initial convergence conditions
for the simultaneous interval methods (13) with λ = 1 or 2, we give in Lemma
2 some necessary estimations.
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First we find

zi − Zj + C(λ)(zj) =
{
zi − ζj + ξ

(λ)
j ελ+1

j ; rj

}
,

where

ξ
(1)
j = − Σ1,j

µj + εjΣ1,j
and ξ

(2)
j = − Σ2

1,j/µj + Σ2,j

2µj + 2εjΣ1,j + ε2
j (Σ

2
1,j/µj + Σ2,j)

.

For simplicity, let us introduce the abbreviations (taking λ = 1, 2)

h
(λ)
ij = mid

(
zi − Zj + C(λ)(zj)

)
= zi − ζj + ξ

(λ)
j ελ+1

j ,

d
(λ)
ij =

rj∣∣h(λ)
ij

∣∣(∣∣h(λ)
ij

∣∣− rj

) , u
(λ)
ij =

1

h
(λ)
ij

,

s
(λ)
i =

∑
j∈Ik
j 6=i

1(
zi − zj + C

(λ)
j

)2 , c
(λ)
i = δ2,i −

∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2
,

η
(λ)
i =

∑
j∈Ik
j 6=i

µj

[
2
∣∣u(λ)

ij

∣∣d(λ)
ij +

(
d
(λ)
ij

)2
]
, ω

(λ)
i =

η
(λ)
i√∣∣c(λ)

i

∣∣ +
√∣∣c(λ)

i

∣∣− η
(λ)
i

.

In the proof of Lemma 1 we have found the bounds

|zi − ζj | ≥ ρ and |Σk,j | ≤ n− µj

ρq
(q = 1, 2),

so that the moduli of ξ
(1)
j and ξ

(2)
j are bounded by

∣∣ξ(1)
j

∣∣ ≤ |Σ1,j |
µj − |εj ||Σ1,j | ≤

n− µj

ρ

µj − (n− µj)r
ρ

<
3(n− µj)

2ρ

and

∣∣ξ(2)
j

∣∣ ≤
|Σ1,j |2

µj
+ |Σ2,j |

2µj − 2|εj ||Σ1,j | − |εj |2
( |Σ1,j |2

µj
+ |Σ2,j |

)

≤
(n− µj)n

µjρ2

2µj − 2r
n− µj

ρ
− r2 (n− µj)n

µjρ2

<
6
7

(n− µj)n
µjρ2

,
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for all j ∈ Ik. By the last two inequalities we estimate
∣∣h(1)

ij

∣∣ =
∣∣zi − ζj + ξ

(1)
j ε2

j

∣∣ ≥ |zi − ζj | −
∣∣ξ(1)

j

∣∣|εj |2

> ρ− 3(n− µj)r2

2ρ
> ρ− r

2
,

∣∣h(2)
ij

∣∣ =
∣∣zi − ζj + ξ

(2)
j ε3

j

∣∣ ≥ |zi − ζj | −
∣∣ξ(2)

j

∣∣|εj |3

> ρ− 6
7

(n− µj)nr3

µjρ2
> ρ− 1

7
r.

Hence, for λ = 1, 2,

(14)
∣∣h(λ)

ij

∣∣ > ρ− r

2
and

(15)
∣∣h(λ)

ij

∣∣(∣∣h(λ)
ij

∣∣− rj

)
>

(
ρ− r

2

)(
ρ− 3r

2

)
= ρ2

(
1− r

2ρ

)(
1− 3r

2ρ

)
>

3
5
ρ2.

Using (11) we bound

(16) d
(λ)
ij =

rj∣∣h(λ)
ij

∣∣(∣∣h(λ)
ij

∣∣− rj

) <
5r

3ρ2
.

Similarly, by (11) and (14) we obtain

(17)
∣∣u(λ)

ij

∣∣ =
1∣∣h(λ)
ij

∣∣ <
1

ρ− r

2

<
12
11ρ

.

Lemma 2. If (11) holds, then

(i) |δ2,i| > 17µi

18|εi|2 ≥
17µi

18r2
i

;

(ii)
∣∣c(λ)

i

∣∣ >
4µi

5|εi|2 ≥
4µi

5r2
i

;

(iii)
∣∣c(λ)

i

∣∣ > η
(λ)
i ;

(iv) ω
(λ)
i <

12(n− µi)|εi|r
5ρ3

;

(v) ω
(λ)
i |εi| < 1

45
.

Proof. Of (i): By (11) we estimate

|δ2,i| =
∣∣∣µi

ε2
i

+ Σ2,i

∣∣∣ ≥ µi

|εi|2 −
∑
j∈Ik
j 6=i

µj

|zi − ζj |2 ≥
µi

|εi|2
(
1− (n− µi)r2

ρ2

)

>
µi

|εi|2
(
1− n− µ

(3(n− µ))2
)

=
µi

|εi|2
(
1− 1

9(n− µ)

)
≥ 17µi

18|εi|2 ≥
17µi

18r2
i

.
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Of (ii): By virtue of (17) we get
∑
j∈Ik
j 6=i

∣∣u(λ)
ij

∣∣2 ≤ 144(n− µ)
121ρ2

.

Using this inequality, (11) and (i) we find
∣∣c(λ)

i

∣∣ =
∣∣∣δ2,i −

∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2
∣∣∣ ≥ |δ2,i| −

∑
j∈Ik
j 6=i

µj

∣∣u(λ)
ij

∣∣2

>
17µi

18|εi|2 −
144(n− µi)

121ρ2
≥ µi

|εi|2
(17

18
− 144(n− µi)

121
· r2

ρ2

)

>
µi

|εi|2
(17

18
− 144

121 · 9(n− µ)

)
≥ µi

|εi|2
(17

18
− 8

121

)
>

4
5|εi|2 ≥

4
5r2

i

.

Of (iii): By virtue of (16) and (17) we estimate
(18)

η
(λ)
i <

∑
j∈Ik
j 6=i

µj

[
2

12
11ρ

· 5r

3ρ2
+

( 5r

3ρ2

)2]
<

41(n− µ)r
10ρ3

= γnr, γn =
41(n− µ)

10ρ3
.

Using this bound, (11) and (ii), we obtain
∣∣c(λ)

i

∣∣− η
(λ)
i >

∣∣c(λ)
i

∣∣− γnr >
4µi

5r2
i

− 41(n− µ)r
10ρ3

>
27
ρ2

,

which means that
∣∣c(λ)

i

∣∣ > η
(λ)
i .

Of (iv) and (v): According to (11), (18), (ii) and the bound

γnr|εi|2 ≤ 41(n− µ)r3

10ρ3
<

41(n− µ)
10

· 1(
3(n− µ)

)3 =
41

10 · 27(n− µ)2
<

1
25

,

we get

ω
(λ)
i =

η
(λ)
i√∣∣c(λ)

i

∣∣ +
√∣∣c(λ)

i

∣∣− η
(λ)
i

<
12(n− µi)|εi|r

5ρ3
,

which yields

ω
(λ)
i |εi| < 12(n− µi)|εi|2r

5ρ3
≤ 12(n− µ)r3

5ρ3
<

4
45(n− µ)2

≤ 1
45

.

2

Let IM be a simultaneous iterative method for solving equations which pro-
duces k sequences

{
z
(m)
1

}
, . . . ,

{
z
(m)
k

}
of the approximations of the solutions

z∗1 , . . . , z∗k to a polynomial equation P (z) = 0. To estimate the R-order of con-
vergence of the iterative method IM, we introduce the error-sequences

v
(m)
i = ||z(m)

i − z∗i || (i ∈ Ik)

and use the following assertion which is a special case of Theorem 3 given in [6].
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Theorem 1. Given the error-recursions

(19) v
(m+1)
i ≤ αi

k∏

j=1

(
v
(m)
j

)tij (i ∈ Ik, m ≥ 0),

where tij ≥ 0, αi > 0, 1 ≤ i, j ≤ k. Denote the matrix of exponents appearing
in (19) with T, that is T = [tij ]k×k. If the non-negative matrix T has the spectral
radius ρ(T ) > 1 and the corresponding eigenvector x ρ > 0, then the R-order of
all sequences

{
v
(m)
i

}
(i ∈ Ik) is at least ρ(T ).

The matrix Tk = [tij ] is usually called the R-matrix.
Let OR(IM, k) denote the R-order of convergence of an iterative method

IM . If the R-order does not depend on the number of distinct polynomial zeros
k (≤ n), then we write simply OR(IM). For the total-step method (13), we can
state the following convergence theorem under computationally verifiable initial
conditions.

Theorem 2. Suppose that the initial disks Z
(0)
1 , ..., Z

(0)
k are chosen so that

ζi ∈ Z
(0)
i (i ∈ Ik) and the inequality

(20) ρ(0) > 3(n− µ)r(0)

is satisfied. Then the interval method (13) is convergent and the following is
true for each i ∈ Ik and m = 1, 2, . . . :

1◦ ρ(m) > 3(n− µ)r(m);

2◦ ζi ∈ Z
(m)
i ;

3◦ the lower bound of R-order of convergence of the interval method (13) is

OR(13) ≥




λ + 4 (λ = 1, 2), if INV1 = ()IC ,

2 +
√

7 ∼= 4.646, if INV1 = ()IE .

Proof. We first prove that the condition (20) provides disjunctivity of the
initial disks Z

(0)
1 , . . . , Z

(0)
k . Indeed, for an arbitrary pair i, j ∈ Ik (i 6= j) we have

∣∣z(0)
i − z

(0)
j

∣∣ > ρ(0) > 3(n− µ)r(0) > 2r(0) ≥ r
(0)
i + r

(0)
j ,

which means that Z
(0)
i ∩ Z

(0)
j = ∅ (according to (4)).

The assertions of Theorem 2 will be proved by induction. Most frequently,
we omit the iteration index and assume that the superscript λ ∈ {1, 2} points
to the type of correction. First, let m = 0 and let us take into consideration the
initial condition (20). Then, according to Lemma 1, we immediately obtain the
implication

ζi ∈ Zi ⇒ ζi ∈ Z
(λ)
i := Zi − C(λ)(zi) (i ∈ Ik, λ = 1, 2),
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which is necessary to keep the inclusion isotonicity property of the interval
method (13). We should also prove that the new inclusion disks Z

(λ)
1 , . . . , Z

(λ)
k

are nonintersecting. Using (20) we find

|N(zi)| =
∣∣∣∣

µiεi

µi + εiΣ1,i

∣∣∣∣ ≤
ri

1− ri|Σ1,i|/µi
≤ 3

2
ri < 2ri ≤ 2r

and

|H(zi)| =
∣∣∣∣

2εi(µi + εiΣ1,i)
2µi + 2εiΣ1,i + ε2

i (Σ
2
1,i/µi + Σ2,i)

∣∣∣∣

≤ 1∣∣∣∣1 +
ε2
i (Σ

2
1,i/µi + Σ2,i)

2(µi + εiΣ1,i)

∣∣∣∣
· ri <

1

1− 1
8

· ri =
8
7
ri < 2ri ≤ 2r,

so that
∣∣mid Z

(λ)
i −mid Z

(λ)
j

∣∣ =
∣∣zi − C(λ)(zi)− zj + C(λ)(zj)

∣∣
≥ |zi − zj | −

∣∣C(λ)(zi)
∣∣−

∣∣C(λ)(zj)
∣∣

> ρ− 4r > 3(n− µ)r − 4r ≥ ri + rj .

Thus, Z
(λ)
i ∩ Z

(λ)
j = ∅ (i 6= j) in regard to (4). The above facts are necessary

for the inclusion method (13) to be well defined.
We recall that we combine two types of inversions in the iterative formula

(13). For this reason, we use super(sub)scripts “E” and “C” to indicate the
type of the used inversion in (13).

1) The case INV1 = ()IC

Let us consider first the case INV1, INV2 = ()IC . Applying circular arith-
metic operations and the centered inversion (2), we obtain

S2,i

(
Z (λ),Z (λ)

)
=

∑
j∈Ik
j 6=i

µj

(
1

zi − Zj + C(λ)(zj)

)2

=
∑
j∈Ik
j 6=i

µj

{
u

(λ)
ij ; d(λ)

ij

}2

=

{∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2; η(λ)
i

}
.

Now, the iterative formula (13) can be rewritten in the form

(21) Ẑi = zi −
√

µi{
δ2,i −

∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2; η(λ)
i

}1/2

∗

= zi −
√

µi{(
c
(λ)
i

)1/2; ω(λ)
i

} .

Applying once again the centered inversion (2) ( INV2 = ()IC ), from (21) we
obtain

(22) Ẑi = zi −√µi

{
1

(
c
(λ)
i

)1/2
;

ω
(λ)
i∣∣c(λ)

i

∣∣1/2(∣∣c(λ)
i

∣∣1/2 − ω
(λ)
i

)
}

.
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By virtue of (ii), (iv) and (v) of Lemma 2, from (22) we find

r̂i = rad Ẑi =
√

µi ω
(λ)
i∣∣c(λ)

i

∣∣1/2(∣∣c(λ)
i

∣∣1/2 − ω
(λ)
i

) <
12
√

µi (n− µi)|εi|r/5ρ3

√
4/5
|εi|

(√
4/5
|εi| − ω

(λ)
i

)

=
12
√

µi (n− µi)|εi|3r
5ρ3

√
4/5

(√
4/5− |εi|ω(λ)

i

) <
7
√

µi (n− µi)|εi|3r
2ρ3

.

Hence we have the estimations

(23) r̂ = O(ε3r)

and

(24) r̂i <
ri

25
.

From (22) we get

(25) ẑi = mid Ẑi = zi −
√

µi(
c
(λ)
i

)1/2
= zi −

√
µi[

δ2,i −
∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2
]1/2

∗

,

and hence, by (ii) of Lemma 2, we find

(26) |ẑi − zi| =
√

µi∣∣c(λ)
i

∣∣1/2
<

|εi|√
4/5

<
3
2
ri.

Let Ai = Σ2,i −
∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2
, then

Ai = Σ2,i −
∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2 =
∑
j∈Ik
j 6=i

µj

[
1

(zi − ζj)2
− 1(

h
(λ)
ij

)2

]

=
∑
j∈Ik
j 6=i

µj

(
1

zi − ζj
− 1

h
(λ)
ij

)(
1

zi − ζj
+

1

h
(λ)
ij

)

=
∑
j∈Ik
j 6=i

µj

(
ξ
(λ)
j ελ+1

j

(zi − ζj)h
(λ)
ij

)(
1

zi − ζj
+

1

h
(λ)
ij

)
,

and we estimate

(27) |Ai| = O(ελ+1) (λ = 1, 2).

Since

δ2,i −
∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2 =
µi

ε2
i

+ Σ2,i −
∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2 =
µi

ε2
i

(
1 + ε2

i Ai

)
,
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from (25) it follows

(28) ε̂i = ẑi − ζi = zi − ζi −√µi/
(
c(λ)

)1/2 = εi −
√

µi εi[
1 + ε2

i Ai

]1/2

∗

.

Considering that the approximations are close to the zeros (which is provided
by (20)) and taking into account (by (27)) that |ε2

i Ai| = O(|εi|λ+3) is a very
small quantity, we can use the approximation

[
1 + ε2

i Ai

]1/2

∗
∼= 1 +

ε2
i Ai

2
.

According to this we get from (28)

ε̂i
∼= εi − εi

1 +
ε2
i Ai

2

=
ε3
i Ai

2 + ε2
i Ai

.

The denominator is obviously bounded and tends to 2 when εi → 0. In regard
to this fact and (27), we find

(29) |ε̂i| = |εi|3O(ελ+1).

The use of the inequalities (20), (24) and (26) yields

|ẑi − ẑj | ≥ |zi − zj | − |ẑi − zi| − |ẑj − zj | > ρ + rj − 3
2
ri − 3

2
rj

> 3(n− µ)r − 2r > 25r̂
[
3(n− µ)− 2

]
.

According to the last inequality we get for any pairs i, j ∈ Ik (i 6= j)

|ẑi − ẑj | > 2r̂ ≥ r̂i + r̂j (i 6= j),

meaning that the disks Ẑ1, . . . , Ẑk are mutually disjoint (in view of (4)). Fur-
thermore, we have for an arbitrary pair i, j ∈ Ik (i 6= j)

|ẑi − ẑj | − r̂j > 25r̂
[
3(n− µ)− 2

]− r̂ > 3(n− µ)r̂.

Hence
ρ̂ > 3(n− µ)r̂.

Therefore, we have proved that the initial condition (20) leads to the inequality
of the same form but for the index m = 1. Besides, we note that the inequality
(24) of the form r(1) < r(0)/25 points to the rigorous contraction of the new
circular approximations Ẑ1, . . . , Ẑk.

Repeating the above analysis and the argumentation for an arbitrary index
m ≥ 0, we prove that previously derived relations hold for the index m+1. Since
these relations have already been proved for m = 0, according to induction it
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follows that, under the condition (20), they are valid for all m ≥ 1. In particular,
we have

(30) ρ(m) > 3(n− µ)r(m)

(the assertion 1◦) and

(31) r(m+1) <
r(m)

25
.

From the inequality (31) we conclude that the sequence of maximal radii
{r(m)} tends to 0, which means that the inclusion method (13) is convergent.
Furthermore, since the inequality (30) holds, the implications considered in
Lemma 1 are valid for arbitrary m. Therefore, the Ostrowski-like method (13)
with corrections is well defined at each iterative step.

Suppose that ζi ∈ Z
(m)
i for each i ∈ Ik. Then from (7) and (13) we obtain

that ζi ∈ Z
(m+1)
i (according to the inclusion isotonicity). Since ζi ∈ Z

(0)
i (the

assumption of Theorem 2) it follows by mathematical induction that ζi ∈ Z
(m)
i

for each i ∈ Ik and m = 0, 1, ... (the assertion 2◦).
It remains to determine the lower bound of the R-order of convergence of the

method (13) (the assertion 3◦). From (23) we observe that the sequences
{
r
(m)
i

}

and
{
ε
(m)
i

}
of the radii and errors are mutually dependent. For simplicity, as

usual in this type of analysis, we adopt 1 > ε(0) = r(0) > 0, which means
that we deal with the “worst case” model. This assumption does not have the
influence on the final result since the lower bound of the R-order of convergence
is obtained in a limit process.

From (23) and (29) we observe that the sequences
{
ε(m)

}
and

{
r(m)

}
behave

as follows

ε(m+1) ∼ (
ε(m)

)λ+4
, r(m+1) ∼ (

ε(m)
)3

r(m) (λ = 1, 2).

Using these relations we form the R-matrix T
(C)
2 =

[
λ + 4 0

3 1

]
(in regard

to (19)) and find its spectral radius ρ
(
T

(C)
2

)
= λ + 4 and the corresponding

eigenvector x ρ =
(
(λ + 3)/3, 1

)
> 0. Hence, according to Theorem 1, we get

OR

(
(13)C

) ≥ ρ
(
T

(C)
2

)
= λ + 4 (λ = 1, 2).

In a similar way we can prove that the lower bound of the R-order of con-
vergence of the inclusion method (13) when INV1 = ()IC , INV2 = ()IE is the
same as in the case when INV1, INV2 = ()IC .

2) The case INV1 = ()IE

Let us apply the exact inversion (1) (that is, INV1 = ()IE ) under the sums
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(8) involved in the iterative formula (13), then we obtain

Ai = Σ2,i −
∑
j∈Ik
j 6=i

µj

(
u

(λ)
ij

)2 =
∑
j∈Ik
j 6=i

µj

[
1

(zi − ζj)2
−

(
h̄

(λ)
ij∣∣h(λ)

ij

∣∣2 − r2
j

)2]

=
∑
j∈Ik
j 6=i

µj

(
1

zi − ζj
− h̄

(λ)
ij∣∣h(λ)

ij

∣∣2 − r2
j

)(
1

zi − ζj
+

h̄
(λ)
ij∣∣h(λ)

ij

∣∣2 − r2
j

)

=
∑
j∈Ik
j 6=i

µj

(
ξ
(λ)
j h̄

(λ)
ij ε2

j − r2
j

(zi − ζj)
(∣∣h(λ)

ij

∣∣2 − r2
j

)
)(

1
zi − ζj

+
h̄

(λ)
ij∣∣h(λ)

ij

∣∣2 − r2
j

)

= OM (α′ε2 + β′r2),

where α′ and β′ are real constants. Hence

|ε̂i| = |εi|3OM (α′ε2 + β′r2).

In a similar way as in the derivation of the relation (23), we can show that
r̂ = O(ε3r). Therefore, the sequences

{
ε(m)

}
and

{
r(m)

}
behave as follows

ε(m+1) ∼ (
ε(m)

)3(
r(m)

)2
, r(m+1) ∼ (

ε(m)
)3

r(m)

and the corresponding R-matrix is T
(E)
2 =

[
3 2
3 1

]
, independently of the type

of used corrections (Schröder’s or Halley’s one). The spectral radius of this
matrix is ρ(T (E)

2 ) = 2 +
√

7 and the corresponding eigenvector x ρ =
(
(1 +√

5)/2, 1
)

has positive components. Hence, according to Theorem 1, we obtain

OR

(
(13)E

) ≥ ρ
(
T

(E)
2

)
= 2 +

√
7 ≈ 4.646.

2

Remark 2. Theorem 2 and a number of numerical examples show that the ap-
plication of the exact inversion (1) produces less acceleration of the convergence
of the interval method (13) than the centered inversion (2) (compare Tables 1
and 2). The explanation of this paradoxical outcome, having in mind that the
exact inversion gives smaller disks (see (2)), lies in the fact that the centered
inversion provides the better convergence of the midpoints of disks generated by
(13), which further forces faster convergence of the radii of disks. More details
can be found in [2].

Remark 3. Theorem 2 is proved under computationally verified initial condi-
tion (formula (20))

ρ(0) > 3(n− µ)r(0).
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Conditions of this form are quite reasonable and natural since the maximal ra-
dius r(0) gives an information on the size of initial inclusion disks, while the
quantity ρ(0) is a measure of the separation of disks Z

(0)
1 , . . . , Z

(0)
k from each

other. The above condition (20) and conditions of similar form are only suf-
ficient; in practice, simultaneous interval methods can converge although the
corresponding initial conditions are not satisfied. In other words, in practice
the ratio r(0)/ρ(0) may be greater (or sometimes considerably greater in the
case of polynomials of higher degree) than 1/(3(n − µ)r(0)), which can be ob-
served from Examples 1 and 2. Actually, stronger conditions are needed in
the convergence analysis because a number of inequalities and inclusion prop-
erties must be fulfilled. Theoretically, an interval method could be feasible if
the initial disks are nonintersecting, that is, if ρ(0) > r(0). However, some other
conditions (for example, division by a zero-disk has to be avoided) force more
rigorous condition of the form ρ(0) > αr(0), where α > 1 is a real constant. The
determination of α is an open problem yet; we can only say that well-spaced
disks provide a smaller α, and opposite; very close disks, similarly as very close
(complex) approximations in complex arithmetic, slow down the convergence of
any iterative method. An efficient approach in finding approximate value of α
is given in [14].

5. Single step methods with corrections

Applying the Gauss-Seidel approach to the methods (13) we obtain the
single-step methods

(32) Ẑi = zi −√µi INV2

([
δ2,i − S2,i

(
Ẑ,Z (λ)

)]1/2

∗

)
(i ∈ Ik, λ = 0, 1, 2),

where INV2 ∈ {()IE , ()IC}.
It is very difficult to find the R-order of convergence of the single step method

(32) with corrections (λ = 1, 2) as a function of the number of zeros k. However,
we can estimate the limit bounds of the R-order taking the limits cases k = 2
and very large k.

Using the well-known fact that the convergence rate of a single-step method
becomes almost the same to the one of the corresponding total-step method
when the number of different zeros is large, according to Theorem 2 we have for
a very large k

OR((32, k))∼=OR(13)≥




λ + 4 (λ = 1, 2), if INV1 = ()IC ,

2 +
√

7 ∼= 4.646, if INV1 = ()IE .

Consider now the single-step methods (32) for k = 2 and assume that |ε(0)
1 | =

|ε(0)
2 | = r

(0)
1 = r

(0)
2 < 1 (the “worst case” model). After an extensive calculation

we derive the following estimates:



The improved square-root methods... 95

(i) Case INV1 = ()IE :

|ε̂1| ∼ |ε1|3r2
2, |ε̂2| ∼ |ε1|3|ε2|3r2

2,

r̂1 ∼ |ε1|3r2, r̂2 ∼ |ε1|3|ε2|3r2.

(ii) Case INV1 = ()IC :

|ε̂1| ∼ |ε1|3|ε2|λ+1, |ε̂2| ∼ |ε1|3|ε2|λ+4,

r̂1 ∼ |ε1|3r2, r̂2 ∼ |ε1|3|ε2|3r2.

The corresponding R-matrices and their spectral radii and eigenvectors are:

(i) Case INV1 = ()IE :

T
(E)
4 =




3 0 0 2
3 3 0 2
3 0 0 1
3 3 0 1


 ,

ρ
(
T

(E)
4

)
= 6.2965,

x
(E)
ρ = (1, 1.91, 0.7382, 1.6483) > 0.

(ii) Case INV1 = ()IC :

T
(C)
4 =




3 λ + 1 0 0
3 λ + 4 0 0
3 0 0 1
3 3 0 1


 , ρ

(
T

(C)
4

)
=

{
6.6457, λ = 1,
7.8541, λ = 2,

x(C)
ρ =

{
(1, 1.8229, 0.6771, 1.5) > 0, λ = 1,
(1, 1.6180, 0.5279, 1.1459) > 0, λ = 2.

According to the previous results and the range of the R-order of the method
(32) without corrections (λ = 0, see the end of Section 2), we can formulate the
following assertion.

Theorem 3. The ranges of the lower bounds of the R-order of convergence of
the single-step method (32) are

OR(32) ∈ (4, 5.303) (λ = 0),
OR(32) ∈ (4.646, 6.297), (λ = 1, 2), if INV1 = ()IE ,

OR(32) ∈
{

(5, 6.646) (λ = 1),
(6, 7.855) (λ = 2), if INV1 = ()IC .
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6. Numerical examples

The presented inclusion methods of Ostrowski’s type have been tested in
solving a number of polynomial equations, applying a multi-stage globally con-
vergent composite algorithm described in detail in [12] and [5].

For comparison purpose, we have also tested the following methods:

Total-step Halley-like inclusion method:
(33)

Ẑi = zi − INV2

(
H(zi)−1 − P (zi)

2P ′(zi)

[
1
µi

S2
1,i

(
Z (λ),Z (λ)

)
+ S2,i

(
Z (λ),Z (λ)

)
])

;

Single-step Halley-like inclusion method:

(34) Ẑi = zi − INV2

(
H(zi)−1 − P (zi)

2P ′(zi)

[
1
µi

S2
1,i

(
Ẑ,Z (λ)

)
+ S2,i

(
Ẑ,Z (λ)

)
])

;

Total-step Laguerre-like inclusion method:

Ẑi = zi − n INV2

(
δ1,i +

[n− µi

µi

(
nδ2,i − δ2

1,i − nS2,i

(
Z (λ),Z (λ)

)

+
n

n− µi
S2

1,i

(
Z (λ),Z (λ)

))]1/2

∗

)
;(35)

Single-step Laguerre-like inclusion method:

Ẑi = zi − n INV2

(
δ1,i +

[n− µi

µi

(
nδ2,i − δ2

1,i − nS2,i

(
Ẑ,Z (λ)

)

+
n

n− µi
S2

1,i

(
Ẑ,Z (λ)

))]1/2

∗

)
;(36)

Total-step Euler-like inclusion method:

Ẑi = zi − 2µi INV2

(
δ1,i +

[
2µiδ2,i − δ2

1,i − 2
(
µiS2,i

(
Z (λ),Z (λ)

)

−S2
1,i

(
Z (λ),Z (λ)

))]1/2

∗

)
;(37)

Single-step Euler-like inclusion method:

(38)

Ẑi = zi−2µi INV2

(
δ1,i+

[
2µiδ2,i−δ2

1,i−2
(
µiS2,i

(
Ẑ,Z (λ)

)−S2
1,i

(
Ẑ,Z (λ)

))]1/2

∗

)
.

For all methods (33)–(38) i ∈ Ik, INV1, INV2 ∈ {()IE , ()IC} and the cor-
rection C(z) is taken to be C(z) = 0 (the associated code λ = 1), C(z) = N(z)
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(λ = 1) or C(z) = H(z) (λ = 2). The R-order of convergence of the total-step
methods (33), (35) and (37) is the same as that of the method (13), given in
Theorem 2. The ranges of the lower bounds of the R-order of convergence of
the single-step methods (34), (36) and (38) is the same as that of the method
(32), given in Theorem 3.

Example 1. We have implemented total-step interval methods (13), (33), (35)
and (37) for λ = 0, 1, 2 to enclose multiple zeros of the polynomial

P (z) = z20 − 3z19 − 3z18 − z17 − 34z16 + 144z15 + 184z14 + 184z13 + 448z12

−1648z11 − 2992z10 − 5392z9 − 8352z8 − 20864z7 − 33536z6

−52224z5 − 98304z4 − 47104z3 − 73728z2 − 110592z − 221184.

The zeros of P are ζ1 = 3, ζ2 = −2, ζ3 = 1 + i, ζ4 = 1 − i, ζ5 = −1 − i,
ζ6 = −1 + i, ζ7 = −2i, ζ8 = 2i of the multiplicity µ1 = µ2 = 3, µ3 = µ4 =
µ5 = µ6 = 2, µ7 = µ8 = 3, respectively. The initial disks were selected to be
Z

(0)
i = {z(0)

i ; 0.5}, with the centers

z
(0)
1 = 3.2 + 0.1i, z

(0)
2 = −2.1 + 0.2i, z

(0)
3 = 0.9 + 1.2i, z

(0)
4 = 0.8− 1.2i,

z
(0)
5 = −1.2− 0.9i, z

(0)
6 = −0.9 + 0.8i, z

(0)
7 = 0.1− 2.2i, z

(0)
8 = 0.2 + 2.1i.

We have applied separately the exact and centered inversion under the corre-
sponding sums in all tested methods.

method r(1) r(2) r(3)

(13) λ = 0 2.32(−2) 2.41(−9) 1.69(−38)
(13) λ = 1 3.31(−2) 7.66(−9) 1.04(−42)
(13) λ = 2 3.45(−2) 1.01(−8) 1.08(−43)
(33) λ = 0 1.05(−2) 1.05(−5) 3.25(−25)
(33) λ = 1 1.43(−1) 2.96(−5) 2.26(−26)
(33) λ = 2 1.47(−1) 3.07(−5) 3.05(−26)
(35) λ = 0 2.96(−2) 4.25(−9) 5.66(−39)
(35) λ = 1 4.34(−2) 2.72(−8) 9.16(−41)
(35) λ = 2 4.59(−2) 3.75(−8) 1.70(−40)
(37) λ = 0 7.59(−2) 1.10(−6) 1.47(−28)
(37) λ = 1 1.42(−1) 5.78(−5) 8.21(−23)
(37) λ = 2 diverges

Table 1 Maximal radii of inclusion disks – exact inversions
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method r(1) r(2) r(3)

(13) λ = 0 3.15(−2) 1.67(−9) 1.04(−40)
(13) λ = 1 4.63(−2) 6.61(−11) 1.03(−57)
(13) λ = 2 4.84(−2) 1.96(−13) 5.41(−82)
(33) λ = 0 2.09(−1) 5.47(−7) 3.70(−32)
(33) λ = 1 3.46(−1) 1.57(−8) 3.19(−45)
(33) λ = 2 3.70(−1) 1.38(−10) 5.85(−73)
(35) λ = 0 4.25(−2) 2.96(−9) 3.56(−41)
(35) λ = 1 6.56(−2) 1.03(−10) 1.48(−58)
(35) λ = 2 6.96(−2) 4.50(−13) 6.32(−82)
(37) λ = 0 1.96(−1) 2.18(−7) 3.14(−34)
(37) λ = 1 diverges
(37) λ = 2 diverges

Table 2 Maximal radii of inclusion disks – centered inversions

The maximal radii of the inclusion disks produced in the three first iterative
steps are given in Tables 1 and 2, where A(−t) is the abbreviation of A× 10−t.
Let us note that the Euler-like method (37) with corrections break down or
work with difficulties in this example.

Comparing the results from Tables 1 and 2, we observe that the centered
inversion enables considerably smaller inclusion disks than the exact inversion,
which coincides with the assertions of Theorem 2. The entries from Tables 1 and
2 and a number of numerical examples show that the Ostrowski-like methods
possess better convergence behavior than the Halley-like and Euler-like methods.

Example 2. To find circular inclusion approximations to the zeros of the
polynomial

P (z) = z12 − (2− 3i)z11 + (16− 6i)z10 − (26− 38i)z9 + (101− 58i)z8

−(120− 131i)z7 + (250− 76i)z6 − (72 + 20i)z5 − (84− 432i)z4

+(864− 292i)z3 − 504z2 + 432iz + 864,

we have implemented the total-step interval methods (13) (with λ = 0, 1, 2) and
the single-step methods (32) (with λ = 0, 1, 2). For comparison purpose, we
have also tested the Halley-like, the Laguerre-like and the Euler-like methods
(33)–(38). Total-step methods without corrections and with Newton’s and Hal-
ley’s corrections are additionally denoted by TS, TSN and TSH, respectively
(see Table 3), while the corresponding single-step methods are marked with SS,
SSN and SSH. All tested methods used the centered inversion which gives con-
siderably better inclusions than the exact inversion, as stated in Theorems 2
and 3.

The zeros of P are ζ1 = −1, ζ2 = 2i, ζ3 = 1 + i, ζ4 = 1− i, ζ5 = −3i of the
multiplicities µ1 = 2, µ2 = 3, µ3 = 2, µ4 = 2, µ5 = 3, respectively. The initial
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disks were selected to be Z
(0)
i = {z(0)

i ; 0.6}, with the centers:

z
(0)
1 = −1.1 + 0.2i, z

(0)
2 = −0.1 + 2.3i, z

(0)
3 = 0.9 + 1.1i,

z
(0)
4 = 0.8− 1.2i, z

(0)
5 = 0.2− 2.8i.

The maximal radii of the inclusion disks produced in the first three iterative
steps are given in Table 3.

method r(1) r(2) r(3)

(13) λ = 0 1.29(−2) 6.31(−12) 5.95(−50)
TS (33) λ = 0 4.33(−2) 1.50(−9) 2.18(−41)

(35) λ = 0 1.81(−2) 1.54(−11) 1.91(−50)
(37) λ = 0 5.20(−2) 7.77(−10) 6.19(−45)
(32) λ = 0 8.42(−3) 5.85(−13) 3.36(−54)

SS (34) λ = 0 2.24(−2) 7.16(−11) 1.21(−45)
(36) λ = 0 1.39(−2) 5.12(−13) 3.88(−56)
(38) λ = 0 3.60(−2) 8.81(−12) 1.15(−50)
(13) λ = 1 1.01(−2) 2.60(−14) 6.07(−71)

TSN (33) λ = 1 3.74(−2) 3.80(−12) 9.32(−62)
(35) λ = 1 1.51(−2) 1.45(−13) 6.10(−72)
(37) λ = 1 3.79(−2) 9.23(−12) 1.45(−64)
(32) λ = 1 5.60(−3) 3.57(−15) 7.46(−75)

SSN (34) λ = 1 1.53(−2) 7.13(−13) 3.41(−64)
(36) λ = 1 1.01(−2) 2.78(−15) 5.36(−77)
(38) λ = 1 2.59(−2) 2.02(−13) 7.04(−68)
(13) λ = 2 1.03(−2) 5.39(−16) 7.69(−99)

TSH (33) λ = 2 3.76(−2) 3.18(−14) 4.45(−89)
(35) λ = 2 1.52(−2) 2.09(−15) 1.29(−98)
(37) λ = 2 3.74(−2) 5.83(−14) 1.90(−89)
(32) λ = 2 5.75(−3) 8.72(−18) 4.59(−104)

SSH (34) λ = 2 1.52(−2) 1.74(−15) 8.94(−93)
(36) λ = 2 1.03(−2) 6.82(−17) 1.85(−102)
(38) λ = 2 2.64(−2) 9.66(−15) 4.00(−92)

Table 3 Maximal radii of inclusion disks – centered inversions

We observe that the proposed methods with corrections produce very small
disks. This is especially expressed when the centered inversion is employed,
compare Tables 1 and 2. In some particular cases the proposed methods with
corrections give in the first iterative step disks not smaller compared to those
produced by the inclusion methods without corrections. The explanation lies
in the fact that Schröder’s and Halley’s method do not necessarily improve the
initial (point) approximations at the beginning of iterative process. In later
iterations the convergence order of the inclusion methods with corrections in-
creases and approaches thetheoretical one obtained in the presented convergence
analysis.
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According to results of the presented examples given in Tables 1, 2 and 3,
and a number of tested polynomials, we can conclude that the proposed itera-
tive methods of Ostrowski’s type for the simultaneous inclusion of polynomial
zeros either compete the existing methods of the same order or they produce
better results, in concrete cases compared with the Halley-like methods (33) and
(34) and the Euler-like methods (37) and (38). A simple analysis of computa-
tional efficiency shows that, in general, inclusion methods with corrections and
centered inversion are more efficient than the corresponding methods without
corrections. This advantage is a direct consequence of significantly increased
convergence order achieved without additional function evaluations.

A comparison of simultaneous interval methods and the corresponding “point”
versions (realized in ordinary complex arithmetic) was the subject of some pre-
vious papers. Here we wanted only to emphasize that these methods of different
structures are essentially incomparable. Both classes have their own advantages
and shortcomings, interval methods produce self-validated results; on the other
hand, methods implemented in ordinary (real or complex) arithmetic have lower
computational cost. In fact, the choice of a most convenient method from these
two classes depends on the nature of the problem to be solved and specific re-
quirements (for example, information on the error of computation, control of
rounding errors, handling with uncertain data, and so on).
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